
Mobile Devices and Data Synchronization Assisting Medical Diagnosis
ADRIAN SERGIU DARABANT, HOREA TODORAN

Dept. of Computer Science
Babes-Bolyai University

1, Kogalniceanu street, Cluj-Napoca
ROMANIA

dadi@cs.ubbcluj.ro, htodoran@euro.ubbcluj.ro http://www.cs.ubbcluj.ro

Abstract: - In order to be able to establish the most accurate diagnostics as quick as possible, medical doctors need
fast access not only to the current patient state and test results but also to its historical medical data. With the
diversity of the malady symptoms today a correct diagnostic often requires a valuable time that is not always
available due to the patient’s condition. Even more, after finishing his/her investigation, the medical doctor should
be able to immediately forward the relevant results to other medical personnel (doctors, nurses, hospital
administration). In this paper we propose a mobile solution for assisting medical doctors with complete information
about their patients even when outside of the medical centers. The software aim is assist medical doctors in two
main directions: consult patient data and update the patient’s file and propose early in time new countermeasures
for improving its status. The first direction deals with providing complete information on the patient’s history,
current status, test results and similar symptomatic cases with their solutions. The second direction deals with
patient information updates. All this will be implemented in a mobile solution using handheld devices. The goal of
our paper is to present a pilot implementation of a medical database system with dynamic and efficient data
synchronization using wireless technologies.

Key-Words: mobile applications, wireless data synchronization, personal digital assistants, medical applications.

1 Introduction
Being able to perform virtually the same tasks as
desktop computers or laptops, Personal Digital
Assistants (PDAs) are constantly increasing their
attractiveness. Although originally created to run
simple applications like electronic diaries, address
books or planning calendars, the handheld devices
eventually evolved into real pocket computers capable
of undertaking more complex tasks[11,13], from word
processing and spreadsheet editing to multimedia
authoring[14]. Current models support data transfer
over communication networks via the common
wireless protocols (infrared, bluetooth, WiFi, GPRS),
therefore providing access to convenient services,
including web browsing, messaging, email, and so on.

Besides the lower power consumption (the battery
life is approximately two times longer than in the case
of laptops), the most important advantages of the
handheld computers over other mobile devices
achieving similar performance consist in their higher
portability and mobility. PDAs are much lighter than
laptops or TabletPCs (approximately 100-200g), fit
into the jacket’s pocket (wearable), can be hold into
one hand and operated with the other (handhelds), and
can be operated even on the move. Furthermore, they

are very easy to use and prove economic viability [1],
having much of the computing capability and storage
capacity of laptops at a fraction of the cost (some
authors even called them “equity computers”- e.g.
Andrew Trotter in [2]). As a consequence, PDAs are
more and more exploited in various fields, including
mobile business ([3]), mobile education, medicine,
and leisure.

Nonetheless, there are also inconveniences when
using handheld devices. The most significant are
related to the small size of the screen, which confines
the amount of information displayed or requires the
intensive use of navigation bars. Data input is more
difficult than in the case of desktop computers or
laptops, since the keyboard and the mouse are very
small (if present). Even the stylus pens are rather
narrow, therefore requiring accurate operation on the
screen pad. Handhelds have relatively limited storage
capabilities, are difficult to upgrade and much less
robust than TabletPCs, laptops, and desktop
computers. Taking all these restrictions into account,
software producers must design applications running
on PDAs more carefully than those for the other types
of PCs. As a good practice example, the Windows
Mobile for PocketPC family includes scale down

WSEAS TRANSACTIONS on COMMUNICATIONS

Adrian Sergiu Darabant, Horea Todoran

ISSN: 1109-2742 551 Issue 6, Volume 7, June 2008

versions of the Microsoft Windows operating systems,
very similar to the desktop versions, though adapted
in terms of minimal requirements (memory, processor
speed) and visual elements (windows, menus, lists,
buttons) to the characteristics of PocketPCs. An
exhaustive list of general design requirements for
Windows Mobile-based PocketPC applications is
given in [4].

2 Problem Formulation
Medical doctors need to be efficient when consulting
their patients in the daily routine, in terms of both
saving time and taking the appropriate professional
decisions. A crucial prerequisite for achieving a high
level of efficiency is the quick access to a whole range
of information about the current patient: medical
history, results of previous medical investigations,
opinions of other specialists on the case, and so on.
Moreover, the medical doctor should be able to easily
disseminate the results of his/her own investigations
on the patient.

The traditional solution is to use paper-based
patient files that have to be carried by the medical
doctor or by the accompanying staff to the patient’s
bed. The more information required for a certain
investigation, the bulkier the dossier and the more
difficult the search for relevant data.

A modern alternative is to use a computer-based
solution, with a piece of equipment that is small
enough to fit easily into the jacket’s pocket, and with
sufficient computing and communication power to
rapidly bring patient’s data on demand from a central
database onto the device.

Although there are still situations where it is
feasible for medical doctors to carry the paper-based
patient files with them, these do not always provide
the most up-to-date information, which is essential
when taking the decisions. For instance, the most
recent results of laboratory investigations might have
not yet been recorded in the dossier. Furthermore,
even if the raw data has already been recorded, it has
not yet been interpreted according to medical
procedures.

In this paper, we propose an innovative software
architecture on mobile devices with communication
capacities, solution that can be easily used with any
exiting medical data management software. The
application not only facilitates the management of

various sets of information (doctors, patients,
investigations, and so on), using the PDA, but also
synchronizes the data between the mobile device and
the hospital’s database server.

We implemented the proposed framework on
mobile assistants (PDAs) with cellular phone and/or
wireless 802.11 capabilities [6, 7] in a pilot project
that has been experimentally linked with the
management system of a hospital [8]. With the aid of
the new framework a hospital that has many premises
is able to manage, at any moment, updated
information about its patients, even coming from far
locations[15]. It is also able to keep in contact with
general practitioners who, after visiting their patients
at home, can immediately send the results of their
investigations to the specialists.

The novelty of our system consists in using an
incremental data synchronization mechanism [5]
based on timestamps, as described in section 4.1
below. The system architecture (see section 3 for
details) also ensures a high degree of independence
between the mobile system and the hospital’s data
management system, which is crucial in case of
temporary failure of one of the components.
Optimized network traffic is achieved by means of a
data compression solution, illustrated in section 4.3 of
the present paper

2.1 Data flow
The system relies on the existence of the hospital’s
central database server to which medical staff
(doctors, nurses, laboratory assistants), as well as
administrative personnel shall have access anytime
and from any location within hospital’s premises.
They not only frequently ask for updated information
concerning the patients, but also send new information
to the database server (e.g. results of their
investigations).

Medical doctors and their assisting staff query the
hospital’s database to get useful information that
could help them conducting their investigations on the
patient. As a result of these investigations, the medical
staff attains new information that should be inserted
into the database for future use. Various pieces of the
recorded information could also be used by the
administrative staff, for instance to estimate the cost
of the treatment or to plan the use of equipment.

WSEAS TRANSACTIONS on COMMUNICATIONS Adrian Sergiu Darabant, Horea Todoran

ISSN: 1109-2742 552 Issue 6, Volume 7, June 2008

medical staff

patient information

answers

questions,
investigations

new results

patients administrative staff

patient,
doctor infos

Fig.1 Medical information flow

Fig. 1 depicts the typical information flow within

the medical architecture we are trying to model.
The general practitioner is in our scenario a mobile

user that travels with his/her PDA. Usually, traveling
means either visiting the patients in the hospital, or
receiving them in his/her office, but general
practitioners might as well visit the patients at their
residence in certain situations. Given this volatile
environment, we would like the medical doctor to
have as much information as possible about the
patients he/she is consulting at a given time.
Furthermore, a medical doctor could get assignments
for visiting patients directly. The patient’s
consultation request at the clinic is either directly
pushed by the software system on the general
practitioner’s mobile device or collected in the course
of the next data synchronization between the central
system and the mobile device.

During a consultation the general practitioner
usually evaluates the patient’s state using various
medical analysis methods: blood sampling,
temperature, blood pressure, etc. The results of all
these measurements consist in various data sets that

the general practitioner would normally write in the
patient’s record. Using our mobile application –
MobMed – the general practitioner no longer needs to
fill in paper reports and records about the patient. All
he has to do is to input the various data sets he
obtained into the database, using the friendly interface
we designed. Data is temporarily stored in its own
portable device (PDA) and then synchronized with the
central warehouse of the hospital. Virtually, the
general practitioner has a small sized tool capable of
storing patient’s records, recalling history data about
the patients and therefore helping the medical doctor
establish an early potential diagnosis.

But our solution deals not only with generalists but
also for special intervention medical teams. In the
case of a severe accident the often unconscious
patients need to be quickly transported to a specialized
hospital. In many cases preparing the patient arrival at
the hospital involves preparing the equipments and
scheduling out of order clinical tests. All these
procedures need to be prepared in accordance with the
patient history. Instant consultation of patient history
might reveal to the intervention team certain severe

WSEAS TRANSACTIONS on COMMUNICATIONS Adrian Sergiu Darabant, Horea Todoran

ISSN: 1109-2742 553 Issue 6, Volume 7, June 2008

incompatibilities with the proposed resuscitation
techniques or proposed treatments. In many cases
these incompatibilities have lead to tragic deaths or
patient permanent injuries that could have been
otherwise avoided. It appears thus vital for a medical
practitioner or intervention team to instantly consult a
patient or victim medical history. We offer this
possibility by implementing a software solution on
PDAs or mobile devices. The patient medical records
are retrieved to the medical staff PDA using any
available communication link and stored temporarily.
Upon history checks the medical personnel can
inquire for similar symptomatic cases in order to be
assisted in their diagnosis. A list of similar cases in
then retrieved together with their solution and success
indicators. By inspecting all this information the
medical specialist can verify the chances of applying
an inadequate treatment given a patient current status
and history. The backoffice system in fig 1 is the
central data storage facility. For the purpose of our
application this could be any database server storing
patient historical records, treatment and schedules, as
hospital administration data, schedules, operation
planning, etc. The data warehouse could be
implemented by the same database that handles the

hospital back office data or in a different database that
will be synchronized/partially replicated [12] with the
hospital backoffice.

3 System Architecture and Services
In the following paragraphs we present the proposed
system architecture that has been already implemented
in a pilot project called MobMed. One of our major
requirements was to build a system that is as least
intrusive as possible in the existing hospital or clinic
management software (HMS). With this goal in mind,
we needed to link the mobile system facilities to an
existing software solution in such a way that no major
adjustments are required for the already implemented
solution.

We used the following model to implement the
mobile architecture on the top of existing hospital
management software, which is running on an MS
Windows-like operating system and storing data in an
SQL Database Server [10]. We present this particular
architectural model here in order to show the degree
of independence between the mobile system and the
existing management solution.

GPRS/
 UMTS/
802.11/
HUB

Internet

Hospital Management Software
HMS

Backoffice System

Mobile Medical Practicioner
running MobMed

Wireless Communication
GSM/GPRS/UMTS/802.11

MobMed Server (MMS)
SQL Server

Data Exchange

Wireless
Communication
802.11

Fig. 2 – The MobMed System Architecture and Integration with the Hospital Management Software

WSEAS TRANSACTIONS on COMMUNICATIONS Adrian Sergiu Darabant, Horea Todoran

ISSN: 1109-2742 554 Issue 6, Volume 7, June 2008

Even if it is a challenging task, the integration

bet

 the general practitioners are running
Mo

consulting its recent medical history. Every recent

ion

dia

 mobile devices. The

obile SQL Server 2005 as data

ween any existing management software (HMS)
and MobMed is always possible with little or no
intrusion into the HMS at all. In order to implement
the MobMed solution we suppose that the clinic
(hospital) already has at least an Intranet system,
possibly connected to the Internet by some highly
secure connection. We further suppose that, in most of
the cases, the internal network of the hospital is
protected by a firewall that separates the Intranet from
the Internet.

In Fig. 2
bMed on Pocket PC devices with incorporated

GSM phones or wireless radio cards (WiFi). The
choice of GPRS/UMTS or wireless is conditioned by
the necessary connection persistence. If the
connection is desired at any particular moment, the
best choice would be GPRS/UMTS, both requiring a
GSM line. For connections only in hospital’s
perimeter the use of the 802.11 standard and WiFi
hotspots might be a convenient alternative. For mixed
uses the applications will use the communication
method with the smallest cost. When the user of the
MobMed application is within a Wifi hotspot area that
allows him to reach the MMS then the Wifi
connection can be used. If the Wifi connection is not
possible then the application will establish first
(automatically or with the help of the operator) a
3G/GRPS data connection by using the GSM line.
When the connection is available the application is
free to exchange information with the MMS server.
We will describe in the following sections the
techniques used to exchange data between MobMed
and MMS. The most used communication scenario
involves data downloading on the device, handling
and then, when needed, synchronization back to the
MMS. A medical user will query data for a patient.
The query for data regarding a patient will trigger a
download operation if data not already present on the
device. For that, either the entire set of patients cured
by the same medical doctor or just data for the
specific patient is downloaded from the MMS server.
Once on the device the data is stored in local mini
Mobile SQL Server 2005 in a relational format that is
a miniaturized filtered copy of the MMS dataset.
Upon the download operation the entire information
concerning the patient is available to the medical
doctor and presented by the application. The medical
status of the patient can be assessed by looking at the
pathological tests conducted on the patient and by

treatment can be inspected and all available test
results will help the medical doctor take the right
diagnosis decisions. If there is not enough data
available for formulating a conclusion and issuing a
diagnosis the medical doctor can update the patient’s
record and request and schedule in the same time new
medical tests on its local device. Once all the tests are
scheduled the entire information is synchronized again
with the MMS server. From the MMS server the data
is pushed back into the hospital backoffice application
and will trigger the appropriate actions. The
backoffice and the MMS server are tightly coupled
and synchronized at every data modification. Being
generally on a local high bandwidth network, keeping
them in sync will not penalize the entire system.

4 Data Exchange and Synchronizat

Since we want to give access to the mobile general
practitioners to the database server where patient,

gnosis and consultation schedules data are stored,
some features of the Microsoft based platforms can be
used. First of all, the SQL Database Server, in its 2000
and 2005 variants, offers support for mobile
subscribers to data publications.
The MobMed server runs SQL Server and provides
for data synchronization with the
synchronization procedure uses the HTTP protocol for
data transport in order to be easily accessible on
highly secured platforms. HTTP is used because of its
high implementation availability on all platforms and
because it allows easier through firewall
communication.
The mobile devices are running a .NET application
platform with M
storage and synchronization engine. Microsoft SQL
Server 2005 Mobile Edition (SQL Server Mobile), the
“descendant” of Microsoft SQL Server 2000 CE
Edition 2.0 (SQL Server 2000), extends the Microsoft
enterprising solutions for line-of-business and for the
management of personal information applied on a
device. SQL Server Mobile delivers the functionalities
necessary to a relational database, transposed to a
lower scale: robust information storage, query
preparation, connectivity capacities. Microsoft SQL
Server 2005 was projected to support an extended list
of mobile devices and Table PCs. The mobile devices
include any device that runs Microsoft Windows
CE 5.0, Microsoft Mobile Pocket PC 2003, Microsoft

WSEAS TRANSACTIONS on COMMUNICATIONS Adrian Sergiu Darabant, Horea Todoran

ISSN: 1109-2742 555 Issue 6, Volume 7, June 2008

Mobile Version 5.0 Pocket PC, or Microsoft Mobile
Version 5.0 Smart Phone

1Fig 3 – Merge Replication Architecture .

e internal architecture of the data replication
bet

.
Th
ween the mobile devices and the HMS server is

depicted in fig.3. The application runs on the mobile
devices together with an instance of the SQL Server
Mobile database engine for storing data. An additional
component: the SQL Server Mobile Client Agent helps
synchronizing the two databases: the local mobile
database with the HMS SQL Server database. On the
server side the data flow passes trough an Internet
Information Server (IIS) (the Microsoft’s
implementation service of a Web server). This is
needed for handling the communication trough the
HTTP protocol. When installed on a local area
network the IIS needs a helper component: the SQL

me

a proper solution when
con

e
Mi

Provider as described above.

1 Microsoft TechNet [http://technet.microsoft.com
/en-us/library/ms171927.aspx]

Server Mobile Server Agent. This component will
identify all requests for data synchronization arrived
at the IIS server entry point and will differentiate them
from normal HTTP sessions. The IIS server and
component are also required in order to implement
authentication. All requests passing trough the IIS
server and destined for data synchronization carry an
authentication token that is validated or invalidated by
the SQL Server Reconciler (against the SQL Server
engine). All authenticated requests are then translated
in SQL requests for the SQL Server by the SQL
Mobile Replication Provider. The fact that the IIS
takes part into the replication process leads to the idea
that data synchronization works on pull model. Indeed
the MMS server cannot trigger a data synchronization
operation on a mobile device that doesn’t ask for it.
The model is thus a client-server one where the client
(the MobMed application) always initiates data
exchanges. The SQL Server Replication Provider in
fig. 3 deals with data replication between the MMS
system and the hospital backoffice (HMS) data
management system. The internal data replication
architecture we presented here uses the Merge
replication protocol in order to synchronize the data.

Merge replication is an ideal synchronization
chanism when using mobile devices, as it allows

the automatic and independent data update on both the
mobile device and the server. As soon as the device is
connected, the data is synchronized, changes being
sent from the client to the server, along with the new
information being pushed from the server to the
mobile device. Merge Replication needs more server
configurations and maintenance than its alternative
method (Remote Data Access), but it is more
advantageous for applications that involve several
mobile devices. Merge Replication also has the
capacity of detecting and solving shown up conflicts
and of rejoining data from several tables at the same
time. It allows instrument survey by using SQL Server
and provides more data rejoining options such as the
article types and filtering.

Merge Replication is
flict solving is required, when information has to

be propelled to and from the desktop or laptop
computers and when working with larger databases.

Merge Replication uses some components of th
crosoft SQL Server 2005 Mobile Edition (SQL

Server Mobile): SQL Server Mobile Database Engine,
SQL Server Mobile Client Agent, SQL Server Mobile
Server Agent, SQL Server Mobile Replication

WSEAS TRANSACTIONS on COMMUNICATIONS Adrian Sergiu Darabant, Horea Todoran

ISSN: 1109-2742 556 Issue 6, Volume 7, June 2008

4.1 Replication Implementation
SQL Server and the SQL Server Mobile versions

ions when it

e
SQ

ously
and

be
pro

ommon scenarios for merge replication include
the

ding read-only data
ata

he functioning of merge replication from Microsoft

ished on the SQL Server
ed for

3. ted

Details on data publication and subscriber

reg
subscriber is

syn

s to perform data synchronization
wh

qlCeReplication repl = null;

= new SqlCeReplication();
.myHMSserver.ro

 repl.InternetLogin = "MyInternetLogin";

=
";

 re ublisherLogin";

generally allow for two types of interact
comes to data synchronization: Remote data access
(RDA) and Merge replication. The two methods are
distinct from the point of view of managing data
conflicts. All data replication mechanisms are prone to
data conflicts i.e. the same data updated in multiple
mobile locations and then applied to the server. RDA
offers a simple manual conflict interception technique
as opposed to the merge replication method that
handles data conflicts automatically when possible.

RDA provides a simple way for a Windows CE-
based application to access (pull) data from a remot

L Server database table and store that data in a
local SQL Server Mobile database table. The
application can then read and update the local SQL
Server Mobile database table. SQL Server Mobile can
optionally track all changes that are made to the local
table. The application can later update (push) the
changed records from the local table back to the SQL
Server table. Windows Mobile-based applications can
also use RDA to submit SQL statements to be
executed on a remote SQL Server database. For
example, an application could submit SQL statements
that insert, update, or delete records to a remote SQL
Server table. RDA is appropriate when conflict
resolution is not required.

Merge replication is ideally suited to portable
devices because it lets data be updated autonom

 independently on the portable device and the
server. The data on the device and the server can be
synchronized when the device is connected, to send
changes from the client to the server and to receive
new changes from the server. Merge replication
requires more configuration and maintenance at the
server than Remote Data Access (RDA), but it is
appropriate for applications that have many devices.
Merge replication also provides built-in and custom
conflict resolution capabilities, allows for replication
of data from multiple tables at the same time, lets you
use monitoring tools by using SQL Server, and
provides rich data replication options such as article
types and filtering to improve performance depending
on the data needs and identity range management.

Merge replication is also a good solution when
conflict resolution is required, when data must

pagated to and from desktop or portable computers

and devices and when rich data distribution
capabilities are required.

C
 following:
• Downloa
• Entering and uploading new d
• Updating and synchronizing data

T
SQL Server 2005 Mobile Edition implies the
following processes:

1. The data is publ
2. One or multiple subscribers is/are creat

the publication (mobile devices)
The data in the subscriber is upda

4. The data is synchronized.

istration setup are presented in [16].
When a SQL Server Mobile
chronized with the SQL Server, all the changes on

data are recovered by the database publication.
However, when a SQL Server Mobile subscriber is
synchronized for the first time, it can recover the data
either directly from the database publication or from
the snapshot file. The sealed class SqlCeReplication is
part of the space names System.Data.SqlServerCe and
allows the synchronization of SQL Server Mobile
databases with the SQL Server databases. Its interface
is described in [9].

The typical step
en everything is setup are depicted bellow:

S
Try{
 repl
 repl.InternetUrl = "http://www

/sqlmobile/sqlcesa30.dll";

 repl.InternetPassword = "<password>";
 repl.Publisher = "MyPublisher";
 repl.PublisherDatabase

"MyPublisherDatabase
pl.PublisherLogin = "MyP

 repl.PublisherPassword = "<password>";
 repl.Publication = "MyPublication";
 repl.Subscriber = "MySubscriber";

WSEAS TRANSACTIONS on COMMUNICATIONS Adrian Sergiu Darabant, Horea Todoran

ISSN: 1109-2742 557 Issue 6, Volume 7, June 2008

 repl.SubscriberConnectionString = "Data Source=

 repl.AddSubscription(AddOption.CreateDatabase);

n) { // Error Handling/ }

For all synchronization units we have an
inc

The SQL Server trackers or timestamps are never

rem
ng

Sy

ig 5 shows the data path during synchronizations
bet

MyDatabase.sdf";

 repl.Synchronize();
} catch (SqlCeExceptio
finally { repl.Dispose(); }

remental synchronization mechanism based on
timestamps. Each mobile device keeps the date and
time of the last successful synchronization for each
entity type (column, row, record) and brings in only
newly modified data from the gateway server. The
timestamps or trackers are added automatically to
both MMS SQL Server and SQL Server Mobile by
the publication setup.

Fig 4 – Merge Replication using timestamps.

oved after the publication is created. They stay on
for the entire life of the publication. On the client side
(the MobMed mobile device) the SQL Server Mobile
has two types of synchronization: recovery and
incremental. The recovery synchronization recovers
the entire publication from the publisher. Generally
this type of synchronization is requested at the
initialization of a new mobile device with the
MobMed application. There is no initial database on
the subscriber (MobMed). The first and initial copy is

created by the first recovery synchronization. The
incremental synchronization on the other hand is used
for subsequent data replications when entities have
been changed either on the subscriber or on the
publisher. The former synchronization type only
downloads data from the server – is a one phase step.
The later method is composed of two steps: a
download process that brings in modified data from
the publisher and an upload process for integrating
local changes into the publication database.

IIS

Fig 5 – Logical/Physical Data Path duri

PDA OnDemand
uplink sync

u

nchronization

F
ween the MobMed application and the hospital

backoffice. In order to be as least intrusive as possible
we deal in our architecture with two distinct
synchronization operations. The first one occurs
between the MobMed mobile device and the MMS
Server running SQL Server, were the data is
published. The second synchronization occurs

Hospital
Backoffice

plink sync

PDA Ondemand
downlink sync

MobMed-A

MobMed-C

MobMed-B

Scheduled/automatical
downlink
 MMS backoffice
synchronization

MMS HMS

WSEAS TRANSACTIONS on COMMUNICATIONS Adrian Sergiu Darabant, Horea Todoran

ISSN: 1109-2742 558 Issue 6, Volume 7, June 2008

internally in the hospital’s intranet and synchronizes
data between the MMS system and hospital
management solution. As the hospital management
system is unknown/black box from our point of view
we do not deal with data integration between the two
systems. The only important thing from case to case is
to ensure that there is a synchronization possibility
between the hospital management database system
and the MMS SQL Server. As already SQL Server
provides synchronization methods for most available
database servers this point should not be a blocking
one. Even in the situation where the already
implemented data replication with the hospital
backoffice is not suitable for our needs there is always
the solution of directly implementing this layer. As a
final note – the two synchronization procedures
MobMed-IIS-MMS and MMS-Hospital backoffice
can be disconnected or tightly coupled together.

4.2 Conflict Detection and Resolution

imp with

o the local database during
syn

re thus two major types of conflicts: one at
the

An ortant aspect in data synchronization
multiple data sources is conflict resolution. Devices
might update the same entity locally with different
data and then upload changes to the MobMed server
in a random order. The problem is choosing the
correct final value/state of the entity. Automated
conflict resolution is usually tightly dependent on the
business rules that govern the conflicting entity’s type
([6]). SQL Server Mobile detects client-side conflicts
but does not manipulate their settlement. The conflict
information is sent to the Publisher in view of
settlement during the following synchronization. Most
of the conflicts are settled by the Publisher following
the synchronization.

Changes made t
chronization could cause a local conflict. If a row

from the publisher cannot be applied at the subscriber,
it is considered a subscriber conflict, and the
SubscriberConflicts property is set. With SQL Server
subscribers, conflicts are resolved at the Subscriber.
However, SQL Server Mobile does not have a
reconciler. All conflicts must be resolved at the
Publisher. When developing an application, one can
design the application to examine the Subscriber
Conflicts property after each synchronization. If it is
set to a nonzero value, the data must be
resynchronized so that the publisher can resolve the
conflicts.

There a
 subscriber when downloading data and one at the

publisher due to multiple subscribers updating the
same entities.

SQL Server Mobile 2005 allows for both row and
column tracking when synchronized with SQL Server
2005. With row-level tracking the SQL Server Mobile
Database Engine invokes tracking when any row is
inserted, updated, or deleted. When conflicts are
detected at the row level, changes made to
corresponding rows are considered a conflict,
regardless of whether the changes are made to the
same column. For example, a change is made at the
Publisher to the address column of a row, while
another change is made at the Subscriber to the phone
number column of the corresponding row. With row-
level tracking, a conflict is detected because changes
were made to the same row.

After a conflict is detected, the system launches the
conflict resolver that is selected for the article. This
might be the default resolver, one of the other
supplied resolvers, or a custom resolver. The accepted
changes are chosen according to the rules of the
conflict resolver. SQL Server Mobile Subscriber
conflicts are always detected, resolved, and logged at
the Publisher. Resolvers can use the source of the data
change, or the priority value of the Subscriber, to
resolve conflicts. For example, the default resolver
follows the rule that the changes on the Publisher
always override changes on the Subscriber. One can
opt to use a different resolver that always favors the
changes on the Subscriber over those on the Publisher.

When using the default priority-based conflict
resolver, one does not have to set the resolver property
of an article. For using an article resolver instead of
the default resolver, one must set the resolver property
for the article that will use it by selecting an available
resolver on the Publisher. Any specific information
that needs to be passed to the resolver can also be
specified in the resolver information property.

Merge replication offers four types of conflict
resolvers:

• The default priority-based conflict resolver.
The default resolution mechanism behaves
differently, depending on whether a
subscription is a client subscription or a server
subscription. If different priority values are
assigned to individual Subscribers that use
server subscriptions; changes made at the node
with the highest priority win any conflicts. For
client subscriptions, the first change written to
the Publisher wins the conflict. After a

WSEAS TRANSACTIONS on COMMUNICATIONS Adrian Sergiu Darabant, Horea Todoran

ISSN: 1109-2742 559 Issue 6, Volume 7, June 2008

subscription is created, it cannot be changed
from one type to another.

• A business logic handler. The business logic
handler framework allows writing a managed
code assembly that is called during the merge
synchronization process. The assembly
includes business logic that can respond to
conflicts and a number of other conditions
during synchronization.

• A COM-based custom resolver. Merge
replication provides an API for writing
resolvers as COM objects in languages such as
Microsoft Visual C++ or Microsoft Visual
Basic. For more information, see COM-Based
Custom Resolvers.

• A COM-based resolver supplied by a third
party. SQL Server 2005 includes a number of
COM-based resolvers.

4.3 Data Compression
An important aspect when dealing with GSM
transports is the cost of the data transfer. As the
GPRS/UMTS solutions are still costly, the
employment of a data compression mechanism is
beneficial. The application has native compression
support based on Merge replication compression.
Another feature that reduces traffic is column and cell
based synchronization. When just a single column of
database row has been updated, only that value is sent
to the server avoiding thus an entire row transmission.

5 User Friendly Interface
As already mentioned in the introductory section of
this paper, software applications for PDAs have to be
carefully designed in order to overcome the
limitations of the handheld devices, especially those
related to the small size of screen and the difficult use
of data input accessories (keyboard, mouse, stylus
pen). We certainly took these constraints into account
when designing the user interface of the MobMed
solution.

Following are the main characteristics of the
MobMed user-friendly interface (some of them are
noticeable in Fig 4 below):
• the navigation bar always displays the name of the

topmost window, thus avoiding confusion;
• common menus appear on the leftmost position of

the MenuBar in a known order;

• whenever text fields are present on the screen,
they are accessible with the Soft Input Panel (SIP)
up, thus facilitating data input from mobile
devices without keyboard;

• the application maintains the regional and
language settings specified by the client.

• in order to ease user’s navigation through the
successive application’s windows, we employed
suggestive graphical elements wherever
appropriate. It is also the case of the main menu,
made of attractive graphical buttons.

Fig. 6 MobMed’s login window

Fig 6 shows the login form of the MobMed
application. Each medical doctor will use a single ID
to identify against the system. Upon authentication the
system knows the list of active patients for the given
doctor and allows him to deal only with data
regarding its patients. All the synchronization
procedures are filtered against the doctor’s
authentication information so not-needed data will not
be downloaded to the mobile device. Additional
information can always be made available upon
special request from the user.

In the fig 7 the main and a patient form are
presented. The main form directs the user to the main
functions of the application. The patient form allows
for new examinations to be requested and scheduled
together with handling the patient details.

WSEAS TRANSACTIONS on COMMUNICATIONS Adrian Sergiu Darabant, Horea Todoran

ISSN: 1109-2742 560 Issue 6, Volume 7, June 2008

Fig. 7 MobMed’s main and patient form

All data input methods are targeted for a mobile

device. This means that long user inputs by using the
keyboard or keying in strings should be avoided.
Assisted search forms will guide the user when patient
or malady identification and descriptions should be
searched for and displayed.

6 Conclusions and Future Work
The current paper proposes a novel multi-tier system
to enhance the mobility of medical staff, thus bringing
an important efficiency advantage to the
hospital/clinic implementing it.

The main functional characteristics of our proposal
are related to medical staff having access to up-to-
date, complex information on their Pocket PCs,
virtually wherever and whenever they need it. This is
provided by on demand secure and fast
synchronization of the local database from the mobile
device with the central data warehouse of the hospital.

The application running on the mobile device
(MobMed) has an user-friendly interface, which is
designed according to the general requirements
described in [4].

As far as the system architecture is concerned, our
model ensures application isolation and independence
in the case of temporary failure between the three
tiers: the mobile device, the data management server,
and the client’s existing management software.
Moreover, MobMed successfully deals with important
aspects related to data synchronization, like conflict
resolution and data compression.

Incremental data synchronization, optimized
network traffic, and cvasi-permanent availability are
features that make our system valuable and different
from other similar implementations.

Future work is intended to building a general
framework allowing the smooth integration with any
HMS. It should also improve the security of data
exchange and the control of mobile agents’ navigation
from the handheld devices.

7 References

[1] E. Dieterle, Handheld devices for ubiquitous
learning and analyzing, 2005 National Educational
Computing Conference, Philadelphia, PA, available at
[http://center.uoregon.edu/ISTE/uploads/NECC2005/
KEY_7287575/Dieterle_NECC2005Dieterle_RP.pdf],
visited June 2007.

[2] A. Trotter, “Palm computing moving from the
workplace to the classroom”, in Education Week,
October 1999.

[3] A.S. Darabant, H. Todoran, “Building an Efficient
Architecture for Data Synchronization on Mobile
Wireless Agents”, in WSEAS Transactions on
Communications, Issue 8, Volume 5, August 2006,
ISSN 1109-2742, pp. 1384-1391.

[4] ***, Designed for Windows Mobile™ Software
Application Handbook for Pocket PCs, Microsoft
Corporation, May 2004.

[5] M.D. Sutton, Data Synchronization: Which
Technology?, Intel Software Network,
[http://www.intel.com/cd/ids/developer/asmo-
na/eng/52893.htm], visited June 2007.

[6] W. Wheeler, Integrating Wireless Technology in
the Enterprise, First Edition: PDAs, Blackberries, and
Mobile Devices, Elsevier Digital Press, 2003.

[7] M. Mallick, Mobile and Wireless Design
Essentials, Wiley Publishers, 2003.

[8] S. Fischer et al., Handheld Computing in
Medicine, Journal of the American Medical
Informatics Association, 2003

WSEAS TRANSACTIONS on COMMUNICATIONS Adrian Sergiu Darabant, Horea Todoran

ISSN: 1109-2742 561 Issue 6, Volume 7, June 2008

[9] MSDN, SqlCeReplication Class, Microsoft
Corporation, [http://msdn2.microsoft.com/en-
us/library/system.data.sqlserverce.sqlcereplication.asp
x], visited June 2007.

[10] R. Laberge, S. Vujosevic, Building PDA
Databases for Wireless and Mobile Development,
Wiley Publishers, 2002.

[11] O. Cret, Z. Mathe, C. Grama, L. Vacariu, F.
Roman, A. Darabant, “Solving the Maximum
Subsequence Problem with a Hardware Agents-based
System”, WSEAS Transactions on Circuits and
Systems, vol. 5, no. 9,September 2006, pp. 1470-
1478.

[12] A. Darabant, H. Todoran, O. Cret, G. Chis, “The
Similarity Measures and their Impact on OODB
Fragmentation Using Hierarchical Clustering
Algorithms”, WSEAS Transactions on Computers,
vol. 5, no. 9, September 2006, pp. 1803-1811.

[13] O. Cret, Z. Mathe, C. Grama, L. Vacariu, F.
Roman, A. Darabant, “Solving the Maximum
Subsequence Problem with a Hardware Agents-based
System”, Proceedings of the 10th WSEAS
International Conference on CIRCUITS,
Vouliagmeni, Athens, Greece, July 10-12, 2006,
pp.75-80.

[14] M. Wagner, Handhelds nudge PCs,
InternetWeek, May, 2001.

[15] P. McDougall, Full-Fledged Business Apps Make
PDAs Indispensible, InformationWeek, October,
2001.

[16] Microsoft TechNet, How to: Create a
Publication and Define Articles (SQL Server
Management Studio), Microsoft Corporation,
[http://technet.microsoft.com/en-
us/library/ms151160.aspx], visited June 2007.

WSEAS TRANSACTIONS on COMMUNICATIONS Adrian Sergiu Darabant, Horea Todoran

ISSN: 1109-2742 562 Issue 6, Volume 7, June 2008

	1 Introduction
	2 Problem Formulation
	2.1 Data flow
	3 System Architecture and Services
	4 Data Exchange and Synchronization
	4.1 Replication Implementation
	4.2 Conflict Detection and Resolution
	4.3 Data Compression

	5 User Friendly Interface
	6 Conclusions and Future Work
	7 References

