
Feedback in Soft Input Decryption

NATASA ZIVIC and CHRISTOPH RULAND
Institute for Data Communications Systems

University of Siegen
Hölderlinstraße 3, Gebäude E, D-57076 Siegen

GERMANY
natasa.zivic@uni-siegen.de , christoph.ruland@uni-siegen.de http://www.dcs.uni-siegen.de

Abstract: - This paper develops further the idea of use of Soft Input Decryption. The function of Soft Input Decryption
is to integrate decryption into the decoding process. In this paper it is shown how Soft Input Decryption can be
enhanced using feedback from the channel decoder. In this way, the cooperation between channel coding and
cryptography is further develops. The effect of the feedback is explained on an example of the trellis diagram. Like in
Soft Input Decryption, also in feedback method is the usage of reliability L-values of SISO channel decoder of great
importance. Theoretical analysis, as well as results of computer simulations have been presented and discussed.

Key-Words: - Soft Input Decryption, feedback, L-values, cryptographic check values, MAP, SISO Channel Decoding,
trellis

1 Introduction
In [1][2] the importance of using cryptographic elements
- encryptor and decryptor has been shown. Normally,
they are used in cryptographic operations to support
communication security i.e. data integrity and
authentication of data origin.
 In [1-2], cryptographic elements are used in another
way: as a combination with channel decoding in order to
achieve better decryption results by correction of
cryptographic check values.
 The soft outputs (L-values as a measure of reliability
of decoded bits) of SISO (Soft Input Soft Output)
channel decoding are used to correct cryptographic
check values [1-2].
 L-values values are valuable information about
decoded bits, which are used in turbo decoding [3]. In
[1-2] and in this work L-values are used in another way:
as information to the next following entity – the
decrypting mechanism.
 Digital signatures [4][5][6], MAC [7]/H-MAC [8]
((Hash)-Message Authentication Code) and hash values
[9] are used as cryptographic check values.

The main problem investigated in [1-2] and the
proposed solution were:

- correction of cryptographic check values using
L-values of channel decoding (solution: Soft Input
Decryption)
The main problem investigated in this work and the
proposed solution are:
- improving channel decoding using corrected
cryptographic check values (solution: Soft Input
Decryption using feedback).

2 Cryptographic Mechanisms of Data
Integrity and Data Origin
Authentication
Data integrity is the property that data have not been

altered or destroyed in an unauthorized manner [7]. As
data can be changed during the transfer or storing phase,
it is important to check that no modification happened
until they were received.

Data origin authentication is the corroboration that the
source of data received is as claimed [7]. It is the
cryptographic service, which proves the identity of the
data origin, i.e. that data were indeed sent by the entity
which is assumed to be the originator.

Hash values, MAC/H-MACs and digital signatures are
considered as redundancy values in this work, because
they have different lengths which influence the coding
gain, code rate and probability of collisions.

2.1 Hash Functions

A hash function is a one-way function which maps
strings of bits of variable length to fix-length strings of
bits, satisfying two following properties:
- for a given output, it is computationally infeasible to
find an input which maps to this output and
- for a given input, it is computationally infeasible to find
a second input which maps to the same output [9].

The same standard defines a hash code as the string of
bits which is the output of the hash function.

A collision resistant hash function is defined as a hash
function satisfying the following property:
- it is computationally infeasible to find any two distinct
inputs which map to the same output. Computational
feasibility depends on the specific security requirements

WSEAS TRANSACTIONS on COMMUNICATIONS Natasa Zivic and Christoph Ruland

ISSN: 1109-2742
428

Issue 5, Volume 7, May 2008

and environment [9].
Collision resistant hash functions are used for the

generation of digital signatures.
The most commonly used lengths of hash value are

160, 228 and 256 bits. In this case, the collision
probability is greater than 0.5 after about 280 randomly
chosen input messages according to the birthday paradox.

2.2 Message Authentication Codes (MACs)
MAC is an application of a symmetric block cipher

[7]. Examples of used block cipher algorithm are DES,
3–DES and AES.

ISO/IEC 9797-1 specifies MAC algorithms that use a
secret key and an n-bit block cipher to calculate an n-bit
MAC. These mechanisms can be used as data integrity
mechanisms to verify the fact that data have not been
altered. MAC provides only subjective authentication,
because identity of data origin cannot be proven by a
third party (at least two parties are able to generate the
same MAC).

MAC can only be used as a message authentication
mechanism to provide assurance that a message has been
originated by an entity in possession of the secret key.

A MAC algorithm is a function which maps a string D
of bits and a secret key K to fixed-length strings of bits,
satisfying the following properties [7]:
- for any key and any input string the function can be
computed efficiently
- for any fixed key, and given no prior knowledge of the
key, it is computationally infeasible to compute a
function value on any new input string.

It should be noted that the birthday paradox applies
also on MACs.

Typical length of the MAC is the block length of the
block cipher, i.e. 64 or 128 bits. Details about the MAC
algorithm are given in [7].

2.3 Hashed Message Authentication Codes (H-
MACs)

ISO/IEC 9797-2 [8] specifies MAC algorithms that
use a secret key and a hash function (or its round -
function) with an n-bit result to calculate an m-bit MAC.
These mechanisms can be used as data integrity
mechanisms to verify that data have not been altered in
an unauthorized manner. They can also be used as
message authentication mechanisms to provide assurance
that a message has been originated by an entity in
possession of the secret key [8].

The length of H–MAC is the same as that of
underlying hash function: 64, 160, 228 or 256 bits, but
the length can be adjusted as necessary. For example, for
hash functions RIPEMID–160 and SHA–1 the length of
H–MAC is 160 bits.

Collision resistance of H–MAC is defined as for hash

function (see chap. 2.1).
An H-MAC algorithm (or hashed cryptographic check

function) computes a function which maps string D of
bits and a secret key K to fixed-length strings of bits (H-
MAC or hashed cryptographic check value), satisfying
the following properties [8]:
- for any key and any input string the function can be
computed efficiently
- for any fixed key, and given no prior knowledge of the
key, it is computationally infeasible to compute a
function value on any new input string.

Details about the H-MAC algorithm are given in [8].

2.4 Digital Signatures
Digital signatures provide data origin authentication

and support non-repudiation services. They normally use
asymmetric cryptography, even if there are solutions for
symmetric algorithms based digital signatures.

There are two types of digital signatures:
1. signatures giving message recovery (Fig. 1) [6]
2. signatures with appendix (Fig. 2.17) [5].

A non-recoverable part whic

value of the signature is optiona
in this work. Only messages w

a

b

Fig. 1 Digital Signatures

WSEAS TRANSACTIONS on COMMUNICATIONS Natasa Zivic and Christoph Ruland

ISSN: 1109-2742
429

Issue 5, V

)

)

giving message recovery
h is covered by the hash
l. This option is not used
hich are included in the
olume 7, May 2008

signature and recoverable are considered.
Signatures giving message recovery can be applied to

“short” messages, which are extended by a onetime pre-
signature before the execution of the signature operation
(see Fig. 1). The decryptor recovers the message from the
signature, if the signature is proved to be correct. “Short
message” means, that the length of the message plus
redundancy is shorter than the length of the private key
used in the signature algorithm. If the message does not
contain enough redundancy for verification, it is added by
use of a hash function. If the message is too long, then
message recovery is partial. In this case the message is
divided into recoverable part (included in the signature)
and non-recoverable part (stored and/or transmitted along
with the signature). In this work ECNR over GF(p) with a
length of p of 160 bits is used, which results in a
signature length of 320 bits.

In the case of digital signatures with appendix, the
message has an arbitrary length (Fig. 2). The encryptor
generates a digital signature over a hash value which has
been calculated over the message to be signed. The
decryptor computes the hash value over the received
message and verifies the signature by using the public
key. The result of the signature verification is true or
false.

In both cases, the verification result is negative if the
input of the signature verification compared to the output
of the signer is modified, or the public key and private
key do not belong to the same key system. Digital
signatures and messages - as input to the decryptor - have
to be delivered from the channel decoder free of errors or
modifications to verify the signature successfully.

3 SISO Convolutional Decoding
Convolutional codes are a type of error correcting codes
which are very often used in wireless communication
systems.

The convolutional encoder (5,7) (Fig.3) is
implemented in this work because of its simplicity and
often usage in theory and praxis.

Fig. 3 Convolutional Encoder (r = ½, m = 2)

4 Soft Input Decryption
The strategy of Soft Input Decryption takes into account,
that the security mechanism is successfully completed, if
the used cryptographic check value is recognized by the
decryptor to be correct (positive verification). If the
verification is negative, the decryptor changes the bits
with the lowest absolute L-values [10] and checks the
result of the signature verification [2] (Fig. 4). This
procedure takes place after each bit change or
combination of bit changes as long as the verification is
negative or a limit of computational effort is reached.

In a case where the attempts for correction of the
signature fail, because the signature has been modified
intentionally (attack) or the number of errors is too large

a)

b)

Fig. 2 Digital Signatures with appendix (simplified):

a) Generation b) Verification

Fig. 4 Soft Input Decryption

WSEAS TRANSACTIONS on COMMUNICATIONS Natasa Zivic and Christoph Ruland

ISSN: 1109-2742
430

Issue 5, Volume 7, May 2008

as a result of a very noisy channel, the computational
power is not sufficient to try enough combinations of
flipping bits of low absolute L-values.

5 Introducing of the feedback into Soft

Input Decryption
In chapter 4 it was explained how transmission errors can
be corrected using Soft Input Decryption. This chapter
explains how a corrected SID block can be used for
improved error correction of channel decoding of another
block by feedback method.
 The output of the source encoder is a data block or
data stream u. The stream u has to be authentic, which is
realized by use of cryptographic check values. u is
continuously split in two parts, which are called and
considered as message a and message b. Each of both
messages is extended by a cryptographic check value
generated from the message using a cryptographic check
function h (Fig.5):
ha = {hai} and hb = {hbi}, i = 1, …, m.
Blocks a and b are the result of the concatenation of
messages a and b with their cryptographic check values
ha and hb:

 (1)
11

...... 2121 nm hahahaaaaa =

 (2)
22

...... 2121 nm hbhbhbbbbb =

 For the case of simplicity, without limitation of
generality, it is further assumed that (m2 + n2) mod (m1 +
n1) = 0. Block a and block b form the joint message v
(Fig.2):

⎪
⎪

⎩

⎪
⎪

⎨

⎧

<<

==

=
+−+−

2121

1
2112

1
1211

21212211212211

..................

, ,......

2

1

2
2

1

1

2

1

2
2

1

2

21

nnandmmif

hbhbhahahbhbhabbaabba

nnmmifhbhahbhahbhabababa

v n
n
n

n
n

n
nm

m
m

m
m

m
m

nnmm

 (3)

 Let consider the case of m1 = m2 and n1 = n2, for the
further simplicity, without lost of generality.

Fig. 5 Forming of a message v from a message u

 The algorithm of Soft Input Decryption using
feedback is shown in Fig. 6.

 The joint message v is encoded into vENC using a
convolutional encoder (5,7) with r = ½ [11] (Fig.6):

Encryptor

Encoder

Noisy
channel

vENC*

L = 0

SISO Decoder

Soft Input Decryptor

SISO Decoder

Soft Input Decryptor

L (a*), L (ha*)

vENC*
a, ha

L (a) = , L (ha) =∞± ∞± , L (b) = 0, L (hb) = 0

b**, hb**

b, hb

first round

second round

third round

Feedback

u

v

Fig. 6 Soft Input Decryption using feedback

212112111211

212112111211

...
...

mmmm

kkkkENC

hbhbhahahbhbhaha
bbaabbaav =

(4)

After the transfer over the noisy channel, vENC* is
received:

WSEAS TRANSACTIONS on COMMUNICATIONS Natasa Zivic and Christoph Ruland

ISSN: 1109-2742
431

Issue 5, Volume 7, May 2008

 (5)

*...******

...***

212

11211121121

2112111211

mmm

mkk

kkENC

hbhbha
hahbhbhahabb

aabbaav =

 It should be emphasized that the values of the vENC*
are real numbers which are output values of the
demodulator, and no binary values of vENC anymore!
 Now the first round of the Soft Input Decryption with
feedback starts: the SISO decoder decodes vENC* and
outputs L-values of a* and ha* to the Soft Input
Decryptor. Based on these L-values, Soft Input
Decryption tries to correct block a (a and ha). If Soft
Input Decryption is successful, every second bit of v (i.e.
a and ha) is corrected:

 (6) *...**...** 1111

)1(
mmkk hbhahbhababav =

 The L-values L(a) and L(ha) belong to the corrected
bits, and they are set to ± ∞ (depending if the corrected
bit is “0” or “1”). The L-values L(b*) and L(hb*) are set
to the start values of 0.
 In the second round of the Soft Input Decryption with
feedback, the SISO decoder decodes the encoded data
v*ENC and outputs the new values of b** and hb**. The
values of a and ha bits are already corrected in the first
round, which “helps” the decoding algorithm to improve
correction of b and hb bits. The BER after the second
round is lower than after the first round, because of the
lower error rate of b and hb bits. The second round
represents a feedback of corrected L-values of block a in
the first round to the SISO channel decoder.
 In the third round of the Soft Input Decryption with
feedback,, b** and hb** are further corrected by Soft
Input Decryption. Because of the lower BER in
comparison to the first round, Soft Input Decryption is
more successful. That fact can be exploited by using a
longer block b than of block a (m1 < m2 and n1 < n2).

6 Analysis of BER in Soft Input

Decryption using feedback
The value of BER after each step of the algorithm is

shown in Fig. 7.
Representation of collision probabilities and

cryptographic check error rates of the algorithm in Fig. 7
is in “italic” form (Pcoll and CCER), and of bit error rates
in “non-italic” form (BER).

Pcoll represents the probability that collision happen.
Collisions happen if the calculated check value is equal to
the received one, i.e. the verification is successful,
although the received message or check value contains
has been modified durino transmission. In case of

simulations in this paper, collision can happen after the
first verification (before the Soft Input Decryption starts)
or by changing bits by Soft Input Decryption. Pcoll can be
calculated as [12]:

nmn

ijN

j

j

i

n

ijN

j

j

i
coll

i

i

j
nm

ij
n

i
m

jnm
im

j
nm

ij
n

i
m

jnm
ijnP

+

−

= =

−

=

−

=

−
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

−+
−

+
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

−+
−−

=

−

−

∑∑

∑∑

2
1

2
211

2
211)(

1

1

2

1 1

2

1

1

0

(7)

xhere m is the length of the message and n is the length
of the cryptographic check value. N is the maximal
number of bits, which can be corrected (flipped) by Soft
Input Decryption [1]. In {1],[2] and this paper, N = 16.
CCER (Cryptographic Check Error Rate) is defined as:

blocksSIDreceivedofnumber
blocksSIDincorrectofnumberCCER = (8)

For example, if digital signatures are used as
cryptographic check values:

signaturesdigitalreceivedofnumber
signaturedigitalincorrectofnumberCCER= (10)

Number of incorrectly verified SID blocks = Number of
not successfully verified SID blocks + Number of
“wrong” verified SID blocks (with collision), because
the “wrong” verification can happen in case of a
collision. The complement of CCER:

blocksSIDreceivedofnumber
blocksSIDcorrectofnumber

CCERCCER

=

=−=1
 (11)

WSEAS TRANSACTIONS on COMMUNICATIONS Natasa Zivic and Christoph Ruland

ISSN: 1109-2742
432

Issue 5, Volume 7, May 2008

1)1(=⋅+⋅−+ CCERPCCERPCCER collcoll (12)

After the second Soft Input Decryption, nine cases are
possible with following probabilities:

1. block a and block b are correct:
)'()'(bCCERaCCER ⋅

2. block a is correct and block b is not correct, because
a collision happened:
)()'()'(bPbCCERaCCER coll⋅⋅

3. block a is correct and block b is not corrected after
exceeding the number of trials:
))(1()'()'(bPbCCERaCCER coll−⋅⋅

4. block a is not correct, because a collision happened,
and block b is correct:
)'()()'(bCCERaPaCCER coll ⋅⋅

5. block a is not correct, because a collision happened,
and block b is not correct also because of a collision:
)()'()()'(bPbCCERaPaCCER collcoll ⋅⋅⋅

6. block a is not correct, because a collision happened,
and block b is not corrected after exceeding the number
of trials:

WSEAS TRANSACTIONS on COMMUNICATIONS Natasa Zivic and Christoph Ruland

Fig.7 BER in Soft Input Decryption using feedback

BER is computed after each step of the algorithm. The
probability of a collision in both blocks a and b is taken
into account.
After the first Soft Input Decryption, three cases are
possible:
1. the output of Soft Input Decryption gives a
correct message The rate of correct blocks delivered by
Soft Input Decryption is CCER
2. Soft Input Decryption stopps because of finding a
matching pair of the message and cryptographic check
value, but the message is not the correct one. This
happens with the collision probability Pcoll. The bits
which have not been flipped by Soft Input Decryption
have the error rate BERcd1. The flipped bits, whose
number is smaller than N, are assumed to be wrong (the
worst case). When these blocks are fed back to channel
decoder, it is assumed that BERcd2 = 1 (the worst case).
The rate of these blocks is . CCERPcoll ⋅
3. Soft Input Decryption stopped by exceeding the
limit of number of trials. The rate of not corrected blocks
is . CCERPcoll ⋅−)1(

The sum of probabilities of all three cases is 1:

))(1()'()()'(bPbCCERaPaCCER collcoll −⋅⋅⋅

7. block a is not corrected after exceeding a number of
trials and block b is correct:
)'())(1()'(bCCERaPaCCER coll ⋅−⋅

8. block a is not corrected after exceeding a number of
trials and block b is not correct because a collision
happened:
)()'())(1()'(bPbCCERaPaCCER collcoll ⋅⋅−⋅

9. block a is not corrected after exceeding a number of
trials and block b is also not corrected after exceeding a
number of trials:
))(1()'())(1()'(bPbCCERaPaCCER collcoll −⋅⋅−⋅ .

In case 4, 5 and 6, BER2.SID = 1 (the worst case), because
the feedback of a wrong block results in a complete
wrong block u (worst case). The probability that case 4, 5
or 6 happens, is:

ISSN: 1109-2742
433

Issue 5, Volume 7, May 2008

)()'())](1()'(
)()'()'([)()'(

aPaCCERbPbCCER
bPbCCERbCCERaPaCCER

collcoll

collcoll

⋅=−⋅+
⋅+⋅⋅

(12)

In case 7, 8 and 9 block a could not be corrected and
therefore there is no feedback and no second Soft Input
Decryption. For that reason, the algorithm stops and
BER2.SID = BERcd1.

The probability that case 7, 8 or 9 happens, is:

))(1()'(
))](1()'()()'(

)'([))(1()'(

aPaCCER
bPbCCERbPbCCER

bCCERaPaCCER

coll

collcoll

coll

−⋅=
−⋅+⋅
+⋅−⋅

 (13)

The sum of probabilities of cases 4, 5, 6 and 7, 8, 9 is
than CCER(a’). As the sum of probabilities of cases 1, 2,
3 is equal to)'(aCCER , the probability of all 9 possible
cases is 1, as those cases are elements of a complete
event.

BER after each of three steps of algorithm is presented by
following equations:

1

2211

1
1

2211

22
1.1

))(1()'(

)
)1(

()()'(

)'(

cdcoll

cd
cdcoll

cdSID

BERaPaCCER
nmnm

BERN
BERaPaCCER

nmnm
nm

BERaCCERBER

⋅−⋅

+
+++

−⋅
+⋅⋅

+
+++

+
⋅⋅=

(14)

1

2

))(1()'(
1)()'(

)'(

cdcoll

coll

cdfeedback

BERaPaCCER
aPaCCER

BERaCCERBER

⋅−⋅
+⋅⋅

+⋅=

 (15)

2

2211

2

2

1

.2

))(1()'()'(

)
)

)1(
())()'()'(

))(1()'(
1)()'(0

cdcoll

cd

cdcoll

cdcoll

collSID

BERbPbCCERaCCER

nmnm
BERN

BERbPbCCERaCCER

BERaPaCCER
aPaCCERBER

⋅−⋅⋅

+
+++

−⋅
+⋅⋅⋅

+⋅−⋅
+⋅⋅+=

 (16)

7 Influence of the feedback to BER
L-values of corrected bits of block a (L = ± ∞) are
feedback information sent to the channel decoder,
enabling better decoding results of block b. In this way
the probability decreases, that parts of the trellis are
wrong, and thereby some bits are wrong decoded.
 Fig. 8 shows an example of correcting of block b (in
the second round), if block a is already corrected (in the
first round). Each transition on the trellis shows the value
of the sent bit. For example, two transition paths
(between the states sk-2 and sk-1, and sk and sk+1) which are
“bold” in Fig. 8, show that the sent bit was “1” in both
cases. If these transition paths belong to corrected bits of
block a, it is easy to find the transition between the states
sk-1 and sk, which connects both of paths (the bit of block
b). The resulting “bold” path shows that the sent bit was
“0”. In this way, bits of block a enable correction of
decoded bits of block b.

By knowing some of transition paths in the trellis,
correction of the rest of transition paths is enhanced,
because the number of possible transitions connecting
known transition paths decreases. This fact is used for
feedback from Soft Input Decryption to the SISO
convolutional decoder in this paper.

F

WSEAS TRANSACTIONS on COMMUNICATIONS Natasa Zivic and Christoph Ruland

ISSN: 1109-2742
434
ig.8 Trellis diagram with 2 known and 1 unknown transition
Example:

- input of encoder: 1 0 1 (a1 = 1, b1 = 0, a2 = 1);
- input of decoder: 00 00 00;
- encoder in Fig. 3 has been used (state and trellis
diagram of the encoder are in Fig. 9 and Fig. 10
respectively);
- after successful Soft Input Decryption of bits a1 and a2,
their L-values are set to:
L (a1) = L (a2) = - ∞
- b1 = ?

Issue 5, Volume 7, May 2008

As it is known, the first bit is “1” (a1 = 1), the only
possible transition in the trellis is the bold one (“1/11”).
Two transition paths are possible from this bold
transition branch in the trellis: “0/10” and “1/01”. As it
is also known that the third bit is “1” (a3 = 1), there are
three possible transitions in the trellis which accord a3
(bold): “1/11”, “1/00” and “1/01”. There is only one
path left which connects one of these three paths and
the first bold path “1/11”: the path “0/10”. Evidentially,
the received bits 00 00 00 are wrong: they should be 11
10 00, and b1 has to be “0”.

In this way, the possibilities of wrong decisions are
decreased: from four possible transition paths, the
possibility of a wrong decision of the second sent bit
decreases to two paths, knowing that a1 = 1; then, this
number of possible transition paths is reduced to 1,
knowing that a2 = 1.

Similarly, decoding continues finding new possible
paths through the trellis, with higher possibility of
finding the right path. Therefore, BER decreases, i.e.
MAP decoding results improve.

8 Results of Simulations
Experiments are performed with the convolutional
encoder (5,7) with r=1/2. BPSK modulation, AWGN
channel and MAP [13] decoder are used. In all
simulations cryptographic check values are used, which

fulfill security criteria by their lengths. For that reason,
collision probability is negligible, i.e. 0≈collP .

8.1 Block a and b of the same length
In the following example, m1 = m2 = n1 = n2 =80.
Simulations have been performed in C/C++ programming
language. For each point of curves, 50000 simulations
have been performed, which is more than enough for
getting 99 % reliable results [14].

BER after each step of the algorithm is calculated and
shown in Fig. 11.

It is obvious that each round enhances the efficiency

of the algorithm of Soft Input Decryption using feedback,
i.e. BER after each round decreases.
 Fig. 8 shows that the total coding gain (after the third
round, in comparison to convolutional decoding) of Soft
Input Decryption using feedback varies, dependant on
S/N. For higher S/N, total coding gain is above 1 dB
(BER ~ 10-4, 10-5).

Coding gains obtained by simulations confirm
theoretical results from chapter 6.

8.2 Block b longer then block a
In the following example, block b is three times longer
than block a: m1 + n1 = 160 (m1 = n1 = 80) and m2 + n2
= 480 (m2 = 400 and n2 = 80).

All conditions and characteristics of simulations are
the same as in 8.1. BER after each step of the algorithm
is calculated and shown in Fig. 12.

Fig.10 Trellis diagram of the used encoder

Fig.9 State diagram of the used encoder

Fig.11 BER after each round of Soft Input Decryption using

feedback

WSEAS TRANSACTIONS on COMMUNICATIONS Natasa Zivic and Christoph Ruland

ISSN: 1109-2742
435

Issue 5, Volume 7, May 2008

In Fig. 12 it can be seen that the coding gain grows
with increasing S/N. For example, for S/N = 2 dB,
BER1.SID is around 10-6, but after feedback method BER
decreases under 10-7. The improvement accomplished
by the use of Soft Input Decryption of block b is shown
by BER2.SID, i.e. by coding gain of the Soft Input
Decryption of block b. It is obvious that the influence of
the Soft Input Decryption of block b is significant. For
example, for BER of 10-4, the coding gain of the
feedback is 0.58 dB and the coding gain after the 2. Soft
Input Decryption is 0.93 dB.

Coding gains obtained by simulations confirm
theoretical results from chapter 6.

9 Influence of blocks lengths to BER

Following simulations of Soft Input Decryption
using feedback examine influence of constant length of
u with various lengths of blocks a and b on coding
gains. Coding gains for length of u of 640 bits is shown
in Fig.13 in comparison to channel decoding (BERcd1).
The message u is divided into block a and block b with
the lengths given in Table 1.

Sequential
test No

Length of
block a

Length of
block b

1 128 512
2 160 480
3 212 480
4 320 320

Table 1 Lengths of blocks a and b

b
t
i
m
s
i
(

t

1

s
g
f

WSEAS TRANSACTIONS on COMMUNICATIONS Natasa Zivic and Christoph Ruland

ISSN: 1109-2742
436

Fig.13 Coding different lengths of block a and block b in

comparison to channel decoding

Fig.12 BER after each round of Soft Input Decryption using

feedback
The results in Fig.13 show no significant difference
etween BER for different lengths of a and b blocks, i.e.
he results are not very much dependant on lengths of
ndividual blocks a and b for the constant length of a
essage u. The reason for that is that advantage of

horter block a (better results of Soft Input Decryption)
s neutralized by disadvantage of use of longer block b
worse results of Soft Input Decryption) and vice versa.

Coding gains obtained by simulations confirm
heoretical results from chapter 6.

0 Conclusion and the future work
This paper extends Soft Input Decryption by
introducing feedback which improves SISO channel
decoding, using results of Soft Input Decryption. The
algorithm of Soft Input Decryption consists of three
rounds. The result of each round is an additional coding
gain. The total coding gain is above 4 dB for high S/N
ratio.

Future work should include optimization of the
oftware realization of SID method. Techniques as
enetic algorithms [15] for example, could be used for
urther software optimization.

The future work should include the analysis of the
influence of an extension of block b of the data u, as the
successful correction of block a enables better decoding
of the next decoding round. The corrected bits should
not be limited to every second bit, but the distance
between corrected bits should be extended.
 If the message is divided into several (not only two)
parts, Soft Input Decryption using feedback becomes an
iterative method. In this way it is possible to correct a
data stream which is not limited by its length.

Issue 5, Volume 7, May 2008

References:
[1] N. Živić, C. Ruland, Softinput Decryption, 4th

Turbocode Conference, 6th Source and Channel Code
Conference, VDE/IEEE, Munich, April 3 – 7, 2006.

[2] N. Živić, C. Ruland, Channel Coding as a
Cryptography Enhancer, 11th WSEAS
Int.Multiconference, Agios Nikolaos, Crete Island,
Greece, July 23-28, 2007.

[3] C. Berrou, A. Glavieux, P. Thitimajshima: Near
Shannon Limit Error Correcting Coding and
Decoding: Turbo Codes, Proc. IEEE International
Conference on Communication, Geneva,
Switzerland, vol. 2/3, pp. 1064-1070, 1993

[4] ISO/IEC 15946-2, Information technology – Security
techniques – Part 2: Digital signatures, 2002.

[5] ISO/IEC 14888-1, Information technology – Security
techniques – Digital signatures with appendix – Part
1: General, 1998.

[6] ISO/IEC 15946-4, Information technology – Security
techniques – Cryptographic Techniques based on
Elliptic Curves – Part 4: Digital signatures giving
message recovery, 2004.

[7] ISO/IEC 9797-1, Information technology – Security
techniques – Message Authentication Codes (MACs)
– Part 1: Mechanisms using a block cipher, 1999.

[8] ISO/IEC 9797-2, Information technology – Security
techniques – Message Authentication Codes (MACs)
– Part 1: Mechanisms using a hash-function, 2000.

[9] ISO/IEC 10118-1, Information technology –
Security techniques – Hash-functions – Part 1:
General, 2000.

[10] D. Chase: A Class of Algorithms for Decoding
Block Codes with Channel Measurement
Information, IEEE Trans. Inform. Theory, IT-18, pp.
170-182, January 1972

[11] Drajić, D.B.: Uvod u teoriju informacija i
kodovanje, Akademska misao, Beograd, 2004

[12] N. Živić, C. Ruland, Collisions in Soft Input
Decryption, WSEAS Int.Multiconference, American
Conference on Applied Mathematics, Harvard
University, Harvard, USA, March 24-26, 2008

[13] Bahl, L., Jelinek, J., Raviv, J., Raviv, F.: Optimal
decoding of linear codes for minimizing symbol error
rate, IEEE Transactions on Information Theory, IT-
20, pp. 284-287, March 1974.

[14] Jeruchim, M., Balaban, P., Shanmugan, K.S.:
Simulation of Communication Systems, Kluwer
Academic/Plenum Publ, New York, 2000.

[15] I. Ivan, C. Boja, M. Vochin, I. Nitescu, C. Toma,
M. Popa, Using Genetic Algorithms in Software
Optimization, Proc. Of the 6th WSEAS Int.
Conference on Telecommunications and Informatics,
Dallas, USA, March 22-24, 2007

WSEAS TRANSACTIONS on COMMUNICATIONS Natasa Zivic and Christoph Ruland

ISSN: 1109-2742
437

Issue 5, Volume 7, May 2008

	a2: 1/11
	a5: 1/01
	h1: 00
	a1: 0/00
	h2: 01
	a3: 0/11
	a4: 0/01
	h3: 11
	h4: 10
	a6: 1/10
	a7: 0/10
	a8: 1/00
	b11: S S S S
	b9: k-2 k-1 k k+1
	c1: i-1
	c2: i
	c3: j
	c4: j+1
	c7: 0
	c8: 1
	d1: ma mb
	d5: ma || ha mb || hb
	d4: ha hb
	d3: key key
	d2: h h
	d6: BLOCK a BLOCK b
	d7: v
	f1: SPLITTING DATA INPUT SIGNATURE
	f2: PRESIGNATURE RANDOM DATA
	f3: FORMATTING THE SIGNED MESSAGE
	f5: MESSAGE
	f6: SIGNATURE
	f7: ALGORYTHM
	F4: SIGNED MESSAGE
	G1: SIGNED MESSAGE
	G5: RECOVERING THE PRESIGNATURE OF THE DATA INPUT
	G6: RECOVERING THE DATA INPUT OF THE MESSAGE
	G4: SIGNATURE SIZE VERIFICATION
	G7: HASH OVER NON RECOVERABLE PART
	G3: PUBLIC KEY
	G8: (*optional)
	G2: OPENING THE SIGNED MESSAGE
	g9: SIGNATURE VERIFICATION
	G10: VERIFICATION OK / VERIFICATION NOT OK
	H1: 1 2
	I1: MESSAGE SIGNATURE
	I2: SIGNATURE' MESSAGE'
	I5: transmitted +
	I3: HASH FUNCTION
	I6: Hash value
	i7: Private key
	i9: Public key
	I4: SIGNATURE ALGORYTHM
	i10: SIGNATURE VERIFICATION ALGORYTHM
	i8: Hash value'
	I11: Verification OK / NOT OK

