
Effect of TCP and UDP Parameters on the quality of Video streaming

delivery over The Internet

MAZHAR B. TAYEL
1
, ASHRAF A. TAHA

2

1
Electrical Engineering Department, Faculty of Engineering

1
Alexandria University, EGYPT

1
dr mbasyouni@egsysexperts.com

2
Informatics Institute, Mubarak City for Scientific Researches and Technology Applications

2
New Borg El-Arab, Alexandria, EGYPT

2
ashraf_taha_1968@yahoo.com

Abstract :- Delivering real-time video over the Internet is an important issue for many Internet multimedia

applications. Transmission of real-time video has bandwidth, delay, and loss requirements. The application-

level quality for video streaming relies on continuous playback, which means that neither buffer underflow nor

buffer overflow should occur. Since the Best Effort network such as the Internet does not provide any Quality

of Service (QoS) guarantees to video transmission over the Internet. Thus, mapping the application-level QoS

requirements into network-level requirements, namely, limited delay jitters. End-to-end application level QoS

has to be achieved through adaptation. Since the QoS of video streams over IP networks depends on several

factors such as video transmission rate, packet loss rate, and end-to-end transmission delay. The objectives of

this paper are to simulate an adaptation scheme to include the effect of User Datagram Protocol (UDP)

parameters on delay jitter and datagram loss values to increase the efficiency of UDP protocol to prevent the

network congestion and increase the adaptivity and also, simulate an adaptation scheme to include the effect of

Transmission Control Protocol (TCP) parameters on the transmission rates to increase the adaptivity of the

transmission.

Key-Words: - Quality of Service, Video streaming, Internet, TCP Window, UDP, Iperf.

1. Introduction
Many multimedia applications rely on video

streaming techniques. Streaming is the only

technology that is capable of transmitting video

and audio events across the Internet in real

time, i.e. while they are happening [11]. The

term “Real Time” means that the user receives

a continuous stream (with a minimum delay),

and that the duration of the transmitted and

received streams is exactly the same. In the

streaming mode, however, the content file need

not be downloaded in full, but plays out while

parts of the content are being received and

decoded. It can deliver live content such as a

football match, a concert or a political speech as it

happens.

There are three main obstacles in video streaming

over the Internet. The first is the variable network

performance due to load changes. The second,

the bandwidth availability is highly unpredictable

which makes quality adaptation difficult.

Finally, network congestion, manifests itself

by low arrival rate and packet losses. Two

fundamental challenges for network-aware

applications are how to translate the application

level Quality of Service requirements into network-

level Quality of Service requirements, and how to

determine and deal with the nature of network

resource availability [7].

The quality of video traffic transmission over

Internet depends on the available bandwidth.

The traffic load along a path, changes throughout

transmission in an unpredictable way. Hence,

bandwidth requirements have to be modified

accordingly. When available bandwidth is not

sufficient, video transmission rate can be adjusted

lowering the quality of the video in a controlled

way. The quality adjustment is done by excluding

some frames from the transmission or by reducing

frame sizes. Later, the frame sizes reduction can

be achieved in a number of ways: adjusting

the compression ratio of on-line encoder [3],

switching to a lower quality pre-encoded version,

transcoding a pre-encoded version [4] or dropping

 a layer of a hierarchical encoding scheme [5].

In all cases two issues have to be considered;

the first is how to determine the available

WSEAS TRANSACTIONS on COMMUNICATIONS

Mazhar B. Tayel, Ashraf A. Taha

ISSN: 1109-2742 653 Issue 6, Volume 7, June 2008

bandwidth, and the second is how to adjust the

quality as needed.

The major sources of QoS degradation in a packet-

based video streaming service are packet

loss and transmission delay. Packet loss

disrupts the video coding, while transmission

delays can decrease the throughput or cause

underflow events of the receiving buffer for

decoding [6].

To investigate the cause of video quality

degradation and to observe video QoS level

for end users, a method proposed for monitoring

the QoS-related parameters detected in

both the transport and application layers for

TCP/IP based video streams. Based on

sequential measurement using an MPEG-4 video

system in a real environment it found that the buffer

usage rate in the application layer tended to decrease

before detection of sudden decreases in bit-rate of

video streams [6].

TCP congestion control algorithm increases the

transmission rate to probe for the available

bandwidth and decreases it in response to

packet loss [5]. The video quality is affected

by these changes unless a large buffer is

available to absorb the variability. A need for a

smoother rate adjustment for multimedia application

has been introduced in [8, 9].

Later, a congestion control mechanism is designed

to react to a drop event and not to a single

packet drop. Rate is adjusted less frequently

than once per Round Trip Time (RTT). The

rate oscillations are reduced but the behavior

is also less responsive. Rate adaptation is

performed independently of quality adaptation

and based only on the network status. Quality

adaptation on the other hand, depends on the rate

and its adaptation. The quality of video can be

increased depending on the rate adaptation

mechanism. The two levels of adaptation, rate and

quality, operate at different time scales

and a buffer is used to cushion the difference

between them.

The method presented in [1], frame-rate adaptation,

combines rate and quality adaptation into

one. The available bandwidth is estimated by

measuring the incoming data rate at the client

and evaluating the RTT. Each frame is requested

from the server separately. Hence the rate at which

the requests are sent is one of the factors

determining the video arrival rate at the client. The

rate is adjusted by adjusting the quality, i.e.,

including or excluding frames from the

transmission. The requested rate and the quality at

the same time are not only adjusted in response

to the changes in the network status, but also

to low buffer occupancy. The observed arrival

rate and buffer occupancy at the client form

basis for defining thresholds triggering the

request rate adjustment. The 10% difference

between the request and arrival rates is the

first of them. The second threshold is determined

based on the length of time interval after

which client buffer underflow may occur. In both

cases when the threshold is reached, the request

rate is decreased. The rate is set to a value smaller

than the observed arrival rate to allow the network

backlog to clear out. Next the rate is increased to the

value of the previously measured arrival rate.

We argue that a decrease of the transmission rate

is not always necessary. Without a more

detailed information about network status, we must

consider the worst case scenario, i.e., network

congestion.

In [10], The paper present two new congestion

control protocols for streaming media like

applications as examples of protocol design in

this framework: the first protocol, LOG, has the

objective of reconciling the smoothness requirement

of an application with the need for a fast dynamic

response to congestion. The second protocol,

SIGMOID, guarantees a minimum bandwidth for

an application but behaves exactly like TCP for

large window.

However, if the network is not congested, keeping

the rate unchanged when the rate threshold

is reached, and increasing transmission rate

when the buffer occupancy threshold is reached

can improve the video quality. The key element

in making a decision whether, the rate reduction

is needed or not, is the network status

information. Therefore, an idea of an application

obtaining this information and acting is based on

both end-to-end performances observed and

network status indication. In [7], the paper present

an approach allows to obtain better user-perceived

video quality by providing additional information to

properly interpret the arrival rate observed at the

end-point. In this scheme, transmission rate can be

changed without affecting the quality. In contrast

to [5, 8], however, there is a two-way dependence

between them. If the rate has to be lowered because

of congestion, the video quality is affected.

The quality adaptation dictates the rate value if

there is no congestion. A higher rate may

be requested either to sustain the current quality

level or to increase it. In this way the frequency

of quality changes can be controlled. Maximizing

the user-perceived quality does not necessarily mean

WSEAS TRANSACTIONS on COMMUNICATIONS Mazhar B. Tayel, Ashraf A. Taha

ISSN: 1109-2742 654 Issue 6, Volume 7, June 2008

using all available bandwidth at any time as

assumed in [3].

Most adaptive delivery mechanisms for streaming

multimedia content do not explicitly consider user-

perceived quality when making adaptation

decisions. An optimal adaptation trajectory (OAT)

through the set of possible encodings exists, and that

it indicates how to adapt encoding quality in

response to changes in network conditions in order

to maximize user-perceived quality. The OAT is

related to the characteristics of the content, in terms

of spatial and temporal complexity. A method to

automatically determine the OAT in response to the

time-varying characteristics of the content. In this

way, as the characteristics of the content change

over time, the system can dynamically and

intelligently adjust the adaptation process in order to

maximize the user-perceived quality. The OAT can

be used with any sender-based transmission

adaptation policy. The paper [12] demonstrate

content-based adaptation using the OAT in a

practical system using two different adaptation

algorithms. Furthermore, it show how this form of

adaptation can result in differing adaptation

behavior not only as a result of the dynamics of the

content but also as a result of the adaptation

algorithm being used. Finally, it show how

increased feedback frequency does not necessarily

improve the behavior of the adaptation algorithm

being used.

The objectives of this paper are to simulate an

adaptation scheme to include the effect of

UDP parameters on delay jitter and datagram

loss values to increase the efficiency of

UDP protocol to prevent the network congestion

and increase the adaptivity of the network

and also, simulate an adaptation scheme to

include the effect of TCP parameters on the

transmission rates to increase the adaptivity of the

transmission.

2. Adaptive QoS management for

video streaming delivery over the

Internet – TCP/UDP
Since most of the adaptation process, including

statistic gathering and decision making, is done on

the client side, the server is left with the job of

reading and sending video data only. This video

delivery system can be more easily scaled up to

support many clients [1].

A TCP window is the amount of outstanding data

(unacknowledged by the recipient), a sender

can send on a particular connection before it gets

an acknowledgment back from the receiver that

it has gotten some of it. By adjusting the TCP

window size and buffer lengths to different values

through the interval times, measuring the Time To

live (TTL) using the “ping” command for different

hops, it is possible to measure the BW for every

interval and also the total bandwidth for number of

streams.

2.1 TCP/UDP Bandwidth Measurement Tool
Iperf was developed as a modern tool for

measuring TCP and UDP bandwidth performance.

It measures the maximum TCP bandwidth, allowing

the tuning of various parameters, and UDP

characteristics and reports the bandwidth, delay

jitter, and datagram loss. The server detects UDP

datagram loss by ID numbers in the datagram.

Usually a UDP datagram becomes several IP

packets. Losing a single IP packet will lose the

entire datagram. Jitter calculations are continuously

computed by the server. The server computes

the relative transit time as (server's receive time -

client's send time). The client's and server's clocks

do not need to be synchronized; since any difference

is subtracted out in the jitter calculation. Jitter is the

smoothed mean of differences between consecutive

transit times [2].

The primary reason for the window is a

congestion control. The whole network connection,

which consists of the hosts at both

ends, the routers in between and the actual

connections themselves (be they fiber, copper,

satellite or whatever) will have a bottleneck

somewhere that can only handle data so fast. Unless

the bottleneck is the sending speed of the

transmitting host, then if the transmitting occurs too

fast the bottleneck will be surpassed resulting in lost

data. The TCP window throttles the transmission

speed down to a level where congestion and data

loss do not occur.

2.2 Simulation Results
2.2.1 UDP Protocol

Comparison between the delay jitter and lost

datagram values, obtained at server and client

for number of streams (1, 2, and 3) with different

combinations of UDP buffer lengths and

UDP packet sizes (8k, 16k, 32k and 64k) in

16 categories at UDP protocol, are studied.

WSEAS TRANSACTIONS on COMMUNICATIONS Mazhar B. Tayel, Ashraf A. Taha

ISSN: 1109-2742 655 Issue 6, Volume 7, June 2008

During simulations, it was noticed that higher delay

jitter using reassembled 32k datagram (each split

into 23 packets of 1500 bytes) causes a lost in

datagram due to burstiness of the traffic lead to poor

performance.

Figures (1) and (2) show delay jitter values obtained

at server and client respectively for different packet

sizes and UDP buffer lengths for one stream
Server – one stream

Fig. 1 Delay jitter values obtained at server for different packet
 sizes and UDP buffer lengths for one stream

Client – one stream

Fig. 2 Delay jitter values obtained at client for different packet

 sizes and UDP buffer lengths for one stream

From figures (1) and (2), it is seen that the delay

jitter attains its minimum delay value of 0.106 msec

at server and client respectively at UDP buffer

length = 32k and Packet size = 16k.

Figures (3) and (4) show delay jitter values obtained

in logarithmic scales at server and client

respectively for different packet sizes and UDP

buffer lengths for two streams.
Server – two streams

Fig. 3 Delay jitter values obtained in LOG scale at server for
different packet sizes and UDP buffer lengths for two streams

Client – two streams

Fig. 4 Delay jitter values obtained in LOG scale at client for

different packet sizes and UDP buffer lengths for two streams

From figures (3) and (4), it is seen that delay jitter

attains its minimum optimal values in logarithmic

scale at server and client respectively at UDP buffer

length = 32k for the two streams. The first stream,

with UDP buffer length = 32k according to packet

size values, has delay jitter values = (1.517, 0.633,

0.502) at server and delay jitter = (1.518, 0.633,

0.502) at client.

WSEAS TRANSACTIONS on COMMUNICATIONS Mazhar B. Tayel, Ashraf A. Taha

ISSN: 1109-2742 656 Issue 6, Volume 7, June 2008

The second stream with UDP buffer length = 32k

according to packet size values has delay jitter

values = (0.02, 0.01, 0.022) at server and delay jitter

values = (0.021, 0.009, 0.023) at client.

The problems with the two streams in the lost

datagram are shown in figures (5) and (6).
Server – two streams

Fig. 5 lost datagram in LOG% scale obtained at server for
different packet sizes and UDP buffer lengths for two streams

Client – two streams

Fig. 6 lost datagram in LOG% scale obtained at client for

different packet sizes and UDP buffer lengths for two streams

From figures (5) and (6), it is seen that lost

datagram obtained in percentage logarithmic scales

and attains its minimum optimal values at the first

stream for all packet sizes at server and client

respectively, whereas the second stream attains

higher values, thus, the problem occurred in the

second stream.

Figures (7) and (8) show delay jitter values obtained

in logarithmic scales at server and client

respectively for different packet sizes and UDP

buffer lengths for three streams.
Server – three streams

Fig. 7 Delay jitter values obtained in LOG scale at server for

different packet sizes and UDP buffer lengths for three streams

Client – three streams

Fig. 8 Delay jitter values obtained in LOG scale at client for

different packet sizes and UDP buffer lengths for three streams

WSEAS TRANSACTIONS on COMMUNICATIONS Mazhar B. Tayel, Ashraf A. Taha

ISSN: 1109-2742 657 Issue 6, Volume 7, June 2008

From figures (7) and (8), it is seen that the delay

jitter attains its minimum values in logarithmic

scales at server and client respectively, UDP buffer

length = 32k using three streams. The first stream,

with UDP buffer length= 32k according to packet

size values, has delay jitter values = (0.713, 0.17,

1.087) at server and delay jitter values = (0.713,

0.169, 1.087) at client.

The 2nd and 3rd streams attain higher values of delay

jitter, thus, the problems are occurred in them as

shown in figures (9) and(10).
Server – three streams

Fig. 9 lost datagram in LOG % scale obtained at server for

different packet sizes and UDP buffer lengths for three streams

Client – three stream

Fig. 10 lost datagram in LOG % scale obtained at client for

different packet sizes and UDP buffer lengths for three streams

From figures (9) and (10), it is seen that the

lost datagram obtained in percentage logarithmic

scale, attains its minimum optimal values at the

first stream for all packet sizes at server and client

respectively, whereas the 2nd and 3rd streams attain

higher values.

From the above discussions it is seen that, the

one stream with UDP buffer length = 32k is the

best choice at server and client due to the lowest

delay jitter value at packet size = 16k.

2.2.2 TCP Protocol
A comparison between the Maximum Bandwidth

(MBW) values, obtained at server and client for

(1, 2, and 3) streams with different combinations of

TCP window size and buffer lengths (BLs) = (8k,

16k, 32k and 64k) in 16 categories at TCP

protocol.

Figures (11) and (12) show the MBW values

obtained at server and client for different buffer

lengths (BLs) and TCP window sizes for one

stream.

Server – one stream

Fig. 11 MBW values obtained at server for different buffer lengths
 and TCP window sizes for one stream

WSEAS TRANSACTIONS on COMMUNICATIONS Mazhar B. Tayel, Ashraf A. Taha

ISSN: 1109-2742 658 Issue 6, Volume 7, June 2008

Client – one stream

Fig.12 MBW values obtained at client for different buffer lengths

 and TCP window sizes for one stream

From figures (11) and (12), it is seen that the MBW

attains its optimum value of 11453 Kbytes/sec and

11448 Kbytes/sec at server and client respectively at

TCP window size = 32k and BL = 16k.

Figures (13) and (14) show the MBW values

obtained at server and client for different

buffer lengths and TCP window sizes for two

streams.

Server – two streams

Fig. 13 MBW values obtained at server for different buffer lengths
 and TCP windows sizes for two streams

Client – two streams

Fig. 14 MBW values obtained at client for different buffer lengths

 and TCP windows sizes for two streams

From figures (13) and (14), it is seen that the MBW

attains its optimum value of 11416 Kbytes/sec and

11415 Kbytes/sec at server and client respectively at

TCP window size=32k and BL=16k. However, the

values for TCP window size = 32k and TCP

window size = 64k almost are closed values for

BL=8k, 16k, and 32k. Thus, there is a trade off for

selecting TCP window size=32k or 64k.

Figures (15) and (16) show the MBW values

obtained at server and client for different buffer

lengths and TCP window sizes for three streams.
Server – three streams

Fig. 15 MBW values obtained at server for different buffer lengths

 and TCP windows sizes for three streams

WSEAS TRANSACTIONS on COMMUNICATIONS Mazhar B. Tayel, Ashraf A. Taha

ISSN: 1109-2742 659 Issue 6, Volume 7, June 2008

Client – three streams

Fig. 16 MBW values obtained at client for different buffer lengths
 and TCP windows sizes for three streams

From figures (15) and (16), it is seen that the

MBW has almost flat coincidental optimum

response for BL= 8k, 16k, and 32k for both

TCP window size = 32k and 64k. Thus, there

is a trade-off for selecting the TCP window size =

32k or 64k.

The percentage of difference between the optimum

values obtained at TCP window = 32k and TCP

window =64k for BLs values (8k, 16k, and 32k) as

follow:

Deviation% between (TCP window=32k,64k) with

(BL=8k)=((11317-11235)/11317)x100%=0.7246%

Deviation% between (TCP window=32k,64k) with

(BL=16k)=((11350-11290)/11350)x100%=0.529%

Deviation% between (TCP window=32k,64k) with

(BL=8k)=((11491-11389)/11491)x100%=0.888%

Therefore, for one stream, TCP window size = 32k

is the best choice at server and client due to the

highest BW values according to BLs values (8k,

16k, 32k, and 64k).

MBW = (11019, 11453, 9325, and 9773) at server

and MBW = (11020, 11448, 9325, and 9773) at

client.

For two streams, TCP window size = 32k is the best

choice at server and client due to the highest BW

values according to BLs values (8k, 16k, 32k,

and 64k).

MBW= (11150, 11416, 10838, and 11181) at server

and MBW=(11152, 11415, 10926, and 11181) at

client.

For three streams, the MBW has almost flat

coincidental optimum response for BL= 8k, 16k,

and 32k for both TCP window size = 32k and 64k.

The percentage of difference between the optimum

values obtained at TCP window = 32k and

TCP window =64k for BLs values (8k, 16k, 32k)

is small and for BL=64k, TCP window =32k

has a higher value of MBW than for TCP

window = 64k.

Therefore, for three streams, TCP window size =

32k is the best choice at server and client

according to BLs values (8k, 16k, 32k, and 64k).

The optimum value at TCP window = 32k and

BL = 16k.

MBW= (11235, 11290, 11389, 11379) at server and

MBW=(11236, 11296, 11388, 11382) at client.

These best results can be accumulated in one table

as shown in table (1) and (2).

Table (1) The best choices for MBW at server for TCP window size 32k and
 different BLs (8k, 16k, 32k, and 64k) using (1, 2, and 3) streams

Buffer

Lengths

Streams

8k 16k 32k 64k

1 11019 11453 9325 9773

2 11150 11416 10838 11181

3 11235 11290 11389 11379

Table (2) The best choices for MBW at client for TCP window size 32k and

 different BLs (8k, 16k, 32k, and 64k) using (1, 2, and 3) streams

 Buffer

 Lengths

Streams

8k 16k 32k 64k

1 11020 11448 9325 9773

2 11152 11415 10926 11181

3 11236 11296 11388 11382

From table (1) and (2) it is seen that the best results

obtained at TCP Window size = 32k for different

values of Buffer Lengths = (8k, 16k, 32k, and 64k)

using the three types of the streams (1, 2, and 3)

streams.

For one stream, it is seen that the MBW attains

its optimum value of 11453Kbytes/sec and

11448Kbytes/sec at server and client respectively

at TCP window size = 32k and BL = 16k.

For two streams, it is seen that the MBW attains

its optimum value of 11416Kbytes/sec and

11415Kbytes/sec at server and client respectively at

TCP window size = 32k and BL = 16k.

For three streams, it is seen that TCP window size =

32k is the best choice at server and client

according to BLs values (8k, 16k, 32k, and 64k).

WSEAS TRANSACTIONS on COMMUNICATIONS Mazhar B. Tayel, Ashraf A. Taha

ISSN: 1109-2742 660 Issue 6, Volume 7, June 2008

The optimum value at TCP window = 32k and

Buffer Length = 16k.

Figures (17) and (18) show the best values of

MBW with applying (1, 2, and 3) streams at

server and client according to BLs values (8k, 16k,

32k, and 64k).

Fig. 17 MBW values obtained at server for different BLs
 for (1, 2, and 3) streams

Fig. 18 MBW values obtained at client for different BLs
 for (1, 2, and 3) streams

From figures (17) and (18), it is seen that the TCP

window size = 32k is the best choice at server

and client using (1) and (2) streams due to the

highest values of maximum bandwidth values

according to Buffer Length values (8k, 16k, 32k,

and 64k). Also, the maximum bandwidth has almost

flat coincidental optimum response for Buffer

Length = 8k, 16k, and 32k for both TCP window

size = 32k and 64k. For Buffer Length = 64k, TCP

window = 32k has a higher value of maximum

bandwidth than for TCP window = 64k. Therefore,

TCP window size = 32k is the best choice at server

and client using three streams according to BLs

values (8k, 16k, 32k, 64k),

3 Discussion and Conclusion
Comparisons between the delay jitter and lost

datagram values obtained at server and client for

(1, 2, and 3) streams with different combinations

of UDP Buffer lengths and UDP Packet Sizes

= (8k, 16k, 32k and 64k) in 16 categories at UDP

protocol. The paper introduce UDP buffer length =

32k with the smallest delay jitter value (0.106 msec)

at Packet size =16k and zero lost datagram using

one stream.

A comparison between maximum bandwidth values,

obtained at server and client for (1, 2, and 3) streams

with different combinations of TCP window

size and Buffer Lengths = (8k, 16k, 32k and

64k) in 16 categories are obtained at TCP

protocol.

The paper concluded that the TCP window size =

32k is the best choice at server and client

using (1) and (2) streams due to the highest values

of maximum bandwidth values according to Buffer

Length values (8k, 16k, 32k, and 64k).

Also, the maximum bandwidth has almost

flat coincidental optimum response for Buffer

Length = 8k, 16k, and 32k for both TCP window

size = 32k and 64k. For Buffer Length = 64k,

TCP window = 32k has a higher value of

maximum bandwidth than for TCP window =

64k. Therefore, TCP window size = 32k is

the best choice at server and client using

three streams according to BLs values (8k,

16k, 32k, 64k), Because the paper measure

the Quality of Service - related parameters in

both the transport and application layers,

the proposed simulation can be applied to

TCP/IP - based video systems available on the

market.

A future study will include Quality of Service

evaluations of other Quality of Service - related

parameters, further evaluations of the precision

WSEAS TRANSACTIONS on COMMUNICATIONS Mazhar B. Tayel, Ashraf A. Taha

ISSN: 1109-2742 661 Issue 6, Volume 7, June 2008

and applicability in real environments, and

application to several kinds of multimedia

communications.

References :-

[1] F. Kozamernik, “ Media Streaming Over

The Internet - An overview of delivery

technologies”, EBU Technical Review,

October 2002.

[2] E. Kusmierek, H. David, “Streaming video

delivery over internet with adaptive end-to-end

QoS”, Journal of Systems and Software,

Elsevier Science Inc., Vol.75, No.3, March

2005, pp. 237-252.

[3] N. Duffield, K. Ramakrishnan, A. Reibman,

“Save: An algorithm for smoothed adaptive

video over explicit rate network”, IEEE/ACM

Transactions on Networking, 1999.

[4] Z. Lei, N. Georganas, “Rate adaptation

transcoding for video streaming over wireless

channels”. In: IEEE International Conference on

Multimedia and Expo, 2003.

[5] R. Rejaie, M. Handley, D. Estrin, “Quality

adaptation for congestion controlled

video playback over the Internet”,

In: Proceedings of ACM SIGCOMM, 1999a pp.

189–200.

[6] M. Masugi, T. Takuma and M. Matsuda,

“Quality of Service assessment of video

streams over IP networks based on

monitoring transport and application layer

processes at userclients”, IEE Proceeding

of Communications, Vol. 152, No. 3, June

2005.

 [7] R. Rejaie, M. Handley, and D. Estrin, “RAP:

An end-to-end rate based congestion control

mechanism for real time streams in the

Internet”. In: IEEE INFOCOM, 1999b, pp.

1337–1345.

[8] S. Floyd, M. Handley, and J. Widmer, “Equation

based congestion control for unicast

applications”, In: ACM SIGCOMM, 2000,

pp. 43–56.

[9] C. Fung, S. Liew, "End-to-End Frame-

Rate Adaptation Streaming of Video

Data", EGC Earmarked Research Grant

of the Hong Kong University and

Polytechnic Grant Council: CUHK 336/96E,

IEEE, 1999.

[10] N. Sastry, S. Lam, “CYRF: a theory of

window - based unicast congestion control”,

IEEE/ACM Transactions on Networking

(TON), Vol.13, No.2, April 2005, pp. 330-342,.

[11] N. Cranley, P. Perry, L. Murphy, "Dynamic

content-based adaptation of streamed

multimedia, Journal of Network and Computer

Applications, Vol. 30, No.3, August, 2007,

pp. 983-1006.

[12] T. Brethour, K. Gibbs, “Jperf version 1.0, The

Iperf Front-End”, The Board of Trustees of the

University of Illinois, All Rights Reserved.

Copyright (c) 2002, 2003

WSEAS TRANSACTIONS on COMMUNICATIONS Mazhar B. Tayel, Ashraf A. Taha

ISSN: 1109-2742 662 Issue 6, Volume 7, June 2008

