
Multicast Survivability in Hierarchical Broadcast Networks

Azad Azadmanesh
University of Nebraska

Computer Science Department
Omaha, Nebraska 68182

USA
azad@unomaha.edu

Axel Krings
University of Idaho

Computer Science Department
Moscow, Idaho 83844

USA
krings@uidaho.edu

Daryush Laqab
University of Nebraska

Computer Science Department
Omaha, Nebraska 68182

USA
dlaqab@gmail.com

Abstract: Despite the increasing number of applications that benefit from multicasting, most reliable multicast
protocols consider omission faults only. This research is concerned with survivability of multicast communication
where the communication medium is shared among the hosts. The approach presented specifies that a network
with N nodes is resistant against network omissions and malicious nodes if N ≥ 2t + b + 2, where t and b are the
number of malicious and benign faulty hosts, respectively. The simulation results show that the network traffic is
dynamically adapted to the rate of faults and that the network performs well under omission and malicious faults,
unless the rate of faults is high. Furthermore, it is shown that each additional network segment requires (2tg + 1)
gateways, where tg indicates the number of faulty gateways.

Key–Words: Byzantine agreement, Hybrid fault models, Multicast, Peer-to-Peer networks, Ad-hoc networks

1 Introduction

In multicast communication, a message is sent to a
group of receivers. Some applications of multicast-
ing are in multiplayer computer games, webcasting,
audio/video-conferencing, process coordination, and
routing in ad-hoc networks [3, 10, 14, 17, 21, 22, 24].
Multicast communication has been used over the In-
ternet where the interconnection is inherently point-
to-point. It has also been used in multi-point com-
munication media such as Ethernet. Although, there
exists a fair amount of research in the area of multi-
casting, most of the research is focused on omission
faults. An omission occurs when a node expecting
a message does not receive it, e.g., due to link fail-
ure, crash of the transmitting node, or if the message
is corrupted during transmission and not correctable
by the ECC component. As the research with respect
to malicious behavior or a mixture of failure types is
limited, the main goal is to ensure the multicast pro-
tocol designed not only tolerates omission faults, but
it also tolerates malicious behavior. Different failure
modes and their impact on network fault tolerance and
network performance will be investigated. As this re-
search is concerned with general broadcasts, the prin-
ciples discussed here are applicable to all broadcast
environments, including wireless networking such as
ad-hoc and sensor networks.

A multicast is considered reliable when all cor-
rectly operating nodes either deliver a message multi-
casted or none of them deliver it if at least one node

fails to deliver the message. Here a distinction is made
between receiving and delivering a message. A node
might receive a message but not deliver the message
or there might be a delay between receiving and deliv-
ering a message. This delay is caused by the receiving
overhead such as queuing time, ECC process, and the
multicasting overhead to ensure multicast properties
are met.

This research uses the concept of acknowledg-
ment(ACK) and negative acknowledgment (NACK)
handshaking by nodes, such as in the Trans protocol
[15]. In the Trans protocol, each node communicates
with others through broadcasting messages. Once a
node receives a message, it piggybacks an ACK for
the received message to its next outgoing message.
Should a node determine it has not received a mes-
sage, the node adds a NACK for the missing mes-
sage to the very next outgoing message. This enables
the network to be robust against omission faults. The
nodes can also construct empty messages just for the
purpose of sending a list of ACKs or NACKs.

The Trans protocol is essentially an error detec-
tion and error recovery protocol. It depends on the
physical layer to put the outgoing messages on the bus
and to pick up the incoming messages from it. The
protocol does not deal with delivering of messages to
the application layer. Therefore, it is primarily a data
link layer protocol intended for detecting and recover-
ing from omission faults over a bus medium.

The authors of Trans have also designed another
protocol, called Total protocol [16], which places a

WSEAS TRANSACTIONS on COMMUNICATIONS 
 
ISSN: 1109-2742 663

Azad Azadmanesh, Axel Krings, Daryush Laqab 
 
Issue 6, Volume 7, June 2008



total order on the delivery of messages. The Total
protocol was later enhanced to handle Byzantine fail-
ures [18]. A Byzantine fault is not constrained by any
assumption regarding its behavior. For example, a
Byzantine faulty node is capable of transmitting con-
flicting messages to the receiving nodes. To remove
the impact of Byzantine behavior, the protocol as-
sumes the underlying multicast protocol uses digital
signatures to identify the source of a message and to
distinguish among different messages.

The rest of this study is organized into the fol-
lowing sections. Section 2 touches upon some back-
ground and introductory information. Sections 3 and
4 are concerned with a single shared medium, such
as an Ethernet segment. Section 3 focuses on the
approach and design of a reliable multicast protocol.
The section also discusses the fault types that can be
endured by the protocol. Section 4 shows simulation
results based on the protocol design discussed in the
previous section. Section 5 sheds some light on the
requirements to extend a single segment network into
multi-level multicast segments. A summary of the
work is given in Section 6.

2 Background and Definitions
An efficient multicast technique conserves bandwidth
by eliminating unnecessary duplication of messages.
Messages branch-out at routers only when it is needed
to reach receivers on different paths. Multicast proto-
cols can be categorized into inter-domain and intra-
domain protocols. Inter-domain multicast protocols
are used when the receivers are not on the same
network. Therefore, inter-domain multicast requires
the assistance of the network layer of intermediate
routers to forward the messages. Multicast Back-
bone (MBone) [8] is an inter-domain multicast pro-
tocol that provides delivery of messages to a group
of receivers across an inter-network. MBone is com-
monly used for broadcasting video across the Inter-
net. Border Gate Protocol (BGP), which is in use
widely, is a robust inter-domain routing protocol re-
sponsible for exchanging routing information. Multi-
cast BGP (MBGP) [4] is an extension of BGP to en-
able inter-domain multicasting and multicast routing
policy. Intra-domain protocols are designed for LAN
protocols, such as Ethernet, that operate at the data
link layer. The Internet authority has reserved the ad-
dresses in the range 224.0.0.0 to 224.0.0.255 for mul-
ticasting on a LAN segment. No router would forward
these messages with such addresses, as the Time-
to-Live (TTL) is set to 1. The addresses 224.0.1.0
through 238.255.255.255 are reserved as global mul-
ticast addresses used for message multicasting across

the Internet. One major challenge with implementing
a protocol is managing the multicast group member-
ship. During the multicast process, it is possible for
a given set of nodes to join the multicast group, or to
leave the group. Internet Group Management Proto-
col (IGMP) is a protocol that allows routers to keep
track of group membership [9]

2.1 Fault Tolerance
Fault Tolerance is referred to the ability of a given
system to function properly and accurately in the pres-
ence of faults. This is possible when some redundancy
is introduced to the system. The degree of redun-
dancy, which can be a mixture of hardware, software,
and time, is a design time decision based on factors
such as the number and types of faults. The mask-
ing or detection of failure is usually done by increas-
ing the amount of communication among the nodes
and imposing an agreement algorithm within the sys-
tem. The objective of the agreement algorithm is to
ensure that every non-faulty node agrees on the value
of the message that is going to be delivered to the ap-
plication (user). The best known agreement algorithm
is the Byzantine General Problem (BGP) [11, 20],
wherein all the receiving nodes need to decide on a
value broadcast by a single node. The authors demon-
strate that agreement is guaranteed if the number of
faulty nodes t that behave in Byzantine manner is less
than one-third of the total number of nodes N , i.e.,
N > 3t.

Although there are many different types of faults,
the behavior of a fault can be generalized into one of
the following categories [1, 23, 25]:

• Benign - These faults share the attribute of be-
ing obvious and self incrementing to every node.
For example, when a value that is broadcasted is
outside of an expected range. Often, this class of
faults is the least complex to accommodate for.

• Symmetric - In contrast to benign faults, the er-
rors caused by symmetric faults may not be dis-
tinguished from legitimate ones. These faults
can be in transmissive or omissive form. More
specifically, in a transmissive symmetric (TS) be-
havior, the same erroneous message is received
by all receivers, e.g., a faulty node broadcasts
a wrong time-of-day. In the omissive symmet-
ric (OS) behavior, no message is received. For
example, a message becomes corrupted in trans-
mission in such a way that it is detectable and
thus discarded by every correct node. These
faults are more common in multi-point networks.

• Asymmetric - These faults are not constrained
by any assumption regarding their behavior.

WSEAS TRANSACTIONS on COMMUNICATIONS 
 
ISSN: 1109-2742 664

Azad Azadmanesh, Axel Krings, Daryush Laqab 
 
Issue 6, Volume 7, June 2008



These faults can be partitioned into multi-valued
asymmetric (MVA), strictly omissive asymmetric
(SOA), and single error asymmetric (SEA). In a
MVA fault, also called a Byzantine fault, the re-
ceiving nodes perceive conflicting messages with
regard to the same message. These faults are
common in point-to-point networks and difficult
to achieve in multi-point networks [2]. When a
SOA fault occurs, each correct node receives ei-
ther a single correct message or no message at
all. This behavior often occurs in multi-point
networks, where a single correct message broad-
casted is not received by some nodes. Finally, in
SEA behavior, the same dubious message trans-
mitted is received by at least one node but not by
all of them. This mode of behavior, for exam-
ple, can occur in a broadcast environment where
a malicious message is lost in transit and so it is
not received by some receivers.

2.2 Multicast Communication
Approaches to multicast protocols can be viewed as:
1) distributed versus centralized, 2) tree-based, or 3)
ring-based. These protocols are not necessarily exclu-
sive of each other. In a centralized control, a node has
the responsibility of making sure the messages are re-
ceived by all the group members. The group members
send their messages to the central node before being
broadcast to all members. In a distributed approach,
all members share the responsibility of delivery and
making sure everyone receives the broadcast message.
The advantage of the distributed approach is the fault
tolerance aspect of the protocol in that no single point
of failure exists. In the tree-based protocols, the hosts
are divided into groups, and each group is headed by a
single leader. This way, the group members are likely
to be leaders of other groups. The main advantage of
such protocols is the reduction in message acknowl-
edgments sent by the receivers, as each group leader
is responsible only for one group and not for the entire
receivers. Finally, the premise of ring-based protocols
is to support atomic and total ordering for messages
transmitted. For instance a site that has the token is al-
lowed to send its messages to the group members, and
is responsible for making sure all group members re-
ceive its messages. By having the token pass through
the group members in a predetermined order provides
total message order [6, 10, 13].

In general, there are four categories of multicast
protocols with regards to message ordering [5]:

• Unordered delivery, in which the multicast pro-
tocol does not make any guarantees about the or-
der in which the messages are accepted by differ-

ent hosts.

• FIFO-ordered delivery requires the multicast
protocol to deliver incoming messages from a
given host in the same order in which the host
originally sent the messages.

• Causally-ordered delivery means that the mes-
sages are delivered to the upper layers while pre-
serving the causality between the messages. In
other words, if in a given multicast group, mes-
sage m1 causes (precedes) m2, and m2 causes
m3, all receiving hosts will deliver m1 before
m2, and m2 before m3.

• Totally-ordered delivery means that the messages
are delivered in the same order to the upper layers
by all nodes.

3 Network Design and Protocol
At times, broadcast and multicast of messages can be
used interchangeably. However when needed, distinc-
tion between the two forms of message transmission
will be made to remove any confusion. We assume the
following:

A1. Unordered-delivery of messages is assumed.
Each message consists of a header and a pay-
load. The header contains information such as
an identifier consisting of the node identifier
and the sequence number of the message. The
sequence numbers distinguish among messages
coming from the same node. To further distin-
guish among messages with the same sequence
numbers being transmitted from different nodes,
each sequence number is pre-pended with the
node identifier. The payload contains informa-
tion like data, ACK list, NACK list, and rebroad-
cast information to distinguish the message from
a message broadcast for the first time.

A2. A message broadcast by a non-faulty node is re-
ceived by at least t other non-faulty nodes. As
no trust can be placed on the faulty nodes, a non-
faulty node must leave a trace of the message
among other non-faulty nodes. This will be fur-
ther explained in Section 4.

A3. A node cannot impersonate another node. That
is, a faulty node cannot create a message and pre-
tend that it originated from a different node. Fur-
thermore, the sequence numbers for new mes-
sages are generated in hardware, so that a node
would not be able to generate two new messages
with the same sequence number.

WSEAS TRANSACTIONS on COMMUNICATIONS 
 
ISSN: 1109-2742 665

Azad Azadmanesh, Axel Krings, Daryush Laqab 
 
Issue 6, Volume 7, June 2008



A4. A receiving node can not determine whether a
message broadcast for the first time is from a
faulty or a non-faulty node.

The following conditions are referred to as Relia-
bility Conditions (RCs):

• Agreement: A message delivered by a correct
node is eventually delivered by every correct
node.

• Integrity: A message is delivered only once by
every correct node.

• Validity: A message broadcast by a correct node
will eventually be delivered by the node.

The inclusion of the Validity condition may seem
unnecessary as a node always delivers its own mes-
sage. However, it is necessary to ensure that this con-
dition in combination with the Agreement condition
guarantees the delivery of the correct messages by all
correct nodes.

3.1 The Fault Model
Most multicast protocols assume message omissions
are due to accidental failures. However, a faulty node
can create confusion among hosts, or even behave
asymmetrically. The following shows a series of sce-
narios that a malicious host can take advantage of:

A. A malicious host sends a NACK for a message
that it has already received. In this scenario, a
malicious node adds to its negative acknowledg-
ment list a NACK for a message that it has al-
ready received. The faulty node will then append
the list to the next outgoing message. This sce-
nario impersonates a legitimate message omis-
sion, as it will cause the non-faulty nodes to re-
broadcast the message that they think is not re-
ceived by a node. If it happens frequently, it can
degrade network performance, causing a situa-
tion similar to the ”denial of service” attack. The
non-faulty nodes would then spend more time on
broadcasting unnecessary messages.

B. A malicious host sends a NACK for a message
that has not yet been sent. This scenario will
cause the non-faulty nodes to also NACK the un-
sent message. As the message was never sent,
it will never be received by any of the non-
faulty nodes. These negative acknowledgments
will cause the non-faulty nodes to continuously
NACK the message. For this scenario to occur,
the message sequence number must be higher
than that of the last message sent by the same

node. Consequently the unsent message would
be NACKed until a message with that sequence
number is transmitted. Since a NACK identifies
the original source of the message, it is unwise to
ask the originator to intervene, as the originator
might be one of the faulty nodes in the system.

C. A malicious host sends an ACK for a message
that it has already acknowledged. This scenario
will not cause harm to the correct operation of the
network, since these ACKs will be ignored by all
non-faulty nodes that have received the message.

D. A malicious host sends an ACK for a message
that has not yet been sent. This scenario occurs
when a malicious node adds to its positive ac-
knowledgment list an ACK for a message that
was never sent previously. The fallacious posi-
tive ACK will then be piggybacked to the next
outgoing message sent by the malicious node.
This scenario causes the non-faulty nodes to
continuously NACK the unsent message, which
might degrade the network performance if there
is a large gap between the sequence number of
the last message sent and the sequence number
of the unsent message for which an ACK is trans-
mitted by the faulty node.

E. A malicious host alters a message before it re-
broadcasts the message. This scenario can oc-
cur when a malicious node receives a NACK.
Whether the faulty node has received the mes-
sage, it can broadcast a falsified message in re-
sponse to the NACK. Consequently, the non-
faulty node that sent the NACK cannot determine
which copy of the messages rebroadcast by other
nodes is the original message.

Scenario C would not violate the RC. The im-
pact of scenarios B and D are the same, in that the
non-faulty nodes will continuously NACK the unsent
message. Therefore, items B and D require the same
solution, and a solution to either item is a solution to
the other one. Capitalizing on different malicious be-
havior discussed so far, the scenarios A - E can be
condensed into the following cases:

M1. A malicious node sends a NACK continuously
for a message that has already been sent, with the
intent to flood the network with messages, caus-
ing performance breakdown. This will address
scenario A discussed above.

M2. A malicious node NACKs a message that was
never sent, with the intent to cause other nodes to
also negatively acknowledge the unsent message

WSEAS TRANSACTIONS on COMMUNICATIONS 
 
ISSN: 1109-2742 666

Azad Azadmanesh, Axel Krings, Daryush Laqab 
 
Issue 6, Volume 7, June 2008



continuously. This will address scenarios B and
D discussed above.

M3. A malicious node rebroadcasts a modified mes-
sage or a manufactured message, pretending that
the message was received from another node,
with the intent of causing the hosts to accept the
wrong message or creating discrepancies in mes-
sage content received by different hosts. This is
scenario E discussed above.

In addition to the three categories of malicious be-
havior discussed above (M1-M3), a Byzantine node
can behave omissively, i.e., it can behave OS by not
sending messages at times. A faulty node can be per-
ceived to have behaved in an SEA manner as well, in
that some of its messages are lost in transmission. Ad-
ditionally, the transmission medium might be able to
behave in SOA. For instance, if a message transmitted
by a correct node is not received by some nodes.

For a MVA error to occur, a Byzantine node must
be able to transmit a message in more than one form to
multiple receivers, or a message must be transformed
into multiple, undetectable forms during transmission,
due to noise or hardware failure. Both faulty be-
haviors are difficult to achieve, if not impossible, in
a shared medium such as Ethernet [2], and thus are
not considered in this research. However, these faults
need serious consideration in ultra-dependable sys-
tems, such as flight-control systems, which have a
failure rate requirement in the order of at least 10−9

[1, 7, 19].
We assume, however, that Byzantine failure at the

protocol level is still a possibility. A faulty node can
behave as in M3 at different times, to create inconsis-
tency among different nodes with respect to a specific
message. For example, a faulty node can broadcast
a different form of a message any time it receives a
NACK for the same message identifier.

Based on the previous discussion, the behavior
of the t faulty nodes can be perceived as: TS, OS,
SEA, or MVA at the protocol level. In addition, the
benign faulty nodes are recognized globally and thus
are removed beforehand. Therefore, n = N − b is
the number of nodes that participate in the multicast
process, where b is the total number of Benign faulty
nodes. It will be shown that the RCs are guaranteed if
N ≥ 2t+b+2, where N is the number of nodes in the
system and t is the maximum number of faulty nodes.
Furthermore, it will be shown that the RCs are pre-
served under scenarios M1-M3, which in turn imply
that scenarios A - E are covered.

3.2 The Protocol Approach
The following rules guarantee the RCs:

1. A non-faulty node accepts a message transmit-
ted for the first time. Hence, a node receiving a
message with a new identifier can not determine
whether the message originated from a malicious
node (See A4). A corrupted, not correctable mes-
sage is simply discarded.

2. In response to NACKing a message, a non-faulty
node accepts a copy of the message if (t+1) iden-
tical rebroadcasts of the message are received
from different nodes. The (t + 1) identical mes-
sages ensure that at least one of the rebroadcasts
has emanated from a non-faulty node. This fur-
ther ensures that NACKing by a legitimate node
in response to an ACK or NACK by a faulty node
does not result into accepting a bogus message.
This addresses cases M2 and M3.

3. A message is ignored if (n− t− 1) NACKs from
different nodes are received for the same mes-
sage. Therefore, if faulty nodes refrain from pro-
viding a NACK, a non-faulty node needs to re-
ceive a NACK from every other non-faulty node.
To further limit the overhead caused by a ma-
licious behavior, a bound can be placed on the
number of rebroadcasts for each node or a mes-
sage. This covers case M1.

If a message is received by some correct nodes,
every non-faulty node will eventually receive (t + 1)
identical rebroadcasts of the message. Therefore, the
Agreement and Validity conditions will be guaran-
teed. As each new message contains a different se-
quence number and each correct node can keep track
of the identifier of the last message delivered, the In-
tegrity condition will also be preserved. Furthermore,
the requirement of (n − t − 1) NACKs attempts to
minimize network traffic and in the worst case ensures
network liveness, by preventing the non-faulty nodes
to continuously engage in transmitting a NACK mes-
sage. A node will stop sending a NACK if it either
receives (t+1) identical messages, thus accepting the
message, or it will ignore the message if it receives
(n− t− 1) NACKs from different nodes.

Implicit in the above discussion is the fact that
no non-faulty node will relay a message to another
node, unless it accepts the message first, as the result
of receiving (t + 1) identical messages. Otherwise, a
non-faulty node might relay a dubious message, and
thus contribute to the total (t + 1) needed by another
non-faulty node to accept the message.

In response to a NACK, since it is possible that all
(t+1) rebroadcasts are from the non-faulty nodes and
the t faulty nodes refrain from broadcasting, the total
number of nodes in the system must be n ≥ (t+1)+t.
Counting the number of benign faults and the node

WSEAS TRANSACTIONS on COMMUNICATIONS 
 
ISSN: 1109-2742 667

Azad Azadmanesh, Axel Krings, Daryush Laqab 
 
Issue 6, Volume 7, June 2008



itself receiving (t + 1) identical messages from other
nodes, the lower bound on the total number of nodes
is N ≥ 2t+b+2. This also implies that there must be
at least two non-faulty nodes in the system to ensure
the RCs are meaningful.

4 Protocol Simulation
A simulation program has been developed to test the
protocol and examine the network operation perfor-
mance [12]. The program is able to handle M1 - M3,
through the behaviors in the form of SO, SOA, TS,
and the protocol level TA as described in Subsection
3.1. The simulation runs show that the RCs can not be
guaranteed if n ≥ 2t + 2 is not satisfied.

If a node does not receive a message due to an
omission, it is highly likely that the message will be
received during one of the rebroadcasts of the mes-
sage. Obviously, the lower the omission probability,
the sooner the message will be received. If the omis-
sion probability for each node is p, the probability that
a message is not received by a specific node after r
broadcasts is pr. Fig. 1 displays this probability for r
ranging from 1 to 20, and p ranging from 0.1 to 0.9.

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 3 5 7 9 11 13 15 17 19
Broadcasts

M
es

sa
ge

 O
m

is
si

on
 P

ro
b. 0.1

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

xFig. 1: Probability of a message not received after b
broadcasts.

As the figure shows, the number of rebroadcasts
decreases sharply as the omission probably is reduced.
At around 0.50 omission probability, a message is re-
ceived within the first 10 rebroadcasts. To better un-
derstand the effect of omissions, the simulation pro-
gram is run with 10 nodes, 10 messages per node,
ranging omission probabilities from 10% to 90%, and
m broadcasts of each message, ranging m from 1 to
30. For each value of m, one broadcast and (m − 1)
rebroadcasts are done to all nodes. An original mes-
sage is marked as “omitted” if there exists a node that
does not receive the message in m attempts. There-
fore, the minimum and maximum number of original
messages omitted can be 0 and 100 respectively. For
each combination of omission probability and broad-
casts, the program is run 5 times. The total number of
original messages omitted are then averaged over the

5 runs. Although the results of one simulation might
be somewhat different from another, Fig. 2 shows con-
sistency with Fig. 1 in the fast tendency of messages
being received when the omission probability is low
or moderate. Hence, there would not be a real need to
create extra overhead caused by an agreement process
for each new message, which can cumulatively be too
high. Each node can independently deliver a message
received, knowing that other nodes would eventually
do the same. Note that Fig. 1 is with respect to a single
particular node, whereas the messages not received in
Fig. 2 is with respect to 10 nodes.

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25 30 35
m

Av
er

ag
e 

O
rig

in
al

 M
es

sa
ge

s 
O

m
itt

ed

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
Linear (0.1)
Linear (0.2)
Linear (0.3)
Linear (0.4)
Linear (0.5)
Linear (0.6)
Linear (0.7)
Linear (0.8)
Linear (0.9)

Fig.2: Downward trend of messages not received.

The next simulation run shows the average num-
ber of non-faulty nodes that receive the original broad-
cast of a message. The program is run with t set
to 2 for a network of 10 nodes. Each node is set to
broadcast 10 messages, and the omission probability
is ranged from 0.10 to 0.90. For each omission prob-
ability, the program is executed 10 times. As a result,
a total of 1000 messages is collected for each value of
omission probability. The total of messages are then
averaged to show the average number of nodes receiv-
ing a message on the first broadcast. Fig. 3 shows, for

0

1

2

3

4

5

6

7

10 20 30 40 50 60 70 80 90
Omission Probability

Av
g.

 N
um

be
r o

f N
on

-fa
ul

ty
 N

od
es

 R
ec

ei
vi

ng
 F

irs
t 

B
ro

ad
ca

st
 o

f a
 M

es
sa

ge

Fig.3: Average Number of non-faulty nodes receiving
first broadcast of a message.

omission probability as high as 0.80, that at least one
non-faulty node receives a message. For 0.90 omis-
sion probability, the average number of non-faulty

WSEAS TRANSACTIONS on COMMUNICATIONS 
 
ISSN: 1109-2742 668

Azad Azadmanesh, Axel Krings, Daryush Laqab 
 
Issue 6, Volume 7, June 2008



nodes receiving a message is 0.76. Although, the con-
dition that a message broadcast for the first time must
be received by at least one non-faulty is necessary, the
following discussion shows that this condition is not
sufficient to guarantee the RCs.

An interesting question is to obtain the total num-
ber of broadcasts to deliver the messages originated
from the network nodes in the presence of omission
and malicious faults. A related question is to find the
overhead in broadcast per message. A simulation is
run for a network of 20 nodes, each broadcasting 10
messages. The number of malicious nodes, which are
capable of modifying messages, ranges from 0 to 9
and the omission probability of the network is set to
0.10. Thus, there is a total of 200 original messages
for each configuration. The program is then run 10
times, for a total of 2000 messages. Fig. 4 shows the
total number of messages sent between the nodes un-
til all non-faulty nodes accept and deliver all the mes-
sages.

0

2000

4000

6000

8000

10000

12000

14000

0 1 2 3 4 5 6 7 8 9
t

To
ta

l N
um

be
r o

f M
es

sa
ge

s 
Se

nt

Fig.4: Total number of messages sent to deliver 2000
messages.

Fig. 5 shows the average message overhead per
original message for the previous experiment. As-
sume T is the total number of messages sent, and M
is the number of original messages in the network.
Then:

Overhead per message =
T −M

M
=

T

M
− 1

This figure shows that the maximum average over-
head occurs when t = 4, with T ≈ 12000 and
M = 2000. The average message overhead is about
(0 + 5)/2 = 2.5. Furthermore, the figure shows that
message overhead is not much when the total number
of faulty nodes is moderate, that is when the number

of faulty nodes is less than half of what the network
can endure to operate properly. However, one should
observe that this is a simulation, so every run might
yield a different result. To be close to reality, the av-
erage overhead was found over 10 different configu-
rations.

0 0.1455

1.15

0.2565

5.058

0.8545

2.964
3.429 3.539 3.4545

0

1

2

3

4

5

6

0 1 2 3 4 5 6 7 8 9
t

Av
er

ag
e 

O
ve

rh
ea

d 
pe

r M
es

sa
ge

Fig. 5: Average number of extra messages broadcast
to deliver an original message.

Consider a situation where n = 10, t = 2, and a
message broadcast by a non-faulty node A is received
by only one other non-faulty node B. Node B will
ACK the message causing other non-faulty nodes to
NACK the message. At this point, other non-faulty
nodes would not be able to receive (t + 1) = 3 iden-
tical messages, as there are only two non-faulty nodes
having a copy of the message. Additionally, a non-
faulty node C that did not receive the message might
not be able to receive (n− t− 1) = 7 NACKs to dis-
card the message. As there are 6 non-faulty nodes that
did not receive the message, if the faulty nodes decide
not to send in a NACK, then C would receive only 6
NACKs. As a result, node C would not be able to ac-
cept the message, and would not be able to discard the
message either. A similar problem might occur if the
message is originally broadcast by a faulty node and
received by less than (t + 1) non-faulty nodes. Con-
sequently, to avoid this situation, it is assumed that
a new broadcast must be received by at least (t + 1)
non-faulty nodes. Fig. 3 depicts the result of an exper-
iment with the same value of n = 10 and t = 2. The
figure shows that with omission probability as high as
0.5, on average at least (t + 1) = 3 non-faulty nodes
receive the original messages.

Consider a non-faulty node that broadcasts a mes-
sage that needs to be received by at least t nodes of the
remaining (n − t − 1) non-faulty nodes. Assume the
omission probability is p. The probability that exactly

WSEAS TRANSACTIONS on COMMUNICATIONS 
 
ISSN: 1109-2742 669

Azad Azadmanesh, Axel Krings, Daryush Laqab 
 
Issue 6, Volume 7, June 2008



j non-faulty nodes do not receive the message is:(
n− t− 1

j

)
p j (1− p) (n−t−1)−j

Therefore, the probability that at least t non-faulty
nodes will receive the message is:

(n−t−1)−t∑
i=0

(
n− t− 1

i

)
p i (1− p) (n−t−1)−i

Fig. 6 shows this probability graphically for p ranging
from 0.1 to 0.5, with t set to 2 and increasing n starting
at the minimum value 6. The figure signifies that the
probability of at least t non-faulty nodes receiving a
broadcast approaches 1 quickly as number of nodes is
increased, especially when the omission probability p
is not high. Also the graph shows consistency with the
simulation results in Fig. 3 at n = 10.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
n

Pr
ob

. >
= 

t N
od

es
 R

ec
ei

ve
 th

e 
M

es
sa

ge

0.1
0.2
0.3
0.4
0.5

Fig.6: The probability that at least t non-faulty nodes
receive the first broadcast of a message.

5 Hierarchical Multicasting
Up to this point the multicasting paradigm was limited
to only include nodes within a single network. Now
we consider multiple networks, connected by gate-
ways.

5.1 Simple connected networks

Fig. 7 shows a network consisting of two subnetworks
A and B that are connected by gateways. There are
a total of ng gateways directly connected to the two
neighboring subnetworks. As in the previous discus-
sion, each subnetwork uses a single shared medium.
Two multicast scenarios are now possible. Either the
multicast spans over a single subnet or it spans over
both subnets, i.e., the multicast includes nodes in net-
works A and B. Since single networks have been al-
ready discussed in the previous sections, the focus will
be on the latter scenario.

Let’s consider the connectivity of the two subnets.
If ng = 1, then all communication between A and B
passes though the same gateway. In configurations
with ng > 1, the gateways operate in a redundant
mode where each gateway forwards messages to all
subnetworks that are directly connected to and have
nodes participating in the multicast. Note that this is
different from standard network configurations where
only one gateway usually forwards packets, i.e., the
configuration builds a spanning tree and multiple gate-
ways play only a role if an active gateway in the span-
ning tree fails.

GatewaysNet A Net B

Fig.7: Configuration with two networks

Consider the case where the subnetworks A and
B communicate via a single gateway, i.e., ng = 1.
Furthermore assume that a message broadcast orig-
inates on A and the multicast membership includes
nodes in both subnets. Since the gateway is the only
point of connection between the two subnetworks, the
gateway will rebroadcast the message onto subnet B.
However, the nodes in subnet B will not be able to re-
ceive the required (t + 1) identical copies of the same
message from different nodes to accept the message.
Additionally, the gateway can not forward the mes-
sage onto B as a new one, since the message did not
originate from the gateway. Furthermore, if the gate-
ways are treated as standard network nodes, the re-
quirement to receive (t + 1) identical copies would
require the number of gateways to be at least (2t + 1).
However, this large number of gateways most likely is
not practical for t > 2.

Therefore, to incorporate multiple subnetworks
connected by gateways, the fault model needs to be
adapted. Up to this point we considered t to be the
number of faulty nodes. However, it seems reasonable
to treat standard network nodes and gateways differ-
ently with respect to failure probability. It can be ar-
gued that a gateway is more reliable, or less prone to
failure, due to the fact that it is not used as a general
purpose computer and it is a special piece of hardware
with dedicated software.

Let na and nb denote the number of nodes in net-
work segment A and B that participate in the multi-
cast respectively, i.e., n = na + nb. The n nodes are
in addition to the ng gateways. Furthermore, let tn
denote the number of faulty nodes in all subnetworks

WSEAS TRANSACTIONS on COMMUNICATIONS 
 
ISSN: 1109-2742 670

Azad Azadmanesh, Axel Krings, Daryush Laqab 
 
Issue 6, Volume 7, June 2008



and let tg be the number of faulty gateways between
the two subnets, with the failure probability of a gate-
way to be much less than that of a network node, i.e.,
tg � tn.

It can be shown that to tolerate the failure of tn
nodes and tg gateways, one needs

n ≥ 2tn + 2

nodes and
ng ≥ 2tg + 1

gateways, where no assumption is made about the dis-
tribution of the faulty nodes in the different subnet-
works. Hence, the bound for N is the same as that in
the single network case, i.e., N = na + nb + b.

The criterion for accepting a message via the
broadcast paradigm across the gateways is different.
Since authentication is assumed, i.e., no gateway can
impersonate to be a different node, each receiving
node can recognize whether a message is broadcast
by a gateway. Therefore, a simple majority mes-
sage forwards by the non-faulty gateways is sufficient.
Consequently, a receiving node can vote on a cor-
rect message using a (2tg + 1) majority of received
messages. This voting effectively constitutes gateway
fault masking and can be viewed as a restoring organ.

The overhead resulting from sending a single
message to another network is of factor ng plus the
overhead associated with voting. Note that this only
applies to messages sent across subnetworks and not
to messages sent to the same subnetwork that contains
the originating node. Furthermore, since the failure
rate of a gateways is assumed significantly lower than
that of a network node, tg and thus ng will be small.
For example, tg is likely to be equal to 1 or 2 resulting
in 3 or 5 gateways, respectively.

A multicast network can be represented by a spe-
cial kind of network graph in which the vertices are
nodes or gateways and the edges are logical network
connections. Given two graphs Gi and Gj with re-
spective vertex sets Vi and Vj and edge sets Ei and
Ej , the union G = Gi ∪ Gj has V = Vi ∪ Vj and
E = Ei ∪ Ej . The join G = Gi + Gj consists of
Gi∪Gj together with all edges joining Vi and Vj , i.e.,
∀vp ∈ Vi and ∀vq ∈ Vj , ep,q ∈ E, the edge set of the
join graph. Fig. 8 shows an example of a join graph.
The edges defining the join operation between G1 and
G2 are shown as dashed lines. Note that the edge con-
nectivity is logical, i.e., in the context of broadcasting,
if a vertex emits a message, all connected vertices re-
ceive the message (in the error-free case). This should
not be confused with point-to-point messages, where
vertices emit messages to neighboring vertices on one
edge at a time.

3
4

2
5

1

3
4

2
5

1

+ =
G1

G2

G1 + G2

Fig.8: Join operation (+) of two graphs

S

Net A Net BGateways

Fig.9: General join graph of two subnetworks

Let’s revisit the requirement that a new broad-
cast must be received by at least tn other non-faulty
nodes in the context of multiple subnetworks. The
fact that these nodes may now span over two neighbor-
ing networks has no consequence other than the over-
head associated with sending (2tg + 1) messages for
each message that needs to cross gateways. As long
as no more than tg gateways are affected by failure
or malicious act, each node which receives forward-
ing messages from gateways will be able to determine
whether it should accept the message, i.e., if (tn + 1)
identical messages are received, or discard the mes-
sage, i.e., if (n− tn − 1) NACKs are received.

The join graph associated with Fig. 7 is shown in
Fig. 9. Node S broadcasts to the nodes in the two
subnetworks, shown in dark gray, and the gateways
are depicted in the light-gray shaded oval. Formally,
node S broadcasts on subnetwork A and to the gate-
ways. The gateways, by the nature of the join opera-
tion, forward the messages to all participating nodes
in B, which vote on the messages received from the
gateways. The additional overhead associated with
the gateways is captured by the join operation of the
two subnetworks, when a new message is broadcasted
for the first time. Specifically, a new message broad-
casted onto subnetwork A needs to be rebroadcasted
by at most ng gateways. But, the message overhead
due to rebroadcasts crossing the gateways is less. This
is because the number of gateways is small, and thus
(tg + 1) identical copies are needed to accept a mes-
sage in comparison to (tn+1) needed by the nodes on
the originating subnetwork. For example, three gate-
ways can mask one failure, which is a relatively small
price to pay.

WSEAS TRANSACTIONS on COMMUNICATIONS 
 
ISSN: 1109-2742 671

Azad Azadmanesh, Axel Krings, Daryush Laqab 
 
Issue 6, Volume 7, June 2008



5.2 General hierarchical multicasting

Whereas the previous subsection considered the spe-
cial case of two subnetworks connected by gateways,
this subsection is concerned with general network
configurations. Consider a scenario with ns net-
work segments that are interconnected with gateways.
Fig. 10 shows a configuration with ns = 4 and de-

S

Net A Net BGateways

Net C

Shared
Gateways

Net D

Fig.10: General join graph with multiple networks

picts the possible scenarios in which subnetworks can
be connected with gateways. The segments A and B
are connected via a group of gateways, which are not
connected to any other networks. On the other hand,
networks A, C, and D share gateways. In fact the
gateways connecting A and D are a subset of the gate-
ways connecting A and C. The network model of the
previous subsection can now be extended to multiple
subnetworks. The following cases can be enumerated,
where the associated network interconnections are in-
dicated in parenthesis:

1. Two subnetworks are interconnected by non-
shared gateways. This is the scenario for subnet-
work (A, B), where the number of non-shared
gateways is ng(A,B). In order to mask tg(A,B)

gateway faults, at least (2tg(A,B) + 1) gateways
are needed.

2. Multiple subnetworks share gateways. This
is the case involving subnetworks A, C, and
D. To mask tg(A,C) gateway faults, a total of
ng(A,C) ≥ 2tg(A,C) + 1 gateways are needed.
Similarly, a total of ng(A,D) ≥ 2tg(A,D) +1 gate-
ways are needed to mask tg(A,D) gateway faults.
However, with respect to ng(A,C) no more than
tg(A,D) of the shared gateways (depicted by the
darker shaded oval) may fail, and the remain-
ing (tg(A,C) − tg(A,D)) faults must occur on non-
shared gateways (drawn in a lighter shade of gray
in the oval).

The discussion above assumed subnetworks to be
only one hop away from the initial sending node. Mul-

tiple hops are considered in Fig. 11. There is no as-
sumption about the distribution of the tn faulty nodes,
e.g., they could be concentrated in specific subnets or
distributed randomly over all subnets. In the first case,
multi-hop messages are forwarded from one group of
gateways to the next and due to the majority argument
of (2tg + 1) messages, there will always be a majority
of correct messages relayed to the next hop.

S

Net A Net BGateways
A,B

Net CGateways
B,C

Fig.11: General join graph with multiple hops

Considering ng gateways between any two neigh-
boring subnetworks and ns segments, so that n =
n1 + n2 + . . . + nns , the bounds in the previous
subsection regarding the two subnetworks still hold
for the ns segments, i.e., N ≥ 2tn + b + 2 and
ng ≥ 2tg + 1. Similarly, the overhead associated
with a multicast spanning over multiple ns subnets is
induced by the message traffic of the redundant gate-
ways, i.e., (2tg +1) messages per subnet hop, and it is
bound by a total of nsng = ns(2tg + 1) gateways. If
gateways are shared, as shown in Fig. 10 for networks
A, C, and D, the number of gateways is reduced by
the number of shared gateways.

6 Conclusion
Using a broadcast medium, it is difficult or unlikely
that messages can be received asymmetrically, but it
has been shown that an asymmetric behavior is still
possible by allowing a faulty node to broadcast differ-
ent messages for a given original message at different
times. It has been shown that (tn + 1) identical mes-
sages are needed to deliver a message if the message
is not received in the first broadcast, and (n− tn − 1)
NACKs are needed to ignore a message. The research
did not discuss transmission of messages by the use
of digital signatures. If messages are digitally signed,
the receipt of only one digitally signed message is suf-
ficient to accept the message, instead of (tn +1) iden-
tical messages. But there would not be any changes in
(n− tn − 1) NACKs that are needed to address M1.

The protocol assumes that a faulty node can be-
have in OS, TS, and TA manners at the protocol level.
In addition, it is assumed that the network medium
can temporarily experience omissions in the form of
OS or SOA, due to different scenarios such as loss of

WSEAS TRANSACTIONS on COMMUNICATIONS 
 
ISSN: 1109-2742 672

Azad Azadmanesh, Axel Krings, Daryush Laqab 
 
Issue 6, Volume 7, June 2008



a message or not being able to correct errors.
It has been shown that to tolerate the failure of tn

nodes and tg gateways, one needs N ≥ 2tn + b + 2
nodes, possibly spread over ns subnets, and ng ≥
2tg + 1 gateways, connecting any two adjacent sub-
nets.

One of the requirements in achieving reliable
multicasting is reaching agreement in delivering a
message. Normally, a Byzantine agreement algorithm
is needed to ensure that every non-faulty node agrees
on delivering a message. The process of reaching this
agreement for every message will become very pro-
hibitive if new messages are transmitted continuously,
or if a point-to-point topology were used. The pro-
posed protocol reduces message complexity, as each
node can independently determine the safety of de-
livering a message to the user. Furthermore, simu-
lation has shown message complexity is dynamically
adjusted according to the level of network fault con-
dition, whilst the correct operation of the network is
maintained.

References:

[1] M.H. Azadmanesh, R.M. Kieckhafer, Exploiting
Omissive Faults in Synchronous Approximate
Agreement, IEEE Transactions on Computers,
Vol.49, No.1010, 2000, pp. 1031-1042.

[2] O. Babaoglu, R. Drummond, Streets of Byzan-
tium: Network Architectures for Fast Reliable
Broadcasts, IEEE Transactions on Software En-
gineering, Vol.SE-11, No.6, 1985, pp. 546-554.

[3] F. Barsotti, A. Caruso, S. Chessa, The Localized
Vehicular Multiast Middleware: A Framework
for Ad Hoc Inter-Vehicles Multiast Communica-
tions, WSEAS Transactions on Communications,
Vol.5, No.9, 2006, pp. 1763-1768.

[4] T. Bates, Multiprotocol Extensions for BGP-
4, Network Working Group, RFC 2858,
http://faqs.org/rfcs/rfc2858.html, 2000.

[5] K. Birman, T. Joasph, “Communication Sup-
port for Reliable Distributed Computing”, Lec-
ture Notes in Computer Science, Vol.448, 1987,
pp. 124-137.

[6] X. Defago, A. Schiper, P. Urban, Total Order
Broadcast and Multiast Algorithms, ACM Com-
puting Surveys, Vol.36, No.4, 2004, pp. 372-421.

[7] K. Driscoll, B. Hall, H. Sivencrona, P. Zum-
steg, Byzantine Fault Tolerance, From Theory
to Reality, Lecture Notes in Computer Science
(LNCS), Computer Safety, Reliability, and Se-
curity, Vol.2788, 2003, pp. 235-248.

[8] H. Eriksson, MBone: The Multicast Backbone,
CACM, Vol.37, No.8, 1994, pp. 54-60.

[9] W. Fenner, Internet Group Management Pro-
tocol, Network Working Group, RFC 2236,
http://faqs.org/rfcs/rfc2236.html, 1997.

[10] K.P. Kihlstrom, The SecureRing Group Commu-
nication, ACM Transactions on Information and
System Security, Vol.4, No.4, 2001, pp. 371-406.

[11] L. Lamport, et al, The Byzantine Generals Prob-
lem, ACM TOPLAS, Vol.4, No.3, 1982, pp. 382-
401.

[12] D. Laqab, Survivable Multicast Communication
in Bus-based Networks, MS Thesis, Computer
Science Department, University of Nebraska-
Omaha, 2006.

[13] B.N. Levine, J.J. Garcia-Luna-Aceves, A Com-
parison of Reliable Multicast Protocols, Multi-
media Systems, Vol.6, No.5, 1998, pp. 334-348.

[14] X. Li, M.H. Ammar, S. Paul, Video Multicast
over the Internet, IEEE Network, Vol.13, No.2,
1999, pp. 46-60.

[15] P.M. Melliar-Smith, L.E. Moser, Trans: A
Reliable Broadcast Protocol, IEE Proceedings,
Vol.140, No.6, 1993, pp. 481-493.

[16] P.M. Melliar-Smith, L.E. Moser, V. Agrawala,
Broadcast Protocols for Distributed Systems,
IEEE Transactions on Distributed and Parallel
Systems, Vol.1, No.1, 1990, pp. 17-25.

[17] C.K. Miller, Multicast Networking and Applica-
tions, Addison-Wesley, 1999.

[18] L.E. Moser, P.M. Melliar-Smith, Byzantine-
Resistant Total Ordering Algorithms, Informa-
tion and Computation, Vol.150, No.1, 1999, pp.
75-111.

[19] M. Paulitsch, J. Morris, B. Hall, K. Driscoll, E.
Latronico, P. Koopman, Coverage and the Use of
Cyclic Redundancy Codes in Ultra-Dependable
Systems, Proceedings of the International Con-
ference on Dependable Systems and Networks
(DSN), 2005, pp. 346-355.

[20] M. Pease, et al, Reaching Agreement in the Pres-
ence of Faults, JACM, Vol.27, No.2, 1980, pp.
228-234.

[21] C. Shih, T. Shih, Cluster-based Mulitcast Rout-
ing Protocol for MANET, WSEAS Transactions
on Computers, Vol.6, No.3, 2007, pp. 566-572.

[22] H. Shin, K. Cho, A IP Multicast Technique for
the IPTV Service, WSEAS Transactions on Com-
munications, Vol.6, No.1, 2007, pp. 274-277.

[23] P.M. Thambidurai, Y.K. Park, Interactive Con-
sistency with Multiple Failure Modes, Proceed-
ings of the 7th Reliable Distributed Systems
Symposium, 1988, pp. 93-100.

WSEAS TRANSACTIONS on COMMUNICATIONS 
 
ISSN: 1109-2742 673

Azad Azadmanesh, Axel Krings, Daryush Laqab 
 
Issue 6, Volume 7, June 2008



[24] B. Wang, C. Hou, A Survey on Multicast Rout-
ing and its QoS Extension: Problems, Algo-
rithms, and Protocols, IEEE Network, Vol.14,
No.1, 2000, pp. 22-36.

[25] P.J. Weber, Dynamic Reduction Algorithms for

Fault Tolerant Convergent Voting with Hybrid
Faults, PhD Dissertation, Electrical & Computer
Engineering, Michigan Technological Univer-
sity, 2006.

WSEAS TRANSACTIONS on COMMUNICATIONS 
 
ISSN: 1109-2742 674

Azad Azadmanesh, Axel Krings, Daryush Laqab 
 
Issue 6, Volume 7, June 2008




