
Collaborative Middleware on Symbian OS via Bluetooth MANET

Mr FENG GAO, Dr MARTIN HOPE
Informatics Research Institute, the University of Salford

Salford, M5 4WT, UK,
F.Gao@pgt.salford.ac.uk, md.hope@salford.ac.uk

.

Abstract:- In this paper we explore the possibility of using Bluetooth in the development of a Mobile Ad-Hoc
Network (MANET) suitable for transmitting data between Symbian OS based Smartphone’s. We also analyse
the problems that Bluetooth presents when considering existing MANET routing protocols. Then, we present
the design of a collaborative application engine by making allowances for the restrictions associated with
Bluetooth and finally we review our current progress and consider future work.

Key-Words: -Bluetooth, Wireless, Collaboration, Symbian OS, MANET

1 Motivation
The result of research activity in the field of mobile
ad-hoc networks (MANET) has made short to
medium range radio transceivers very popular and
inexpensive. Most of the practical work and
implementations focus on IEEE 802.11 Wireless
LAN as an underlying physical radio network and
this has been used for simulations or testing. For use
in wearable devices like PDAs or cell phones,
802.11 has the disadvantage of consuming more
battery power than other technologies such as
Bluetooth [1][4]. Furthermore, it seems that after
some initial problems, Bluetooth has become a very
common feature in cell phones and PDAs. The
research presented in this paper focuses on a
collaborative middleware platform running on
mobile devices (Smartphones) in order to enhance
communication and the exchange of data via
Bluetooth.

PDAs and Smartphone’s can run applications
such as organizers, games, and communications
programs (e.g. e-mail, Web browsers etc). Here the
Smartphone’s goal is to combine mobile telephony
and computing technologies in a synergistic way. A
simple example is the ability to pull up a person’s
contact information or even their picture, hit a
button and automatically dial that person’s phone
number. Other examples include viewing a pdf
document, dialing an international call via VoIP, or
watching live TV and listening to music. However,
central to Smartphone technology is the Symbian
OS. Symbian OS is a full-featured mobile operating
system that resides in most of today’s Smartphones
[8]. Since Symbian OS is an open system, users can
download, install and uninstall applications written
by third-party developers (or by the users

themselves). No special carrier service or device
manufacturer’s agreement is required to distribute
new Smartphone applications since they can be
downloaded by the user from a PC to the
Smartphone through a link such as USB or by using
a wireless network such as Bluetooth.

The initial goal of the work presented in this
paper was to consider if current Smartphone
technology can be easily used in combination with
Bluetooth, or alternatively what modifications
would be required to enable Bluetooth-based Ad-
hoc networking via the Symbian OS. Initially, we
tried to find a scenario where most of the
characteristics and problems of MANETs running
over a Bluetooth connection will appear. Within this
scenario we considered connecting a large number
of Bluetooth-enabled Symbian smartphones to a
(multi-hop) MANET. This includes a maximum of
ten nodes within the network because this number
would be more likely in reality, and is also the
maximum number of nodes Bluetooth has the ability
to support. After the restrictions and limitations
were considered in Bluetooth networks, a design
was proposed which when fully developed acts like
a Symbian OS application engine, and meets all the
predefined requirements for a collaborative
middleware.

There are a numerous applications for the
middleware platform proposed in the paper. For
example: given a large office complex where people
move around a lot between their office desk,
conference rooms, or central areas like printer-
rooms, fixed-line telephones don’t provide a
practical method of voice communications.
Therefore, people tend to call their colleagues on
their cell phone in order to find out their current

WSEAS TRANSACTIONS on COMMUNICATIONS

Martin Hope and Feng Gao

ISSN: 1109-2742
300

Issue 4, Volume 7, April 2008

mailto:F.Gao@pgt.salford.ac.uk
mailto:md.hope@salford.ac.uk

location, or in order to reach them for urgent
requests. Of course, the network carrier charges for
these calls, however, the middleware proposed
could possibly enable them to make the same calls
at no cost at all. Another use of this system may be
at large exhibits or fares where groups of people
with Bluetooth enabled phones may assemble.
Again the middleware proposed will enable them to
share and relay data such as shared audio / video
files or work based documents.

2 Research Aim and Some Initial

Thoughts
The key aim of this research is to design,
develop and test, a collaborative middleware
API, running on a number of Smartphone
systems with a view to improving
communications and the exchange of data via a
Bluetooth mobile ad-hoc network (MANET).
This new collaborative middleware API will
provide a set of reusable functions to higher
level applications which are transparent to both
application developers and users. It will also aim to
provide a generic collaborative middleware API
template which others may consider for further
development or extension to support other hardware
systems such as Ultra Wideband (UWB)
communications.

In order to initially address this research, several
issues were considered. First of all, given that the
Symbian OS is the choice for the majority of
Smartphone systems [4]; Symbian OS based
Smartphones were chosen as the primary
development platform. The Symbian OS is a full-
featured mobile operating system; it is also a fast
developing OS with two or three versions updates
each year in its nine years history. Also, with so
many changes, it is quite difficult to stay up to date
with the last technology. Further details regarding
this issue are discussed in section five.

Secondly, as a short range wireless network
technology, Bluetooth resides in all today’s
Smartphones. It cost less and uses less power than
IEEE 802.11 WLAN and is easy to use, but there
are still some restrictions for use in an ad-hoc
network. The main significance of this problem is
the limited connection number. This issue and other
restrictions are also discussed in section five.

Finally, it was initially anticipated that a large
number of mobile devices would be required to test
the collaborative middleware. However, it was
found that due to the restrictions imposed by the

hardware and the operating system; the maximum
number of mobile devices that can be
simultaneously tested is ten. In addition, although
the analysis of a larger number of users may prove
useful, it should be noted that this should considered
as further work.

3 Research Methodology and

Hypothesis
A research methodology has been adopted
comprising the following stages. This is illustrated
in figure 1, and explained in more detail below

Stage 1: Reviewing previous work and relevant
literature.
This stage reviews existing literature and highlights
the main problems. It is anticipated that the
knowledge gained will prove useful during the
development stage. In addition, C++ and Symbian
C++ are to be studied in detail, as they are essential
to the implementation.

Stage 2: Identifying related problems
The research starts by identifying the problems
related to the functionality required to meet the
objectives of the project. As problems are identified
they are organised into specific plans of activity.

Stage 3: Design new application engine with
collaborative functionality
This stage design the new application engine based
on the aim of the project. All the requirements of the
middleware and related problems will be covered in
the designing process in order to perform the
necessary network operation, i.e. to discover devices
and services send data and message to each other,
network maintain and collaborative download. This
developed application is then implemented into a
program that can be implemented on devices.

Stage 4: Software implementation / testing
 A set of test metrics will be created to examine the
performance of the collaborative middleware under
different circumstances. The experiments should
also test for extreme situations where problems may
seem inevitable rather than just testing the normal
operating parameters.

Stage 5: Analysis and evaluation
Results from the software implementation are
recorded and analysed. These will be critically
evaluated to determine if further modification is
necessary. If it is necessary, go to Stage 6 to
redesign the application engine, until the results

WSEAS TRANSACTIONS on COMMUNICATIONS Martin Hope and Feng Gao

ISSN: 1109-2742
301

Issue 4, Volume 7, April 2008

meet the object of the project.

Stage 6: Modification / improve performance
If modifications are necessary to improve the
performance of the collaborative middleware, then
this step will allow modification of the
implementation according to the evaluation of the
results.

Stage 7: Write up the report to present complete
work
The final step is to complete the report, which will
based on the result of Stage 5.

Fig 1: Research Methodology

3.1 Research Hypothesis
Based on the aim of this project, the collaborative
middleware can improve the functionality and
enhance the user experience of the Symbian
Smartphone in several points.
First of all, the collaborative middleware will
control the short range wireless connectivity, such
as Bluetooth and WiFi (if applicable). The
middleware can decide what wireless technology
will use depend on different task. On another side,
user just need select what they want to do form the
user interface (UI), can ignore to choose wireless
network.

Secondly, users can send message even making a
phone call via the collaborative middleware instead
of via the 3G network. It will save the cost for users.
Thirdly, the collaborative middle can support users
to share their files to other users. The scenario could
be three to ten people’s meeting or presentation;
chairman shared the relative files for download by
others.
Fourthly, the middleware has a database to save
trusted destinations and black list, which will
improve the security of the connection.
Finally, to support multi-users gaming is another
hypothesis of this research project. The network
routing would become very complicated if the node
of network more than eight. Therefore, the routing
protocol of the mobile ad hoc network is the main
issue for this hypothesis.

Stage 2: Identify current wireless
communication technology, limitations

and areas of weakness.

Stage 1: A review of
existing literature

Stage 3: Design new application engine
with collaborative functionality

Stage 4: Software implementation
testing

Stage 5: Analysis and evaluation

Stage 7: Write up the PhD thesis

Stage 6:
Modification

 improve
performance

4 Bluetooth overview
In this section we provide a very brief overview of
the relevant aspects of the Bluetooth standard. For
detailed information please see [1][4].
When established in 1998, the original idea of
Bluetooth was to create a cheap wireless
replacement for the myriad of data cables that
surround today’s multimedia devices. Like many
other communication technologies, Bluetooth is
composed of a hierarchy of components [5], more
commonly referred to as a stack.Bluetooth uses a
protocol stack of several layers. The Radio Layer
describes the physical radio system. The Baseband
Layer is responsible for transmission and reception
of data packets, error detection and encryption (if
used). The Link Controller uses a state machine to
control synchronization, connection setup and
shutdown and the Host-Controller-Interface (HCI),
separates the Bluetooth hardware from the part of
the protocol stack that is usually implemented in
software. Thanks to this standardised interface, the
Bluetooth hardware and the Bluetooth stacks usually
interoperate very well. The Logical Link Control
and Adaption Protocol (L2CAP) layer multiplexes
different data streams, manages different logical
channels and controls fragmentation. Multiple
higher layer modules may access the L2CAP layer
in parallel. These higher layer modules may consist
e.g. of RFCOMM for emulation of serial
connections, OBEX for transmission of serialized
data objects or SDP for service discovery.

When a device wants to connect another device
it first has to carry out an inquiry for its direct
neighbors. After receiving the inquiry results it can
contact another device using its unique Bluetooth
address. When connected, the two devices form a
so-called Piconet. The initiator of the connection

WSEAS TRANSACTIONS on COMMUNICATIONS Martin Hope and Feng Gao

ISSN: 1109-2742
302

Issue 4, Volume 7, April 2008

becomes the Master of this Piconet; the other device
becomes a Slave.

The difference between a master and a slave
needs to be distinguished first in order to understand
this research. A master is a device that establishes
the connections to remote device, slaves. A slave
can not establish any connections; it will act as a
listener to incoming connections from the master
device. The master discovers slave devices and their
services and is capable of connecting to multiple
slaves and holding these connections active
simultaneously. In essence, the point-to-multipoint
connectivity is a single master device (point)
connecting to multiple slave devices (multiple
points) and the slaves up to a maximum of seven.
Using a Bluetooth connection between just two
devices, it does not matter which one is Bluetooth
master or slave. However, if we wish to connect
more than two devices together in the same session
(for example, a multiplayer game with more than
two players), it is likely that we will have to
consider how the Bluetooth master / slave roles
impact upon the connection setup between the
networked peers. Because once a master connected
seven slaves, this master can not connect any more
slaves; however this peer can be as slave connecting
to another master peer, as show on Figure 2.The
network topology will be complicated, and the
requirement of routing protocol is higher as well.

Fig 2: Bluetooth master and slave roles

5 Developing on Symbian OS S60 3rd

platform
The Symbian OS is an open system; users can
download, install and uninstall applications written
by third-party developers (or by the users
themselves). No special carrier service or device
manufacturer’s agreement is required to distribute
new Smartphone applications since they can be
downloaded by the user from a PC to the
Smartphone through a link such as USB or by using
a wireless network such as Bluetooth

The Symbian OS is widely used on a number of
Smartphone platforms such as the Series 60, the

Series 80, and the Series 90, three of the UI (User
Interface), platforms from Nokia, and UIQ (the UI
platform from UIQ Technology). At the time of
writing, the S60 variant resides on the majority of
Smartphone platforms currently available and its
third edition is based on Symbian OS v9.1[7].
Software applications running on the Symbian OS
can be split into a UI (also known as a View) and an
Engine (also known as a Model). The UI is the part
that presents the data to the user. The engine is
concerned with data manipulation and other
operations independent of how these are eventually
presented to the user. The engine can therefore be
re-used by other applications (i.e. it can be built as a
shared dll). It is the application engine that takes on
the role of collaborative middleware and supplies a
set of classes that can re-used by other applications.
Like other OSs, Symbian provides the API to
developers. Its Bluetooth API provides applications
with access to RFCOMM, L2CAP, SDP, OBEX,
and to a limited extent, HCI[4]. With a view to the
way in which the collaborative middleware
establishes communications, Bluetooth sockets were
chosen to provide communications between devices,
and OBEX was selected to finish a single-shot
operation like transferring a file. These two methods
of communication are discussed in following section.

6 Bluetooth sockets and the OBEX
overviewM

M

M

S

S

S/M

Scatternet with Slave
 in two Piconets

Scatternet with Master in one
and Slave in another Piconet

In the Symbian OS, Bluetooth sockets are used to
discover other Bluetooth devices and to read and
write data over the Bluetooth network. The
Bluetooth Socket API supports communications
over both the L2CAP and RFCOMM layers of the
Bluetooth protocol suite [5]. The API is based on
the sockets client side API that provides a standard
API, enabling a client to make a connection to a
remote device. Alternatively, it also allows a device
to act as a server and have a remote device connect
to it. Once connected, the devices may send and
receive data before they disconnect.

The API has five key concepts: socket address,
remote device inquiry, RFCOMM commands and
options, L2CAP commands, and HCI commands.
This research concentrates on implement a
Bluetooth connection using RFCOMM. Before
using the Socket API to establish a connection, a
Bluetooth device must locate a suitable device with
which to connect to. This means that the Bluetooth
device has to finish device and service discovery,
before making a connection. The Bluetooth Service
Discovery Protocol (SDP) performs this task.

WSEAS TRANSACTIONS on COMMUNICATIONS Martin Hope and Feng Gao

ISSN: 1109-2742
303

Issue 4, Volume 7, April 2008

The SDP can be broken down into two main parts: 1.
The discovery of devices and services within the
local area; 2. The advertisement of services from the
local device.

As previously mentioned, Bluetooth sockets are
the preferred choice when communicating between
two devices. However, if the transmitting task is
only a single file, like an image file or MP3, OBEX
is more suitable. OBEX is a transfer protocol the
operates on top of a number of different transport
mediums, including IrDA and Bluetooth RFCOMM.
It defines data objects and a communication
protocol the two devices can use to exchange those
objects. It also provides a method for transferring
objects or chunks of data from one device to another.
These chunks are typically files or other blocks of
binary data. OBEX uses a client-server model and is
independent of the transport mechanism and
transport API. A Bluetooth enabled device wanting
to set up an OBEX communication session with
another device is considered to be the client device.
The OBEX protocol also defines a folder-listing
object, which is used to browse the contents of
folders on remote device. The main purpose of the
protocol is to support the sending and receiving of
objects in a simple and spontaneous manner. For
example: pushing business cards or synchronizing
calendars on multiple devices is handled with this
protocol. In conclusion, The OBEX protocol, in its
simplest form, is quite compact and requires a small
amount of code to implement, but is also at the same
time a reliable transmission systems over Bluetooth
networks.

7 MANET Overview
The research activities in mobile ad hoc networking
(MANET) had a constant growth in the last ten
years of the 20th century.[7] Differ from traditional
scenarios of MANET such as battlefield and disaster
recovery, some organizations and institutes’
research results made the MANET suit for normal
user in daily life. However, due to the mobility and
the limited resource of MANET, routing protocol
need to redefine or modify for function efficiently.
Routing in the MANETs is a challenging task and
has
MANET routing protocols may be divided into two
categories: proactive and reactive. Proactive
protocols always try to maintain up to date routing
tables for all reachable destinations. All well-known
Internet routing protocols like RIP or OSPF fall in
this category. The reactive protocols are only
activated when a node A wants to send packets to a
second node B. In this case A originates a route
request that searches the network for a valid path

towards the destination. Once the optimal path has
been discovered, B sends a route reply to A. Once A
has a valid path for B it can start to send its packets.
During this process the routing system needs to
perform routing maintenance, i.e. it has to check if
the route is still valid. If a route breaks many
protocols perform a route repair.

8 Project analysis
Our research objective is to develop a collaborative
middleware based on Symbian OS via Bluetooth.
The following presents a discussion of some of the
initial requirements and restrictions found to date.
When using Bluetooth as a physical layer for a
MANET we have to consider a number of
restrictions compared to the IEEE 802.11 wireless
standards [9].
• Bluetooth is connection oriented. So, in order to

send data to another node you have to setup and
later tear down a connection.

• Bluetooth has no: ‘all neighbors’ broadcast
capability (only point-to-multipoint within the
Piconet). So, in order to flood a route request
you have to first connect to all neighbors and
then send a point-to multipoint packet to them.
If there are more neighbors than are allowed in a
Piconet [2] things get even more complicated.

• Bluetooth has very long inquiry and relatively
long connection setup times.
When we want to implement a collaborative ad

hoc network system using a Bluetooth, we have a
number of requirements that contrast with above
capabilities:
• Users want a short connection setup time similar

to a normal phone dialing (a few seconds).
• We need to have relatively few hops. Otherwise,

the delay will be too long, and the user will
experience a significant pause and echo.

• In order to optimise the overall throughput and
minimize interference we want to minimise the
number of Piconets and shutdown unneeded
connections.

• To avoid interrupts in data transmission we need
a very efficient and fast route-maintenance-and-
repair mechanism.
No current MANET routing protocols fulfill all

of the above requirements. Therefore, we will
design a new routing protocol with the focus on data
transmission in Bluetooth Scatternets. However, the
current protocols that do exist provide a number of
interesting ideas which can be used as a basis for
this new protocol: e.g. reactive operation and route
maintenance / repair. Furthermore, there are other
connection oriented networks that provide

WSEAS TRANSACTIONS on COMMUNICATIONS Martin Hope and Feng Gao

ISSN: 1109-2742
304

Issue 4, Volume 7, April 2008

interesting concepts. For example our data packets
don’t carry any destination information in the
header. Instead the intermediary nodes use the
incoming (L2CAP or SCO) channel identifier to
decide where to forward the data. This is very
similar to the circuit switching approach of ATM.
We will therefore try to take these ideas and
integrate them.

BT
Waiting

 To Send

BT
Connecting

BT
Discovering

Services

BTDormant

BT
Discovering

Devices

BTDormant

BT
Discovering

Devices

BTCmd
Connect

DeviceFound==0

BT
Discovering

Services

DeviceFound > 0

BT
Connecting

ServiceFound ==True

ServiceFound ==False
BTCmd
Connect

BTError

BT
Waiting

 To Send

9 Project design
9.1 State Machine Model
In order to set up a collaborative Bluetooth network,
the first thing to consider is how to establish and
maintain a Bluetooth network. We then consider the
design of some functional classes as an access point
for the application. As previously discussed, there
are three stages involved Bluetooth communications
using a socket: device discovery, service discovery,
and the communication itself [6]. Based on these
stages a state machine model was developed as a
design for the set-up of the Bluetooth network. See
Figure 3. In our design, the application state starts
from BTDormant, which is waiting for a user or
client to request Bluetooth communications; when a
user requests a connection, the application then
searches for devices within range, the state is then
BTDiscoveringDevices. If the application has not
found any devices, the user can then restart the
device discovery process; otherwise, the master is
searching for the required service on each of the
discovered devices. If no required services are found,
the user can re-start the device discovery. After
initiating a connection with a slave, and the master
has established a connection with the server, the
state is then BTWaitingToSend. When the master
receives an enquiry message from the slave, the
state then changes to BTWaitingToReceive. The
Bluetooth network can then be set up following
these processes.

Fig.3: State machine model
According to requirement analysis, a set of

classes was designed for the application Engine.[3]
For details see Section 6.2 and 6.3

9.2OBEX Communications
Bluetooth OBEX protocol provides a method for
transferring objects or chunks of data from one
device to another. These chunks are typically files or
other blocks of binary data. In this project, OBEX
run on top of the Bluetooth RFCOMM protocol, but
OBEX can also be used with other transport media,
such as IrDA and USB.

The Send UI API is also included in the
application engine. Send UI is a convenient, high-
level messaging API that hides the bearer details
from the developer. It can be used for sending SMS,
MMS, and e-mail messages, and even for data
transfer over Bluetooth.

In order to implement the OBEX
communication, a few classes of Symbian OS S60
API are used for the application engine. The details
of important classes and files listed below:

TObexBluetoothProtocolInfo
This class provides a way for a client application

to specify the Bluetooth protocol used for OBEX.

TObexBaseObject

BTNo
Devices
Found

BTNo
Services
Found

Message
Recived

BT
WaitingTo
Receive

Connection
Error

BTCmd
Connect

BTCmd
Send

WSEAS TRANSACTIONS on COMMUNICATIONS Martin Hope and Feng Gao

ISSN: 1109-2742
305

Issue 4, Volume 7, April 2008

All data transmitted over OBEX is wrapped up
in a containing object before it is sent. There are
three main types of OBEX data wrapper classes.

CObexBaseObject provides the base class for all

of these data wrappers.

CObexBaseObject is a virtual class that cannot

be instantiated. The three concrete classes are the
following:

CObexFileObject is designed to be used when
sending files over OBEX.

CObexBufObject is designed to be used when
sending a chunk of memory over OBEX.

CObexNullObject provides a means for sending
a blank object.

MObexServerNotify is used by the operating

system to inform an OBEX server of OBEX
communication events.

CObexClient provides a client application with

the necessary functionality to request OBEX objects
from and send OBEX objects to the OBEX server.

CObexServer allows a client application to offer

OBEX services to other devices.
Constant KPowerModeSettingNotifierUid =
{0x100059E2} used for detecting whether
Bluetooth is on. If not, the user is asked to switch it
on.

The application engine can act as a server or
client for Bluetooth communication. Since
Bluetooth is used for data transmission, a Bluetooth
service is needed on the server side and Bluetooth
device discovery and service discovery is needed on
the client side.

The application server (CObjectExchangeServer)
advertises a Bluetooth service, which a client then
discovers and connects to. After connecting to the
service, the client can request OBEX objects from
the server and send OBEX objects to the server. In
this stage, only the sending part has been
implemented for the server.

On server side, three main classes are designed
for the application engine.

CObjectExchangeServer contains a

CObexServer object as a member that manages the
OBEX client connection. It creates the advertiser
object. After the client has connected to the service,
this class is also responsible for handling the
received data. Its PutCompleteIndication function
contains handle the received file

CBTServiceAdvertiser is a class for advertising
the service in the Service Discovery Protocol (SDP)
database for clients to connect to.

CObjectExchangeServiceAdvertiser inherits

CBTServiceAdvertiser and adds the creation of the
service description which is used in service
advertisement.

On client side, there are another three classes
designed.

CObjectExchangeClient is the main class for
client-side functionality. It uses
CObjectExchangeServiceSearcher to search for a
service. CObexClient is used in client-side OBEX
functionality.

CBTServiceSearcher is used by clients when

searching for a Bluetooth service.

CObjectExchangeServiceSearcher inherits

CBTServiceSearcher. The service class to search for
is set to: const TUint KServiceClass = 0x1105;
So only the services with this service class are found.
This is returned by the ServiceClass() function of
CObjectExchangeServiceAdvertiser.

In this stage, the OBEX communication can use
in two cases:

1) The OBEX is running on two S60 devices (in
client and server modes). The file is sent from the
OBEX Example and received directly in the OBEX
Example on a remote device.

2) The OBEX is running on a client device. The
file is sent from the OBEX Example and it can be
received by any other Bluetooth device supporting
Object Push Profile (in S60 devices the file is
received and saved by the Messaging application).

Known issues
Major:
1) There is a binary compatibility (BC) break in the
OBEX implementation in S60 3rd Edition, Feature
Pack 1. Thus the module compiled with S60 3rd
Edition SDK Supporting Feature Pack 1 will not
work with S60 3rd Edition devices. However, an
application compiled with S60 3rd Edition SDK or
S60 3rd Edition, Maintenance Release SDK can be
run on S60 3rd Edition, Feature Pack 1 devices.

Minor:
2) Transferring a file with the same name as the
temporary file does not work. It could easily be
fixed by working in a different directory than the
one where the files are transferred to.

WSEAS TRANSACTIONS on COMMUNICATIONS Martin Hope and Feng Gao

ISSN: 1109-2742
306

Issue 4, Volume 7, April 2008

3) Files cannot be received and saved by the module
if they are not sent from this nodule. Instead, the file
will be received by the Messaging application. This
functionality could be implemented by capturing the
message from the Message Type Module (MTM)
4) In the Send UI demonstration the text "Sent via
Send UI" is shown even if the user cancels sending
the file.

9.3 Text Chat
Text Chat is another basic function of the
collaborative middleware. Users can send text via
Bluetooth, which like a chatting room, Different
from OBEX communication, Bluetooth Serial Port
service is used in Bluetooth connection. The
implementation is socket-based.

All commands are handled in
CChatAppUi::HandleCommandL() function. The
Bluetooth Chat server is starts by calling Chat's
StartL() function. Server will advertise to other
Bluetooth devices that it has Serial Port service and
it is able to receive and send messages. On the
screen, it will appear a series of log reports to show
this starting succeeded and the device is listening for
the incoming connection. Client device can connect
to server by Chat's ConnectL() function. As connect
is selected, a list of recently discovered Bluetooth
devices will appear on the screen. As connection has
been made, server device and client device will
indicate that they are now connected.

As connection has been made successfully via
Bluetooth, there are few optional commands for
client device’s. They are Disconnect, Send Message,
Clear List and Exit. On Server side, they are Stop
Chat, Send Message, Clear List and Exit.

Disconnect disconnects the connection and Stop
Chat stops server and disconnects the connection.
Disconnect calls DisconnectL() function and Stop
Chat calls StopL() function. With Send Message
command, client device can send messages to server
device and vice versa.

Send Message calls first Container's
ShowDataQueryL function. This function draws
"Write Message" query. After that send message
calls SendMessageL(text) function to deliver
message from client to server or vice versa. Clear
list clears the view by empting the listbox. Exit
closes the application.

The Options menu commands are handled in
CChatAppUi::HandleCommandL() fuction. Use
Bluetooth -> Start Chat Option starts the Bluetooth
Chat server by calling ChatBt's StartL() function.
Server will then advertise to other Bluetooth devices
that it has Serial Port service and it is able to receive
and send messages. On the screen will appear a

series of log reports to show this starting has
succeeded and that the device is listening for the
incoming connection. Client device can connect to
server by selecting Use Bluetooth -> Connect from
Options menu. Connect calls ChatBt's ConnectL()
function. As connect is selected, a list of recently
discovered Bluetooth devices will appear on the
screen. Screen is implemented by listbox element.
As connection has been made, server device and
client device will indicate that they are now
connected
As connection has been made successfully via
Bluetooth, there are Disconnect, Send Message,
Clear List and Exit in Options in client device's
Options menu and Stop Chat, Send Message, Clear
List and Exit in Server device's Options menu.
Disconnect disconnects the connection and Stop
Chat stops server and disconnects the connection.
Disconnect calls DisconnectL() function and Stop
Chat calls StopL() function. With Send Message
option, client device can send messages to server
device and vice versa. Send Message calls first
Container's ShowDataQueryL function. This
function draws "Write Message" query. After that
send message calls SendMessageL(text) function to
deliver message from client to server or vice versa.
Clear list clears the view by empting the listbox.
Exit closes the application.

9.4 PMP
A number of Bluetooth APIs provide the following
capabilities that are demonstrated in this module.
Device discovery inquires for Bluetooth devices
within range. Service discovery inquires the
discovered Bluetooth devices for the services they
offer, filtering the service discovery query to return
only the service class required; in this way, the
service discovery query will only return the service
entries that match the service class of our service.
Connection will then be established to all the remote
Bluetooth devices found to be offering the service
we require. Once the connections are established,
messages can be sent from the master device to the
connected slaves, and vice versa, from a slave to its
master device.
 The slave mode initiates the application to act as
a slave. In the slave mode, the application listens to
incoming connections and advertises its available
service. The master device will then be able to find
the service offered by the slave by performing
device/service discovery and connection
establishment to the slave’s listening channel/port.

There are many Bluetooth protocols over which
the connection can be accomplished. RFCOMM is
used in this module but also OBEX and L2CAP,

WSEAS TRANSACTIONS on COMMUNICATIONS Martin Hope and Feng Gao

ISSN: 1109-2742
307

Issue 4, Volume 7, April 2008

among others, are suitable for third-party
applications.
Important files and classes :
CBluetoothPMPEngine:
Acts as an engine and handles the connections.
CDeviceDiscoverer:
Is used in device discovery.
CServiceDiscoverer:
Is used in service discovery.
CConnector:
Wraps a socket connection. CListener sets up a
listening channel (notice the different versions
listener.cpp and listener_26.cpp).
Main Symbian classes used:
RSocketServ:
 Socket Server
RHostResolver:
 Provides an interface to host name resolution
services, such as DNS, that may be provided by
particular protocol modules.
CSdpAgent:
 Service discovery agent.
SdpSearchPattern:
 Service discovery search pattern.
RSdp iSdp:
 Service discovery protocol session.
Known issues
 The application is intended to be used on real
devices, not on the emulator.
Problems may occur if many Bluetooth devices are
in range. It will at least take a lot longer for device
and service discovery to complete.
Carbide causes a build warning
NewApplication__Fv @1[BtPmpEx.def], which can
be ignored.

10 Current progress
The research presented in this paper has been on-
going for the last year. We have completed an
extensive literature survey in this field. Related
work such as XMiddle and Syn have been discussed
and listed by advantage and disadvantage. Learning
to program the Symbian OS has taken slightly
longer than anticipated and the application structure
and naming conventions is quite different from
traditional programming. Unfortunately, we do not
have the facilities to debug code on a target device,
only on the emulator, which does not support
Bluetooth. Bluetooth programming in Symbian OS
is far from simple, so we have found that the key is
to develop the application slowly and testing as
often as possible. However, the initial design work
has been completed, and we are able to program two
Bluetooth devices which can communicate with

each other via a Bluetooth socket and OBEX. This
means files and messages can be sent between two
Bluetooth devices using our application Engine. A
shared file list, like a shared folder in the Microsoft
Windows OS, is currently under test. Users will
soon know what files are shared by others from this
list, and when the device gets authorisation from the
files owner, the downloading can begin.

11 Future work
In our on-going work we will try to optimise our
design as well as build a real-world prototype in
order to fully test our application engine as soon as
possible. For a more efficient application of our
research there needs to be a number of changes.
First of all, the connection setup times need to be
reduced drastically. Secondly, a routing protocol for
enhancing collaborative communication between
Bluetooth nodes need to be designed based on the
transmitting protocols within Bluetooth. Finally,
how to design and develop a test bed to fully test the
application engine needs to be considered.

12 Conclusions
With the design presented in this paper we have
tried to address the question whether it is reasonable
to build a Bluetooth based MANETs on Smartphone
technology and thus to use it to share data. This
might depend largely on the intended use and
environment, however; this has yet to be addressed.
A number of real-world applications for this type of
system was outlined including the potential benefits
possible. In addition, the implications of using
Bluetooth in this way has been discussed, and a state
machine model that enables the establishment and
maintenance of a Bluetooth network with a view to
collaborating with other users has been presented.

References
[1] Core Specification v2.0 + EDR,

http://bluetooth.com/Bluetooth/Learn/Technolo
gy/Specifications/ Specifications, 2004,
20/09/07.

[2] E.M. Royer, C.-K. Toh: A Review of Current
Routing Protocols for Ad-Hoc Mobile Networks.
IEEE Personal Communications 6(2), April
1999; p. 46-55.

[3] F.Gao, The Collabrative Engine design
http://www.freewebs.com/gaofeng/. 2007,
20/09/07

[4] J. Bray, C.F. Sturman: Bluetooth - Connect
without Cables. Prentice Hall, New York,

WSEAS TRANSACTIONS on COMMUNICATIONS Martin Hope and Feng Gao

ISSN: 1109-2742
308

Issue 4, Volume 7, April 2008

http://bluetooth.com/NR/rdonlyres/1F6469BA-6AE7-42B6-B5A1-65148B9DB238/840/Core_v210_EDR.zip

2001,p63-66
[5] Nokia, S60 Platform Bluetooth API Developers

Guide v2.0 en.pdf 2006,p18-23
[6] P.Coulton, R.Edwards S60 Programming: A

Tutorial Guide, Symbian, 2007, p242-244
[7] Nokia, S60 3rd Edition SDK for Symbian OS,

2006
[8] S.Babin, Developing Software for Symbian OS,

Symbian,John Wiley and Sons, 2006, p57-59
[9] S. Corson, J. Macker: Mobile ad hoc networking

(MANET): Routing protocol performance issues
and evaluation considerations. IETF 1999, RFC
2501.

WSEAS TRANSACTIONS on COMMUNICATIONS Martin Hope and Feng Gao

ISSN: 1109-2742
309

Issue 4, Volume 7, April 2008

WSEAS TRANSACTIONS on COMMUNICATIONS Martin Hope and Feng Gao

ISSN: 1109-2742
310

Issue 4, Volume 7, April 2008

