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Abstract: - This paper develops further the idea of use of Soft Input Decryption. The function of Soft Input Decryption 
is to integrate decryption into the decoding process. In this paper it is shown how Soft Input Decryption can be 
enhanced using feedback from the channel decoder. In this way, the cooperation between channel coding and 
cryptography is further develops. The effect of the feedback is explained on an example of the trellis diagram. Like in 
Soft Input Decryption, also in feedback method is the usage of reliability L-values of SISO channel decoder of great 
importance. Theoretical analysis, as well as results of computer simulations have been presented and discussed.  
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1 Introduction     
In [1][2] the importance of using cryptographic elements 
- encryptor and decryptor has been shown. Normally, 
they are used in cryptographic operations to support 
communication security i.e. data integrity and 
authentication of data origin. 
     In [1-2], cryptographic elements are used in another 
way: as a combination with channel decoding in order to 
achieve better decryption results by correction of 
cryptographic check values.  
     The soft outputs (L-values as a measure of reliability 
of decoded bits) of SISO (Soft Input Soft Output) 
channel decoding are used to correct cryptographic 
check values [1-2].           
     L-values values are valuable information about 
decoded bits, which are used in turbo decoding [3]. In 
[1-2] and in this work L-values are used in another way: 
as information to the next following entity – the 
decrypting mechanism.  
     Digital signatures [4][5][6], MAC [7]/H-MAC [8] 
((Hash)-Message Authentication Code) and hash values 
[9] are used as cryptographic check values.  

The main problem investigated in [1-2] and the 
proposed solution were: 

- correction of cryptographic check values using 
L-values of channel decoding (solution: Soft Input 
Decryption) 
The main problem investigated in this work and the 
proposed solution are: 
-  improving channel decoding using corrected 
cryptographic check values (solution: Soft Input 
Decryption using feedback).  

 
      

2 Cryptographic Mechanisms of Data 
Integrity and Data Origin 
Authentication 
Data integrity is the property that data have not been 

altered or destroyed in an unauthorized manner [7]. As 
data can be changed during the transfer or storing phase, 
it is important to check that no modification happened 
until they were received.  

Data origin authentication is the corroboration that the 
source of data received is as claimed [7]. It is the 
cryptographic service, which proves the identity of the 
data origin, i.e. that data were indeed sent by the entity 
which is assumed to be the originator.  

Hash values, MAC/H-MACs and digital signatures are 
considered as redundancy values in this work, because 
they have different lengths which influence the coding 
gain, code rate and probability of collisions. 
     
 
2.1 Hash Functions 

A hash function is a one-way function which maps 
strings of bits of variable length to fix-length strings of 
bits, satisfying two following properties: 
- for a given output, it is computationally infeasible to 
find an input which maps to this output and 
- for a given input, it is computationally infeasible to find 
a second input which maps to the same output [9]. 

The same standard defines a hash code as the string of 
bits which is the output of the hash function. 

A collision resistant hash function is defined as a hash 
function satisfying the following property:  
- it is computationally infeasible to find any two distinct 
inputs which map to the same output. Computational 
feasibility depends on the specific security requirements 
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and environment [9]. 
Collision resistant hash functions are used for the 

generation of digital signatures.  
The most commonly used lengths of hash value are 

160, 228 and 256 bits. In this case, the collision 
probability is greater than 0.5 after about 280 randomly 
chosen input messages according to the birthday paradox. 

 
 

2.2 Message Authentication Codes (MACs) 
MAC is an application of a symmetric block cipher 

[7]. Examples of used block cipher algorithm are DES, 
3–DES and AES. 

ISO/IEC 9797-1 specifies MAC algorithms that use a 
secret key and an n-bit block cipher to calculate an n-bit 
MAC. These mechanisms can be used as data integrity 
mechanisms to verify the fact that data have not been 
altered. MAC provides only subjective authentication, 
because identity of data origin cannot be proven by a 
third party (at least two parties are able to generate the 
same MAC). 

MAC can only be used as a message authentication 
mechanism to provide assurance that a message has been 
originated by an entity in possession of the secret key.  

A MAC algorithm is a function which maps a string D 
of bits and a secret key K to fixed-length strings of bits, 
satisfying the following properties [7]: 
- for any key and any input string the function can be 
computed efficiently 
- for any fixed key, and given no prior knowledge of the 
key, it is computationally infeasible to compute a 
function value on any new input string. 

It should be noted that the birthday paradox applies 
also on MACs. 

Typical length of the MAC is the block length of the 
block cipher, i.e. 64 or 128 bits. Details about the MAC 
algorithm are given in [7]. 

 
 
2.3 Hashed Message Authentication Codes (H-
MACs) 

ISO/IEC 9797-2 [8] specifies MAC algorithms that 
use a secret key and a hash function (or its round - 
function) with an n-bit result to calculate an m-bit MAC. 
These mechanisms can be used as data integrity 
mechanisms to verify that data have not been altered in 
an unauthorized manner. They can also be used as 
message authentication mechanisms to provide assurance 
that a message has been originated by an entity in 
possession of the secret key [8].  

The length of H–MAC is the same as that of 
underlying hash function: 64, 160, 228 or 256 bits, but 
the length can be adjusted as necessary. For example, for 
hash functions RIPEMID–160 and SHA–1 the length of 
H–MAC is 160 bits. 

Collision resistance of H–MAC is defined as for hash 

function (see chap. 2.1).  
An H-MAC algorithm (or hashed cryptographic check 

function) computes a function which maps string D of 
bits and a secret key K to fixed-length strings of bits (H-
MAC or hashed cryptographic check value), satisfying 
the following properties [8]: 
- for any key and any input string the function can be 
computed efficiently 
- for any fixed key, and given no prior knowledge of the 
key, it is computationally infeasible to compute a 
function value on any new input string. 

Details about the H-MAC algorithm are given in [8]. 
 
 

2.4 Digital Signatures 
Digital signatures provide data origin authentication 

and support non-repudiation services. They normally use 
asymmetric cryptography, even if there are solutions for 
symmetric algorithms based digital signatures. 

There are two types of digital signatures: 
1. signatures giving message recovery (Fig. 1) [6] 
2. signatures with appendix (Fig. 2.17) [5]. 

 

              
A non-recoverable part whic

value of the signature is optiona
in this work. Only messages w

 

a

b

Fig. 1 Digital Signatures 
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signature and recoverable are considered. 
Signatures giving message recovery can be applied to 

“short” messages, which are extended by a onetime pre-
signature before the execution of the signature operation 
(see Fig. 1). The decryptor recovers the message from the 
signature, if the signature is proved to be correct. “Short 
message” means, that the length of the message plus 
redundancy is shorter than the length of the private key 
used in the signature algorithm. If the message does not 
contain enough redundancy for verification, it is added by 
use of a hash function. If the message is too long, then 
message recovery is partial. In this case the message is 
divided into recoverable part (included in the signature) 
and non-recoverable part (stored and/or transmitted along 
with the signature). In this work ECNR over GF(p) with a 
length of p of 160 bits is used, which results in a 
signature length of 320 bits.  

In the case of digital signatures with appendix, the 
message has an arbitrary length (Fig. 2). The encryptor 
generates a digital signature over a hash value which has 
been calculated over the message to be signed. The 
decryptor computes the hash value over the received 
message and verifies the signature by using the public 
key. The result of the signature verification is true or 
false.  

 
 

In both cases, the verification result is negative if the 
input of the signature verification compared to the output 
of the signer is modified, or the public key and private 
key do not belong to the same key system. Digital 
signatures and messages - as input to the decryptor - have 
to be delivered from the channel decoder free of errors or 
modifications to verify the signature successfully. 

 

3 SISO Convolutional Decoding   
Convolutional codes are a type of error correcting codes 
which are very often used in wireless communication 
systems.    

The convolutional encoder (5,7) (Fig.3) is 
implemented in this work because of its simplicity and 
often usage in theory and praxis. 

 

 

 
 

Fig. 3 Convolutional Encoder (r = ½, m = 2)  

4 Soft Input Decryption     
The strategy of Soft Input Decryption takes into account, 
that the security mechanism is successfully completed, if 
the used cryptographic check value is recognized by the 
decryptor to be correct (positive verification). If the 
verification is negative, the decryptor changes the bits 
with the lowest absolute L-values [10] and checks the 
result of the signature verification [2] (Fig. 4). This 
procedure takes place after each bit change or 
combination of bit changes as long as the verification is 
negative or a limit of computational effort is reached.  
      

 
In a case where the attempts for correction of the 
signature fail, because the signature has been modified 
intentionally (attack) or the number of errors is too large 

        

 
a) 

 
b) 

Fig. 2 Digital Signatures with appendix (simplified):  

a) Generation b) Verification 

        
Fig. 4 Soft Input Decryption 
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as a result of a very noisy channel, the computational 
power is not sufficient to try enough combinations of 
flipping bits of low absolute L-values. 
 
 
5   Introducing of the feedback into Soft 

Input Decryption 
In chapter 4 it was explained how transmission errors can 
be corrected using Soft Input Decryption. This chapter 
explains how a corrected SID block can be used for 
improved error correction of channel decoding of another 
block by feedback method. 
     The output of the source encoder is a data block or 
data stream u. The stream u has to be authentic, which is 
realized by use of cryptographic check values. u is 
continuously split in two parts, which are called and 
considered as message a and message b. Each of both 
messages is extended by a cryptographic check value 
generated from the message using a cryptographic check 
function h (Fig.5):  
ha = {hai} and hb = {hbi}, i = 1, …, m.  
Blocks a and b are the result of the concatenation of 
messages a and b with their cryptographic check values 
ha and hb: 
 

                              (1) 
11

...... 2121 nm hahahaaaaa =

                                                     (2) 
22

...... 2121 nm hbhbhbbbbb =

     For the case of simplicity, without limitation of 
generality, it is further assumed that (m2 + n2) mod (m1 + 
n1) = 0. Block a and block b form the joint message v 
(Fig.2):  
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     Let consider the case of m1 = m2 and n1 = n2, for the 
further simplicity, without lost of generality. 

Fig. 5 Forming of a message v from a message u 

     The algorithm of Soft Input Decryption using 
feedback is shown in Fig. 6. 

 
     The joint message v is encoded into vENC using a 
convolutional encoder (5,7) with r = ½ [11] (Fig.6): 

Encryptor

Encoder

Noisy
channel

vENC*

L = 0

SISO Decoder

Soft Input Decryptor

SISO Decoder

Soft Input Decryptor

L (a*), L (ha*)

vENC*
a, ha

L (a) =     , L (ha) =∞± ∞± , L (b) = 0, L (hb) = 0

b**, hb**

b, hb

first round

second round

third round

Feedback

u

v

Fig. 6 Soft Input Decryption using feedback 

          
212112111211

212112111211

...
...

mmmm

kkkkENC

hbhbhahahbhbhaha
bbaabbaav =

(4) 

After the transfer over the noisy channel, vENC* is 
received: 
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        (5) 

***
*...******

**...*****

212

11211121121

2112111211

mmm

mkk

kkENC

hbhbha
hahbhbhahabb

aabbaav =

     It should be emphasized that the values of the vENC* 
are real numbers which are output values of the 
demodulator, and no binary values of vENC anymore! 
     Now the first round of the Soft Input Decryption with 
feedback starts: the SISO decoder decodes vENC* and 
outputs L-values of a* and ha* to the Soft Input 
Decryptor. Based on these L-values, Soft Input 
Decryption tries to correct block a (a and ha). If Soft 
Input Decryption is successful, every second bit of v (i.e. 
a and ha) is corrected:  
 
                  (6) *...**...** 1111

)1(
mmkk hbhahbhababav =

 
     The L-values L(a) and L(ha) belong to the corrected 
bits, and they are set to ± ∞ (depending if the corrected 
bit is “0” or “1”). The L-values L(b*) and L(hb*) are set 
to the start values of 0.  
      In the second round of the Soft Input Decryption with 
feedback, the SISO decoder decodes the encoded data 
v*ENC and outputs the new values of b** and hb**. The 
values of a and ha bits are already corrected in the first 
round, which “helps” the decoding algorithm to improve 
correction of b and hb bits. The BER after the second 
round is lower than after the first round, because of the 
lower error rate of b and hb bits. The second round 
represents a feedback of corrected L-values of block a in 
the first round to the SISO channel decoder. 
      In the third round of the Soft Input Decryption with 
feedback,, b** and hb** are further corrected by Soft 
Input Decryption. Because of the lower BER in 
comparison to the first round, Soft Input Decryption is 
more successful. That fact can be exploited by using a 
longer block b than of block a (m1 < m2 and n1 < n2).  
  
 
6 Analysis of BER in Soft Input    

Decryption using feedback 
The value of BER after each step of the algorithm is 

shown in Fig. 7. 
Representation of collision probabilities and 

cryptographic check error rates of the algorithm in Fig. 7 
is in “italic” form (Pcoll and CCER), and of bit error rates 
in “non-italic” form (BER).  

Pcoll represents the probability that collision happen. 
Collisions happen if the calculated check value is equal to 
the received one, i.e. the verification is successful, 
although the received message or check value contains 
has been modified durino transmission. In case of 

simulations in this paper, collision can happen after the 
first verification (before the Soft Input Decryption starts) 
or by changing bits by Soft Input Decryption. Pcoll can be 
calculated as [12]: 
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xhere m is the length of the message and n is the length 
of the cryptographic check value. N is the maximal 
number of bits, which can be corrected (flipped) by Soft 
Input Decryption [1]. In {1],[2] and this paper, N = 16. 
CCER (Cryptographic Check Error Rate) is defined as:  
                           

blocksSIDreceivedofnumber
blocksSIDincorrectofnumberCCER =    (8) 

 
For example, if digital signatures are used as 
cryptographic check values: 
                         

signaturesdigitalreceivedofnumber
signaturedigitalincorrectofnumberCCER=    (10) 

 
Number of incorrectly verified SID blocks = Number of 
not successfully verified SID blocks + Number of 
“wrong” verified SID blocks (with collision), because 
the “wrong” verification can happen in case of a 
collision. The complement of CCER:  
 

blocksSIDreceivedofnumber
blocksSIDcorrectofnumber

CCERCCER

=

=−=1
              (11) 
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1)1( =⋅+⋅−+ CCERPCCERPCCER collcoll          (12) 

 
After the second Soft Input Decryption, nine cases are 
possible with following probabilities: 
 
1. block a and block b are correct:  
      )'()'( bCCERaCCER ⋅  
 
2. block a is correct and block b is not correct, because 
a collision happened: 
       )()'()'( bPbCCERaCCER coll⋅⋅  
 
3. block a is correct and block b is not corrected after 
exceeding the number of trials: 
      ))(1()'()'( bPbCCERaCCER coll−⋅⋅  
 
4. block a is not correct, because a collision happened, 
and block b is correct: 
      )'()()'( bCCERaPaCCER coll ⋅⋅  
 
5. block a is not correct, because a collision happened, 
and block b is not correct also because of a collision: 
      )()'()()'( bPbCCERaPaCCER collcoll ⋅⋅⋅  
 
6. block a is not correct, because a collision happened, 
and block b is not corrected after exceeding the number 
of trials: 
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Fig.7 BER in Soft Input Decryption using feedback 

 

 
BER is computed after each step of the algorithm. The 
probability of a collision in both blocks a and b is taken 
into account.  
After the first Soft Input Decryption, three cases are 
possible: 
1. the output of Soft Input Decryption gives a 
correct message The rate of correct blocks delivered by 
Soft Input Decryption is CCER                              
2. Soft Input Decryption stopps because of finding a 
matching pair of the message and cryptographic check 
value, but the message is not the correct one. This 
happens with the collision probability Pcoll. The bits 
which have not been flipped by Soft Input Decryption 
have the error rate BERcd1. The flipped bits, whose 
number is smaller than N, are assumed to be wrong (the 
worst case). When these blocks are fed back to channel 
decoder, it is assumed that BERcd2 = 1 (the worst case). 
The rate of these blocks is . CCERPcoll ⋅
3.       Soft Input Decryption stopped by exceeding the 
limit of number of trials. The rate of not corrected blocks 
is . CCERPcoll ⋅− )1(
 
The sum of probabilities of all three cases is 1: 

      ))(1()'()()'( bPbCCERaPaCCER collcoll −⋅⋅⋅  
 
7. block a is not corrected after exceeding a number of 
trials and block b is correct: 
      )'())(1()'( bCCERaPaCCER coll ⋅−⋅  
 
8. block a is not corrected after exceeding a number of 
trials and block b is not correct because a collision 
happened: 
      )()'())(1()'( bPbCCERaPaCCER collcoll ⋅⋅−⋅  
 
9. block a is not corrected after exceeding a number of 
trials and block b is also not corrected after exceeding a 
number of trials: 
      ))(1()'())(1()'( bPbCCERaPaCCER collcoll −⋅⋅−⋅ . 
 
In case 4, 5 and 6, BER2.SID = 1 (the worst case), because 
the feedback of a wrong block results in a complete 
wrong block u (worst case). The probability that case 4, 5 
or 6 happens, is: 
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)()'())](1()'(
)()'()'([)()'(

aPaCCERbPbCCER
bPbCCERbCCERaPaCCER

collcoll

collcoll

⋅=−⋅+
⋅+⋅⋅

(12) 

 
In case 7, 8 and 9 block a could not be corrected and 
therefore there is no feedback and no second Soft Input 
Decryption. For that reason, the algorithm stops and 
BER2.SID = BERcd1.  
 
The probability that case 7, 8 or 9 happens, is: 
 

))(1()'(
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aPaCCER
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       (13) 

                      
The sum of probabilities of cases 4, 5, 6 and 7, 8, 9 is 
than CCER(a’). As the sum of probabilities of cases 1, 2, 
3 is equal to )'(aCCER , the probability of all 9 possible 
cases is 1, as those cases are elements of a complete 
event. 
 
BER after each of three steps of algorithm is presented by 
following equations: 
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7   Influence of the feedback to BER 
L-values of corrected bits of block a (L = ± ∞) are 
feedback information sent to the channel decoder, 
enabling better decoding results of block b. In this way 
the probability decreases, that parts of the trellis are 
wrong, and thereby some bits are wrong decoded. 
     Fig. 8 shows an example of correcting of block b (in 
the second round), if block a is already corrected (in the 
first round). Each transition on the trellis shows the value 
of the sent bit. For example, two transition paths 
(between the states sk-2 and sk-1, and sk and sk+1) which are 
“bold” in Fig. 8, show that the sent bit was “1” in both 
cases. If these transition paths belong to corrected bits of 
block a, it is easy to find the transition between the states 
sk-1 and sk, which connects both of paths (the bit of block 
b). The resulting “bold” path shows that the sent bit was 
“0”. In this way, bits of block a enable correction of 
decoded bits of block b. 

By knowing some of transition paths in the trellis, 
correction of the rest of transition paths is enhanced, 
because the number of possible transitions connecting 
known transition paths decreases. This fact is used for 
feedback from Soft Input Decryption to the SISO 
convolutional decoder in this paper. 

 
 

F
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ig.8 Trellis diagram with 2 known and 1 unknown transition 
Example:  
 

- input of encoder: 1 0 1 (a1 = 1, b1 = 0, a2 = 1); 
- input of decoder: 00 00 00;  
- encoder in Fig. 3 has been used (state and trellis 
diagram of the encoder are in Fig. 9 and Fig. 10 
respectively);  
- after successful Soft Input Decryption of bits a1 and a2, 
their L-values are set to:  
L (a1) = L (a2) = - ∞ 
- b1 = ? 
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As it is known, the first bit is “1” (a1 = 1), the only 
possible transition in the trellis is the bold one (“1/11”). 
Two transition paths are possible from this bold 
transition branch in the trellis: “0/10” and “1/01”. As it 
is also known that the third bit is “1” (a3 = 1), there are 
three possible transitions in the trellis which accord a3 
(bold): “1/11”, “1/00” and “1/01”. There is only one 
path left which connects one of these three paths and 
the first bold path “1/11”: the path “0/10”. Evidentially, 
the received bits 00 00 00 are wrong: they should be 11 
10 00, and b1 has to be “0”. 

In this way, the possibilities of wrong decisions are 
decreased: from four possible transition paths, the 
possibility of a wrong decision of the second sent bit 
decreases to two paths, knowing that a1 = 1; then, this 
number of possible transition paths is reduced to 1, 
knowing that a2 = 1.  

Similarly, decoding continues finding new possible 
paths through the trellis, with higher possibility of 
finding the right path. Therefore, BER decreases, i.e. 
MAP decoding results improve. 
 
 
8   Results of Simulations 
Experiments are performed with the convolutional 
encoder (5,7) with r=1/2. BPSK modulation, AWGN 
channel and MAP [13] decoder are used. In all 
simulations cryptographic check values are used, which 

fulfill security criteria by their lengths. For that reason, 
collision probability is negligible, i.e. 0≈collP . 
 
 
8.1 Block a and b of the same length 
In the following example, m1 = m2 = n1 = n2 =80. 
Simulations have been performed in C/C++ programming 
language. For each point of curves, 50000 simulations 
have been performed, which is more than enough for 
getting 99 % reliable results [14]. 

BER after each step of the algorithm is calculated and 
shown in Fig. 11. 
 

      
It is obvious that each round enhances the efficiency 

of the algorithm of Soft Input Decryption using feedback, 
i.e. BER after each round decreases.  
     Fig. 8 shows that the total coding gain (after the third 
round, in comparison to convolutional decoding) of Soft 
Input Decryption using feedback varies, dependant on 
S/N. For higher S/N, total coding gain is above 1 dB 
(BER ~ 10-4, 10-5). 

Coding gains obtained by simulations confirm 
theoretical results from chapter 6. 
 
 
8.2 Block b longer then block a 
In the following example, block b is three times longer 
than block a: m1 + n1 = 160 (m1 = n1 = 80) and  m2 + n2 
= 480 (m2 = 400 and n2 = 80).  

All conditions and characteristics of simulations are 
the same as in 8.1. BER after each step of the algorithm 
is calculated and shown in Fig. 12. 

 

Fig.10 Trellis diagram of the used encoder 

 
Fig.9 State diagram of the used encoder 

 

 
Fig.11 BER after each round of Soft Input Decryption using 

feedback 
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In Fig. 12 it can be seen that the coding gain grows 
with increasing S/N. For example, for S/N = 2 dB, 
BER1.SID is around 10-6, but after feedback method BER 
decreases under 10-7. The improvement accomplished 
by the use of Soft Input Decryption of block b is shown 
by BER2.SID, i.e. by coding gain of the Soft Input 
Decryption of block b. It is obvious that the influence of 
the Soft Input Decryption of block b is significant. For 
example, for BER of 10-4, the coding gain of the 
feedback is 0.58 dB and the coding gain after the 2. Soft 
Input Decryption is 0.93 dB. 

Coding gains obtained by simulations confirm 
theoretical results from chapter 6. 

 
 
9   Influence of blocks lengths to BER 

Following simulations of Soft Input Decryption 
using feedback examine influence of constant length of 
u with various lengths of blocks a and b on coding 
gains. Coding gains for length of u of 640 bits is shown 
in Fig.13 in comparison to channel decoding (BERcd1). 
The message u is divided into block a and block b with 
the lengths given in Table 1. 

 
 

Sequential 
test No 

Length of 
block a 

Length of 
block b 

1 128 512 
2 160 480 
3 212 480 
4 320 320 

Table 1 Lengths of blocks a and b 
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Fig.13 Coding different lengths of block a and block b in 

comparison to channel decoding 

 

 
Fig.12 BER after each round of Soft Input Decryption using 

feedback 
The results in Fig.13 show no significant difference 
etween BER for different lengths of a and b blocks, i.e. 
he results are not very much dependant on lengths of 
ndividual blocks a and b for the constant length of a 
essage u. The reason for that is that advantage of 

horter block a (better results of Soft Input Decryption) 
s neutralized by disadvantage of use of longer block b 
worse results of Soft Input Decryption) and vice versa. 

Coding gains obtained by simulations confirm 
heoretical results from chapter 6. 

0   Conclusion and the future work 
This paper extends Soft Input Decryption by 
introducing feedback which improves SISO channel 
decoding, using results of Soft Input Decryption. The 
algorithm of Soft Input Decryption consists of three 
rounds. The result of each round is an additional coding 
gain. The total coding gain is above 4 dB for high S/N 
ratio. 

Future work should include optimization of the 
oftware realization of SID method. Techniques as 
enetic algorithms [15] for example, could be used for 
urther software optimization. 

The future work should include the analysis of the 
influence of an extension of block b of the data u, as the 
successful correction of block a enables better decoding 
of the next decoding round. The corrected bits should 
not be limited to every second bit, but the distance 
between corrected bits should be extended. 
     If the message is divided into several (not only two) 
parts, Soft Input Decryption using feedback becomes an 
iterative method. In this way it is possible to correct a 
data stream which is not limited by its length.  
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