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Abstract :-  Delivering real-time video over the Internet is an important issue for many Internet multimedia 

applications. Transmission of real-time video has bandwidth, delay, and loss requirements. The application-

level quality for video streaming relies on continuous playback, which means that neither buffer underflow nor 

buffer overflow should occur. Since the Best Effort network such as the Internet does not provide any Quality 

of Service (QoS) guarantees to video transmission over the Internet. Thus, mapping the application-level QoS 

requirements into network-level requirements, namely, limited delay jitters. End-to-end application level QoS 

has to be achieved through adaptation. Since the QoS of video streams over IP networks depends on several 

factors such as video transmission rate, packet loss rate, and end-to-end transmission delay. The objectives of 

this paper are to simulate an adaptation scheme to include the effect of User Datagram Protocol (UDP) 

parameters on delay jitter and datagram loss values to increase the efficiency of UDP protocol to prevent the 

network congestion and increase the adaptivity and also, simulate an adaptation scheme to include the effect of 

Transmission Control Protocol (TCP) parameters on the transmission rates to increase the adaptivity of the 

transmission. 

 

 

Key-Words: - Quality of Service, Video streaming, Internet, TCP Window, UDP, Iperf. 

 

1.   Introduction 
Many multimedia applications rely  on video 

streaming techniques. Streaming is the only 

technology that is capable of transmitting video  

and audio events across the Internet in real  

time, i.e. while they are happening [11]. The  

term “Real Time” means that the user receives  

a continuous stream (with a minimum delay),  

and that the duration of the transmitted and  

received streams is exactly the same. In the 

streaming mode, however, the content file need  

not be downloaded in full, but plays out while  

parts of the content are being received and  

decoded. It can deliver live content such as a 

football match, a concert or a political speech as it 

happens. 

There are three main obstacles in video streaming 

over the Internet. The first is the variable network 

performance due to load changes. The second,  

the bandwidth availability is highly unpredictable 

which makes quality adaptation difficult.  

Finally, network congestion, manifests itself  

by low arrival rate and packet losses. Two 

fundamental challenges for network-aware 

applications are how to translate the application 

level Quality of Service requirements into network-

level Quality of Service requirements, and how to 

determine and deal with the nature of network 

resource availability [7]. 

The quality of video traffic transmission over 

Internet depends on the available bandwidth.  

The traffic load along a path, changes throughout 

transmission in an unpredictable way. Hence, 

bandwidth requirements have to be modified 

accordingly. When available bandwidth is not 

sufficient, video transmission rate can be adjusted 

lowering the quality of the video in a controlled 

way. The quality adjustment is done by excluding 

some frames from the transmission or by reducing 

frame sizes. Later, the frame sizes reduction can  

be achieved in a number of ways: adjusting  

the compression ratio of on-line encoder [3], 

switching to a lower quality pre-encoded version, 

transcoding a pre-encoded version [4] or dropping 

 a layer of a hierarchical encoding scheme [5].  

In all cases two issues have to be considered;  

the first is how to determine the available 
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bandwidth, and the second is how to adjust the 

quality as needed.  

The major sources of QoS degradation in a packet-

based video streaming service are packet  

loss and transmission delay. Packet loss  

disrupts the video coding, while transmission  

delays can decrease the throughput or cause 

underflow events of the receiving buffer for  

decoding [6].  

To investigate the cause of video quality 

degradation and to observe video QoS level  

for end users, a method proposed for monitoring  

the QoS-related parameters detected in  

both the transport and application layers for  

TCP/IP based video streams. Based on  

sequential measurement using an MPEG-4 video 

system in a real environment it found that the buffer 

usage rate in the application layer tended to decrease 

before detection of sudden decreases in bit-rate of 

video streams [6]. 

TCP congestion control algorithm increases the 

transmission rate to probe for the available 

bandwidth and decreases it in response to  

packet loss [5]. The video quality is affected  

by these changes unless a large buffer is  

available to absorb the variability. A need for a 

smoother rate adjustment for multimedia application 

has been introduced in [8, 9]. 

Later, a congestion control mechanism is designed 

to react to a drop event and not to a single  

packet drop. Rate is adjusted less frequently  

than once per Round Trip Time (RTT). The  

rate oscillations are reduced but the behavior  

is also less responsive. Rate adaptation is  

performed independently of quality adaptation  

and based only on the network status. Quality 

adaptation on the other hand, depends on the rate 

and its adaptation. The quality of video can be 

increased depending on the rate adaptation 

mechanism. The two levels of adaptation, rate and 

quality, operate at different time scales  

and a buffer is used to cushion the difference 

between them.  

The method presented in [1], frame-rate adaptation, 

combines rate and quality adaptation into  

one. The available bandwidth is estimated by 

measuring the incoming data rate at the client  

and evaluating the RTT. Each frame is requested 

from the server separately. Hence the rate at which 

the requests are sent is one of the factors 

determining the video arrival rate at the client. The 

rate is adjusted by adjusting the quality, i.e., 

including or excluding frames from the 

transmission. The requested rate and the quality at 

the same time are not only adjusted in response  

to the changes in the network status, but also  

to low buffer occupancy. The observed arrival  

rate and buffer occupancy at the client form  

basis for defining thresholds triggering the  

request rate adjustment. The 10% difference 

between the request and arrival rates is the  

first of them. The second threshold is determined 

based on the length of time interval after  

which client buffer underflow may occur. In both 

cases when the threshold is reached, the request  

rate is decreased. The rate is set to a value smaller 

than the observed arrival rate to allow the network 

backlog to clear out. Next the rate is increased to the  

value of the previously measured arrival rate.  

We argue that a decrease of the transmission rate  

is not always necessary. Without a more  

detailed information about network status, we must 

consider the worst case scenario, i.e., network 

congestion.  

In [10], The paper present two new congestion 

control protocols for streaming media like 

applications as examples of protocol design in  

this framework: the first protocol, LOG, has the 

objective of reconciling the smoothness requirement 

of an application with the need for a fast dynamic 

response to congestion. The second protocol, 

SIGMOID, guarantees a minimum bandwidth for 

an application but behaves exactly like TCP for 

large window. 

However, if the network is not congested, keeping 

the rate unchanged when the rate threshold 

is reached, and increasing transmission rate  

when the buffer occupancy threshold is reached  

can improve the video quality. The key element  

in making a decision whether, the rate reduction  

is needed or not, is the network status  

information. Therefore, an idea of an application 

obtaining this information and acting is based on 

both end-to-end performances observed and 

network status indication. In [7], the paper present 

an approach allows to obtain better user-perceived 

video quality by providing additional information to 

properly interpret the arrival rate observed at the  

end-point. In this scheme, transmission rate can be 

changed without affecting the quality. In contrast  

to [5, 8], however, there is a two-way dependence 

between them. If the rate has to be lowered because 

of congestion, the video quality is affected.  

The quality adaptation dictates the rate value if 

there is no congestion. A higher rate may  

be requested either to sustain the current quality 

level or to increase it. In this way the frequency  

of quality changes can be controlled. Maximizing 

the user-perceived quality does not necessarily mean 
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using all available bandwidth at any time as 

assumed in [3]. 

Most adaptive delivery mechanisms for streaming 

multimedia content do not explicitly consider user-

perceived quality when making adaptation 

decisions. An optimal adaptation trajectory (OAT) 

through the set of possible encodings exists, and that 

it indicates how to adapt encoding quality in 

response to changes in network conditions in order 

to maximize user-perceived quality. The OAT is 

related to the characteristics of the content, in terms 

of spatial and temporal complexity. A method to 

automatically determine the OAT in response to the 

time-varying characteristics of the content. In this 

way, as the characteristics of the content change 

over time, the system can dynamically and 

intelligently adjust the adaptation process in order to 

maximize the user-perceived quality. The OAT can 

be used with any sender-based transmission 

adaptation policy. The paper [12] demonstrate 

content-based adaptation using the OAT in a 

practical system using two different adaptation 

algorithms. Furthermore, it show how this form of 

adaptation can result in differing adaptation 

behavior not only as a result of the dynamics of the 

content but also as a result of the adaptation 

algorithm being used. Finally, it show how 

increased feedback frequency does not necessarily 

improve the behavior of the adaptation algorithm 

being used.  

The objectives of this paper are to simulate an 

adaptation scheme to include the effect of  

UDP parameters on delay jitter and datagram  

loss values to increase the efficiency of  

UDP protocol to prevent the network congestion 

and increase the adaptivity of the network  

and also, simulate an adaptation scheme to  

include the effect of TCP parameters on the 

transmission rates to increase the adaptivity of the 

transmission. 

 

 

2. Adaptive QoS management for 

video streaming delivery over the 

Internet – TCP/UDP 
Since most of the adaptation process, including 

statistic gathering and decision making, is done on 

the client side, the server is left with the job of 

reading and sending video data only. This video 

delivery system can be more easily scaled up to 

support many clients [1]. 

A TCP window is the amount of outstanding data 

(unacknowledged by the recipient), a sender  

can send on a particular connection before it gets  

an acknowledgment back from the receiver that  

it has gotten some of it. By adjusting the TCP 

window size and buffer lengths to different values 

through the interval times, measuring the Time To 

live (TTL) using the “ping” command for different 

hops, it is possible to measure the BW for every 

interval and also the total bandwidth for number of 

streams. 

 

 

2.1 TCP/UDP Bandwidth Measurement Tool 
Iperf was developed as a modern tool for  

measuring TCP and UDP bandwidth performance. 

It measures the maximum TCP bandwidth, allowing 

the tuning of various parameters, and UDP 

characteristics and reports the bandwidth, delay 

jitter, and datagram loss. The server detects UDP 

datagram loss by ID numbers in the datagram. 

Usually a UDP datagram becomes several IP 

packets. Losing a single IP packet will lose the 

entire datagram. Jitter calculations are continuously 

computed by the server. The server computes  

the relative transit time as (server's receive time - 

client's send time). The client's and server's clocks 

do not need to be synchronized; since any difference 

is subtracted out in the jitter calculation. Jitter is the 

smoothed mean of differences between consecutive 

transit times [2]. 

The primary reason for the window is a 

congestion control. The whole network connection, 

which consists of the hosts at both  

ends, the routers in between and the actual 

connections themselves (be they fiber, copper, 

satellite or whatever) will have a bottleneck 

somewhere that can only handle data so fast. Unless 

the bottleneck is the sending speed of the 

transmitting host, then if the transmitting occurs too 

fast the bottleneck will be surpassed resulting in lost 

data. The TCP window throttles the transmission 

speed down to a level where congestion and data 

loss do not occur. 

 
 

2.2  Simulation Results 
2.2.1 UDP Protocol 

Comparison between the delay jitter and lost 

datagram values, obtained at server and client  

for number of streams (1, 2, and 3) with different 

combinations of UDP buffer lengths and  

UDP packet sizes (8k, 16k, 32k and 64k) in  

16 categories at UDP protocol, are studied.  
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During simulations, it was noticed that higher delay 

jitter using reassembled 32k datagram (each split 

into 23 packets of 1500 bytes) causes a lost in 

datagram due to burstiness of the traffic lead to poor 

performance. 

Figures (1) and (2) show delay jitter values obtained 

at server and client respectively for different packet 

sizes and UDP buffer lengths for one stream 
Server – one stream 

Fig. 1 Delay jitter values obtained at server for different packet 
           sizes and UDP buffer lengths for one stream 

 
Client – one stream 

Fig. 2 Delay jitter values obtained at client for different packet 

           sizes and UDP buffer lengths for one stream 

 

From figures (1) and (2), it is seen that the delay 

jitter attains its minimum delay value of 0.106 msec 

at server and client respectively at UDP buffer 

length = 32k and Packet size = 16k. 

 

Figures (3) and (4) show delay jitter values obtained 

in logarithmic scales at server and client 

respectively for different packet sizes and UDP 

buffer lengths for two streams. 
Server – two streams 

 
Fig. 3  Delay jitter values obtained in LOG scale at server for 
different packet sizes and UDP buffer lengths for two streams 

 
Client – two streams 

Fig. 4  Delay jitter values obtained in LOG scale at client for 

different packet sizes and UDP buffer lengths for two streams 
 

From figures (3) and (4), it is seen that delay jitter 

attains its minimum optimal values in logarithmic 

scale at server and client respectively at UDP buffer 

length = 32k for the two streams. The first stream, 

with UDP buffer length = 32k according to packet 

size values, has delay jitter values = (1.517, 0.633, 

0.502) at server and delay jitter = (1.518, 0.633, 

0.502) at client. 
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The second stream with UDP buffer length = 32k 

according to packet size values has delay jitter 

values = (0.02, 0.01, 0.022) at server and delay jitter 

values = (0.021, 0.009, 0.023) at client.  

The problems with the two streams in the lost 

datagram are shown in figures (5) and (6). 
Server – two streams 

Fig. 5 lost datagram in LOG% scale obtained at server for     
different packet sizes and UDP buffer lengths for two streams 
 

Client – two streams 

Fig. 6 lost datagram in LOG% scale obtained at client for  

different packet sizes and UDP buffer lengths for two streams 

From figures (5) and (6), it is seen that lost 

datagram obtained in percentage logarithmic scales 

and attains its minimum optimal values at the first 

stream for all packet sizes at server and client 

respectively, whereas the second stream attains 

higher values, thus, the problem occurred in the 

second stream. 

Figures (7) and (8) show delay jitter values obtained 

in logarithmic scales at server and client 

respectively for different packet sizes and UDP 

buffer lengths for three streams. 
Server – three streams  

Fig. 7  Delay jitter values obtained in LOG scale at server for 

different packet sizes and UDP buffer lengths for three streams  

 
Client – three streams 

Fig. 8  Delay jitter values obtained in LOG scale at client for  

different packet sizes and UDP buffer lengths for three streams 
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From figures (7) and (8), it is seen that the delay 

jitter attains its minimum values in logarithmic 

scales at server and client respectively, UDP buffer 

length = 32k using three streams. The first stream, 

with UDP buffer length= 32k according to packet 

size values, has delay jitter values = (0.713, 0.17, 

1.087) at server and delay jitter values = (0.713, 

0.169, 1.087) at client. 

The 2nd and 3rd streams attain higher values of delay 

jitter, thus, the problems are occurred in them as 

shown in figures (9) and(10). 
Server – three streams 

Fig. 9 lost datagram in LOG % scale obtained at server for 

different packet sizes and UDP buffer lengths for three streams 

 

Client – three stream  

Fig. 10 lost datagram in LOG % scale obtained at client for  

different packet sizes and UDP buffer lengths for three streams 

From figures (9) and (10), it is seen that the  

lost datagram obtained in percentage logarithmic 

scale, attains its minimum optimal values at the  

first stream for all packet sizes at server and client 

respectively, whereas the 2nd and 3rd streams attain 

higher values.  

From the above discussions it is seen that, the  

one stream with UDP buffer length = 32k is the  

best choice at server and client due to the lowest 

delay jitter value at packet size = 16k. 

 

2.2.2 TCP Protocol 
A comparison between the Maximum Bandwidth 

(MBW) values, obtained at server and client for  

(1, 2, and 3) streams with different combinations of 

TCP window size and buffer lengths (BLs) = (8k, 

16k, 32k and 64k) in 16 categories at TCP  

protocol. 

Figures (11) and (12) show the MBW values 

obtained at server and client for different buffer 

lengths (BLs) and TCP window sizes for one 

stream.  

 
Server – one stream 

Fig. 11 MBW values obtained at server for different buffer lengths 
             and TCP window sizes for one stream 
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Client – one stream 

Fig.12 MBW values obtained at client for different buffer lengths 

              and TCP window sizes for one stream 
 

From figures (11) and (12), it is seen that the MBW 

attains its optimum value of 11453 Kbytes/sec and 

11448 Kbytes/sec at server and client respectively at 

TCP window size = 32k and BL = 16k. 

Figures (13) and (14) show the MBW values 

obtained at server and client for different  

buffer lengths and TCP window sizes for two 

streams.  
 

Server – two streams 

Fig. 13 MBW values obtained at server for different buffer lengths 
          and TCP windows sizes for two streams 
 

 

Client – two streams 

Fig. 14 MBW values obtained at client for different buffer lengths 

           and TCP windows sizes for two streams 
 

From figures (13) and (14), it is seen that the MBW 

attains its optimum value of 11416 Kbytes/sec and 

11415 Kbytes/sec at server and client respectively at 

TCP window size=32k and BL=16k. However, the 

values for TCP window size = 32k and TCP 

window size = 64k almost are closed values for 

BL=8k, 16k, and 32k. Thus, there is a trade off for 

selecting TCP window size=32k or 64k. 

Figures (15) and (16) show the MBW values 

obtained at server and client for different buffer 

lengths and TCP window sizes for three streams.  
Server – three streams 

Fig. 15 MBW values obtained at server for different buffer lengths 

             and TCP windows sizes for three streams 
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Client – three streams 

Fig. 16 MBW values obtained at client for different buffer lengths 
             and TCP windows sizes for three streams 

 

From figures (15) and (16), it is seen that the  

MBW has almost flat coincidental optimum 

response for BL= 8k, 16k, and 32k for both  

TCP window size = 32k and 64k. Thus, there  

is a trade-off for selecting the TCP window size = 

32k or 64k. 

The percentage of difference between the optimum 

values obtained at TCP window = 32k and TCP 

window =64k for BLs values (8k, 16k, and 32k) as 

follow: 

Deviation% between (TCP window=32k,64k) with 

(BL=8k)=((11317-11235)/11317)x100%=0.7246% 

Deviation% between (TCP window=32k,64k) with 

(BL=16k)=((11350-11290)/11350)x100%=0.529% 

Deviation% between (TCP window=32k,64k) with 

(BL=8k)=((11491-11389)/11491)x100%=0.888% 

Therefore, for one stream, TCP window size = 32k 

is the best choice at server and client due to the 

highest BW values according to BLs values (8k, 

16k, 32k, and 64k).  

MBW = (11019, 11453, 9325, and 9773) at server 

and MBW = (11020, 11448, 9325, and 9773) at 

client. 

For two streams, TCP window size = 32k is the best 

choice at server and client due to the highest BW 

values according to BLs values (8k, 16k, 32k,  

and 64k).  

MBW= (11150, 11416, 10838, and 11181) at server 

and MBW=(11152, 11415, 10926, and 11181) at 

client. 

For three streams, the MBW has almost flat 

coincidental optimum response for BL= 8k, 16k, 

and 32k for both TCP window size = 32k and 64k. 

The percentage of difference between the optimum 

values obtained at TCP window = 32k and  

TCP window =64k for BLs values (8k, 16k, 32k)  

is small and for BL=64k, TCP window =32k  

has a higher value of MBW than for TCP  

window = 64k. 

Therefore, for three streams, TCP window size = 

32k is the best choice at server and client  

according to BLs values (8k, 16k, 32k, and 64k). 

The optimum value at TCP window = 32k and  

BL = 16k. 

MBW= (11235, 11290, 11389, 11379) at server and 

MBW=(11236, 11296, 11388, 11382) at client. 

These best results can be accumulated in one table 

as shown in table (1) and (2). 

 
Table (1) The best choices for MBW at server for TCP window size 32k and   
     different BLs (8k, 16k, 32k, and 64k) using (1, 2, and 3) streams 

 
Buffer  

Lengths 

Streams 

8k 16k 32k 64k 

1 11019 11453 9325 9773 

2 11150 11416 10838 11181 

3 11235 11290 11389 11379 

 
Table (2) The best choices for MBW at client  for TCP window size 32k and  

             different BLs (8k, 16k, 32k, and 64k) using (1, 2, and 3) streams 

 

                   Buffer  

                 Lengths 

Streams 

8k 16k 32k 64k 

1 11020 11448 9325 9773 

2 11152 11415 10926 11181 

3 11236 11296 11388 11382 

 

 

From table (1) and (2) it is seen that the best results 

obtained at TCP Window size = 32k for different 

values of Buffer Lengths = (8k, 16k, 32k, and 64k) 

using the three types of the streams (1, 2, and 3) 

streams. 

For one stream, it is seen that the MBW attains  

its optimum value of 11453Kbytes/sec and 

11448Kbytes/sec at server and client respectively  

at TCP window size = 32k and BL = 16k. 

For two streams, it is seen that the MBW attains  

its optimum value of 11416Kbytes/sec and 

11415Kbytes/sec at server and client respectively at 

TCP window size = 32k and BL = 16k.  

For three streams, it is seen that TCP window size = 

32k is the best choice at server and client  

according to BLs values (8k, 16k, 32k, and 64k). 
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The optimum value at TCP window = 32k and  

Buffer Length = 16k. 

Figures (17) and (18) show the best values of  

MBW with applying (1, 2, and 3) streams at  

server and client according to BLs values (8k, 16k, 

32k, and 64k).  

 

 

Fig. 17 MBW values obtained at server for different  BLs 
       for (1, 2, and 3) streams 
 

 

 
Fig. 18 MBW values obtained at client for different BLs 
          for (1, 2, and 3) streams 

From figures (17) and (18), it is seen that the TCP 

window size = 32k is the best choice at server  

and client using (1) and (2) streams due to the 

highest values of maximum bandwidth values 

according to Buffer Length values (8k, 16k, 32k, 

and 64k). Also, the maximum bandwidth has almost 

flat coincidental optimum response for Buffer 

Length = 8k, 16k, and 32k for both TCP window 

size = 32k and 64k. For Buffer Length = 64k, TCP 

window = 32k has a higher value of maximum 

bandwidth than for TCP window = 64k. Therefore, 

TCP window size = 32k is the best choice at server 

and client using three streams according to BLs 

values (8k, 16k, 32k, 64k),  

 

 

3   Discussion and Conclusion 
Comparisons between the delay jitter and lost 

datagram values obtained at server and client for  

(1, 2, and 3) streams with different combinations  

of UDP Buffer lengths and UDP Packet Sizes  

= (8k, 16k, 32k and 64k) in 16 categories at UDP 

protocol. The paper introduce UDP buffer length = 

32k with the smallest delay jitter value (0.106 msec) 

at Packet size =16k and zero lost datagram using 

one stream.  

A comparison between maximum bandwidth values, 

obtained at server and client for (1, 2, and 3) streams 

with different combinations of TCP window  

size and Buffer Lengths = (8k, 16k, 32k and  

64k) in 16 categories are obtained at TCP  

protocol.  

The paper concluded that the TCP window size = 

32k is the best choice at server and client  

using (1) and (2) streams due to the highest values  

of maximum bandwidth values according to Buffer 

Length values (8k, 16k, 32k, and 64k).  

Also, the maximum bandwidth has almost  

flat coincidental optimum response for Buffer 

Length = 8k, 16k, and 32k for both TCP window 

size = 32k and 64k. For Buffer Length = 64k, 

TCP window = 32k has a higher value of  

maximum bandwidth than for TCP window =  

64k. Therefore, TCP window size = 32k is  

the best choice at server and client using  

three streams according to BLs values (8k,  

16k, 32k, 64k), Because the paper measure  

the Quality of Service - related parameters in 

both the transport and application layers,  

the proposed simulation can be applied to  

TCP/IP - based video systems available on the 

market. 

A future study will include Quality of Service 

evaluations of other Quality of Service - related 

parameters, further evaluations of the precision 
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and applicability in real environments, and 

application to several kinds of multimedia 

communications. 
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