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Abstract - The physical activities of a real wireless network are represented by events which are the main 
components of a discrete event simulation (DES) system and are produced by its event generator during 
simulation time.  Each network service (e.g. voice, data and video) constitutes an event for a particular mobile 
user. A critical component within the simulation system, called scheduler, runs by selecting the next earliest 
event, executing it till completion, and returning to execute the next event. Calendar queue is the state of the art 
implementation of the scheduler among the most popular networking simulation tools such as ns-2. However, 
Calendar queue time-stamping mechanism presents drawbacks in the case of complex dynamical systems, like 
wireless networks, where probability of events concurrency is large. In such a case sequential time-stamping of 
calendar queue scheduling does not reflect real network events occurrence and generation. It should be 
remarked that there are very few reports if any in the literature concerning research on events scheduling 
mechanisms in such real time systems. On the other hand, multi-threading technology offers advanced 
capabilities for modelling concurrent events. The main goal of this paper is to illustrate that multithreading 
architectures provide the means for designing efficient schedulers in the simulation of wireless networks 
resource allocation but, also, several critical issues such as deadlocks, synchronization and scheduling must be 
effectively faced. In this paper, a stable simulation model is presented based on a novel layered thread 
architecture and on an alternative network event scheduling mechanism, called the Priority Queue (PQ) – Time 
Division Multiplexing (TDM) Layered Multithreading mechanism, which supports concurrent events as 
compared to the state of the art approach which supports only sequential events. Moreover, specific drawbacks 
of the JVM multi-threading platform such as thread execution unpredictability are also faced and presented.  
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1 Introduction 
 
1.1 Discrete Event Simulation (DES) in 
Wireless Communication Systems (WCS) 
Discrete Event Simulation [1-10] represents the most 
known simulation methodology, especially for 
communication systems. According to the DES 
concept, events are happening at discrete points in 
time within the simulation time. Simulation time is 
moving forward based on the event sequence. These 
events represent the basic physical network activities 
such as new call admission, etc. Each event is 
generated with a unique time stamp that is used for 
the event execution at a later time. The event 
processing over simulation time is defined by a 

scheduler that selects events with the minimum time 
stamp (maximum priority) [11-15]. Thus, the whole 
scheduling procedure is based on a priority queue. 
DES systems can be categorized as sequential or 
parallel. Sequential DES systems are the most 
popular among the scientific community. In such 
systems, the scheduling mechanism can be analyzed 
in a three step cycle: 

• Dequeue: Removal of an event with the 
minimum time stamp from the queue 

• Execute: processing of the dequeued event 
• Enqueue: Insertion of a new generated event 

in the queue 
NS-2 [16], which is adopted by the 44.4% of the 
scientific community [17], uses this scheduling 
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mechanism for event execution. In ns-2 [16], the 
next earliest event is selected by the scheduler, 
executing it till completion, and returning to execute 
the next event (highest priority or lower time stamp 
among the remaining events). Only one event can be 
executed at any given time in ns-2 [16], and so it is a 
single-threaded simulator. If two or more events are 
scheduled to take place (to be executed) at the "same 
time", their execution is performed on a first 
scheduled – first dispatched manner (based on the 
time stamp of each event) and so the adaptability of 
the simulation model to the real network behaviour 
(physical activities-events) is strongly based on the 
type of the scheduler. 
 
1.2 Event Scheduling 
1.2.1 Why Event Scheduling 
The physical activities of a real wireless network are 
represented by events which are the main 
components of a DES system. Regarding the above 
mentioned network services, each service constitutes 
an event for a particular Mobile User (MU). An 
event generator produces events (e.g. new voice 
calls) during simulation time. The scheduling 
mechanism constitutes a model for the event service 
occurrence sequence within the real wireless 
network. If an event is not executed, it remains in the 
pending event set (PES). PES, is the set of all events 
generated during simulation time that have not been 
simulated (processed) yet [4,18,19]. Thus, PES 
corresponds to a priority queue which controls the 
flow of event simulation based on current minimum 
time stamp (highest priority) [4]. The selected 
scheduling method determines how realistically the 
occurred real network activities will be reflected in 
the simulation model. In other words, scheduling is a 
mapping method of the real network events 
(activities) within the simulation time of the DES 
system.  
 
1.2.2 The State of the Art Event Scheduling 
Mechanism 
The major application of priority queues is the 
implementation of PES inside DES systems [20-23]. 
The CQ concept was first introduced by [24], was 
analysed by [19] and until today constitutes the most 
popular scheduling mechanism among DES systems 
such as ns-2 (Berkeley, USA )[16], Ptolemy II 
(Berkeley, USA) [14], Jist (Cornel University, USA) 
[25]. Several other variations of the CQ for 
improving performance of the queue itself (e.g. by 
optimal resizing of the queue) have been proposed in 
the literature such as DSplay [12], MList [4], 
Markov hold model [13], and SNOOPY CQ [18]. 

The idea of the CQ is derived from the ordinary desk 
calendar with one page for each day. Every event is 
scheduled on the appropriate page. The scheduled 
time of each event defines its priority. When an 
event is enqueued on the calendar, then this event is 
scheduled for future execution. The earliest event on 
the calendar is dequeued by searching the page for 
today’s date and removing the earliest event written 
on that page [24]. 
Inside the computer, a CQ consists of an array of 
lists. Each list contains future events. According to 
CQ principle, the large list of N events is partitioned 
to M shorter lists called Buckets. Each bucket is 
associated with a specific range of time 
corresponding to future events. Any event with the 
occurrence time t(e) is associated with the m-th 
bucket in year y (y =0, 1, 2, . . .) if and only if  

( )( ) ( )( ) , 1t e yM m yM mδ δ⎡ ⎤∈ + + +⎣ ⎦  (a) 

In order to find the bucket number m(e) where an 
event e will occur at time t(e) the following type is 
used : 

( )( ) modt em e M
δ

⎢ ⎥= ⎢ ⎥⎣ ⎦
 

 
(b) 

Assume that M=8, N=10, δ=1 and t(e)=3.52 (fig. 1) 
for a new event e. 
 Using the equation (b), the bucket number for event 
e is m(e)=3. 

 
 

Fig. 1 Instance of a CQ with 8 buckets 
 
The existing state of the art event scheduling 
strategy (CQ) suffers in supporting concurrent 
network events as they happen in a real 
wireless network and thus an improved event 
scheduling mechanism implemented through 
multi-threading technology is proposed.  
 
An analytical study of the CQ can be found in [26]. 
 
1.3 Multi-Threading Technology 
1.3.1 Multi-Threading as a Necessity 
Multi Tasking is a prerequisite for today's software 
development. All modern operating systems (OSs) 
support this feature which enables different programs 
to run at the "same time". In an ideal environment, 
the best performance can be achieved by using one 
processor for each running program, but in real 
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computers there is usually only one processor 
available. Due to that fact, the processor is shared 
between the applications. Even if there are two or 
three processors available, the processes outnumber 
the processors. Pieces of the same program can run 
concurrently as two or more different programs do. 
This capability is called threading. Most of the 
languages that support multi-threading (MT), are 
OS-specific. Thus, no portability to different OS 
platforms is achieved.  
MT technology is a well known general development 
technology. This technology can be applied in areas 
where concurrent events (tasks) exist. Existing 
programming languages support MT but on the other 
hand, significant drawbacks such as deadlocks and 
synchronization must be faced effectively. Java 
supports native MT and constitutes the most known 
development tool among the scientific community. 
 
1.3.2 The JVM Platform 
The Java implementation can be viewed as an 
example; the developer may use another technology 
for the implementation of the MT concept.  
The MT operation in the case of Java is exclusive 
responsibility of the Java Virtual Machine (JVM). 
Thus, any Java code can be executed directly in any 
platform. Threading methodology can be applied 
when concurrency is needed. MT is a very efficient 
methodology for a number of scientific tasks such as 
simulations of real phenomena where many 
processes occur at the same time (simultaneously). In 
the context of the conceptual design of a program, 
this approach can be quite useful even if it runs on a 
single-processor machine. Thus, more reliable 
modelling and simulation of a real system can be 
achieved. When the code interleaving and the 
execution sequence of the active threads inside the 
processor affects the system behaviour and results, 
only controlled scheduling by the designer must be 
used. More information about the threading 
capabilities of Java can be found in [27-30]. 
A variety of methods are available for changing the 
thread status within an application. Using these 
methods, efficient synchronization control between 
threads can be achieved. The start() method activates 
the selected thread that is running concurrently with 
other threads.  
A thread is terminated when the run() method returns 
or when the stop() method is activated. Figure 2 
shows all the possible thread status and the 
corresponding status transitions.  
 

 
Fig. 2 Thread status transitions 

 
An internal mechanism of JVM, called scheduler, 
defines the real-time order of thread execution. 
Scheduling can be controlled by the programmer and 
is categorized as follows: 

• Non pre-emptive 
• Pre-emptive 

In non pre-emptive scheduling, the scheduler runs the 
current thread forever and requires from this thread to 
tell explicitly if it is safe to start another thread. In 
pre-emptive scheduling, the scheduler runs a thread 
for a specific time-slice (usually a tiny period within 
a second) and then “pre-empts” it, (calling 
suspend()), and resumes another thread for the next 
time-slice. The non-pre-emptive scheduling can be 
very useful especially in time critical (e.g. real time) 
applications when the interruption of thread 
execution can happen in the wrong moment. Modern 
schedulers are usually pre-emptive, therefore, the 
development of MT applications is easier. JVM uses 
priorities for scheduling threads. Initially, it gives 
equal priorities to all threads.  

 
Fig. 3 Three threads share the same processor (sample 

scenario) 
 
A major drawback of JVM is that the 
behaviour of its scheduler can not be predicted 
[31]. Actually, JVM specifications have not 
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been designed by taking into account event 
scheduling constraints.  
Figure 3 illustrates three threads sharing the same 
processor. Note that there is no real parallel execution 
between threads but only high speed switching 
between them. The sleep() method deactivates 
temporarily the current thread in order to give time 
for the next thread execution. If the OS uses pre-
emptive multi tasking, the sleep() method is not 
needed for switching between threads. 
 
2 Proposed WCS Simulation model 
 
2.1 Services Oriented Modelling 
The effectiveness and functionality of a wireless 
network are based on the offered services. The 
services type combined with the offered 
communication quality constitute the most critical 
issues. For the above reasons, the evaluation of a 
wireless network is performed through the 
performance evaluation of the offered services using 
specific statistical metrics. 
 
2.1.1 New Call Arrival (NC) 
The number or MUs is large, the calls by each MU 
are limited and so the call arrivals can be assumed as 
random and independent. In the simulation program, 
the new calls result from a random or a Poisson 
distribution according to a predefined daily model. In 
the case of multimedia services, multiple channels 
are allocated. 
 
2.1.2 Call Termination (FC) 
The program uses an exponential function that 
generates the call duration for each new MU. The 
call holding time is added to current simulation time 
for later examination. The associated procedure 
examines the progressive call time for connected 
MUs.  If this time has expired the User Registry 
(UR) is updated with the new connection status of 
the particular MU. In the case of data transfer, a call 
is terminated only when the transfer is completed. 

 
2.1.3 Reallocation Check (RC) 
The computations are based on the signal strength 
and the way it is affected by other connected MUs in 
neighbour cells. If a MU signal does not fulfil the 
Carrier to Noise plus Interference ratio (CNIR) 
threshold the procedure tries to find another 
appropriate channel. At first, the algorithm calculates 
the signal strength between MU and base station and 
later on it calculates any interference coming from 
other connected MUs. If an accepted channel is 
found, it is allocated to the new MU, otherwise the 

call is dropped. In the case of multimedia services, 
partial channel reallocation is also supported. 
 
2.1.4 Mobile User Movement (MC) 
The algorithm locates the connected MUs and 
changes their current positions. A MU movement is 
generated based on Gaussian distribution. This 
distribution is also used in similar simulation models 
found in the literature [32]. 
 
2.2 The Proposed Priority Queue (PQ) –TDM 
Layered Multithreading Event Scheduling 
Algorithm for Complex Real Time 
Simulation Models  
The proposed PQ-TDM Layered Multithreading 
algorithm extends the CQ paradigm to handle 
concurrent events in simulation models of complex 
systems, where event occurrence time cannot be 
specified as easily as in the CQ described simulation 
systems. The basic entity of the algorithm, the event, 
is specified as a thread. Besides, the basic new event 
entity, instead of occurrence time t(e), is its priority 
p(e). The basic architecture of the algorithm consists, 
like CQ, of an array of lists. Each list contains future 
events with their own priorities. According to the 
PQ-TDM principle, the list of N concurrent/non-
concurrent events taking place within the system is 
partitioned to shorter lists called Priority Buckets. 
Moreover, there exists a basic periodic event-thread, 
the Time Clock, which synchronizes all other events-
threads. This event-thread is associated with the 
largest Priority PMAX. Provided that the 
Multithreading Simulation Platform supports P 
priorities, let’s DP be the priority distance between 
PMAX priority of the Time Clock event-thread and the 
priority associated with the priority bucket having 
the largest priority. If we assume that the priorities 
supported are 1,2,…P, then PMAX= P, and PMAX - DP 
are the supported buckets in which the event list is 
partitioned. Each such bucket, on the other hand, is 
associated with a specific range of priorities 
corresponding to future events. Any event with the 
occurrence priority p(e) is associated with the m-th 
bucket in Basic Priority p (p =0,1,2, ..) if and only if  

])1)((,))([()( δδ ++−+−∈ mDPpmDPpep PMAXPMAX  (1) 

In order to find the bucket number m(e) where an 
event e belongs with priority p(e) the following 
formula is introduced: 

)mod()()( PMAX DPepem −=
δ

 
 

(2)

Regarding time t(e) of the event-thread e, it should 
be remarked that now it is determined by the 
Multithreading Simulation Platform by a Time 
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Division Multiplexing (TDM) procedure. Time slice 
ΔΤ is the basic entity in this TDM procedure. That 
is, ΔΤ computational time is given to each event out 
of the events list to proceed its computations, within 
which it might finish or not. If it doesn’t finish then, 
it waits for a future assignment of a ΔΤ 
computational time again. Events with higher 
priority are assigned with more such ΔΤ time slices. 
An important aspect in the proposed scheduling 
algorithm is that DP should be as maximum as 
possible in order for the Time-Clock Thread to be a 
reliable controller of the multithreading architecture 
of events-threads and face the known difficulties of 
multithreading technology to reliably schedule 
threads, due to absence of such specifications and 
definitions in Multithreading Simulation Platforms 
like JVM etc. Therefore, the proposed PQ-TDM 
Layered Multithreading algorithm reliably extends 
CQ capabilities in order to handle events 
concurrency in complex simulation systems like 
WCS, at least theoretically. It is the purpose of this 
paper to show that such a proposed algorithm leads 
to efficient scheduling of events and thus, to efficient 
simulation modelling of WCS. 
 
2.3 Implementation Issues Based on the JVM 
Specification 
2.3.1 Synchronization and Deadlocks 
The proposed simulation system uses a User 
Registry (UR) for keeping a detailed record of each 
connected MU. Due to that fact, the UR constitutes a 
shared resource area. When concurrent events take 
place, two or more threads try to access the UR at the 
"same time". An active thread can be pre-empted by 
the scheduler, when an access activity in a shared 
resource is not completed. While this thread is now 
pre-empted, another thread tries also to access the 
shared resource. Due to the given time slice to that 
thread by the scheduler, the access activity is 
completed. After the re-activation of the first thread, 
the semi-completed access activity of the first phase 
is now complete. If the above two threads try to 
access the same record in the UR, then, the resulting 
data are incorrect depending on the thread switching. 
For the above reasons, the UR of the simulation 
system must be accessed through the synchronized 
method. This synchronization will prevent the shared 
resource area from simultaneous access by two or 
more threads. When a thread has locked an object 
(e.g. access method for UR), and is waiting for 
another thread to finish, while that other thread is 
waiting for the first thread to release that same object 
before it can finish then a deadlock occurs. 

In most cases, when two or more threads try to 
access the shared resource area, this is not for the 
same MU. Thus, the synchronization mechanism is 
necessary only in some cases.  In order to remove 
any deadlock possibility, the following features must 
be designed and developed: 

• Controlled thread switching (execution) 
• Control points where the UR will be 

accessed 
• Conditional synchronization (synchro-

nization only if needed) 
Every time a thread tries to access UR for a specific 
MU, flag values are written in a local table that 
belongs to that thread. After the update of the local 
table, the thread scans all the local tables and decides 
to access the main UR through non-synchronized 
methods; otherwise, the access is completed through 
synchronized methods. Using this mechanism, high 
speed and data manipulation is achieved with no 
deadlocks.  
 
2.3.2 JVM Scheduler Unpredictability 
As mentioned previously, the JVM scheduler 
behaviour can not be predicted [31] and so a more 
controlled scheduling mechanism must be applied. In 
other words, the execution sequence of the threads 
can not be guaranteed across all Java virtual 
machines [27]. The event execution sequence plays a 
major role for the network performance due to the 
fact that the events represent the modelled network 
services.  
 
2.4 Proposed Event Scheduling Mechanism 
The proposed scheduling mechanism supports 
concurrent network events instead of the state of the 
art approach (CQ) where only sequential events are 
supported based on the above defined PQ-TDM 
Layered Multithreading algorithm. Moreover, the 
proposed mechanism has been implemented through 
a multi-threading platform where improvements took 
place in order to face the default JVM 
unpredictability in thread execution sequence.  
The basic goals of the proposed event scheduling 
mechanism are: 

• The control of thread execution sequence. 
• The control of thread core code execution 

time. 
The thread execution sequence and activation is 
controlled by a clock inside a thread (super thread, 
the Time Clock thread of the PQ-TDM Layered 
Multithreading algorithm) with maximum priority 
instead of minimum priorities which are applied in 
the rest of the threads, as discussed in the PQ-TDM 
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Layered Multithreading algorithm. Figure 4 shows 
the pseudo code of clock implementation. 
 

Thread CLOCK 
{ 
   Main action 
    { 
       While (simulation time step) 
 { 
   Thread#1_active=1; 
   Sleep(Thread#1_limit); 
   Thread#2_active=0; 
   … 
   … 
   Thread#n_active=1; 
   Sleep(Thread#2_limit); 
   Thread#n_active=0; 
 } 
    } 
} 

Fig. 4 Super Thread (Clock) implementation 
 
Figure 5 shows the thread implementation. 
 

Thread #1 
{ 
   Main action 
     { 
        While (simulation time step) 
 { 
    If (Thread#1_active==1) 
  { 
     //core code 
  } 
 } 
     } 
} 

Fig. 5 Thread implementation 
 
Using the Thread.start() method, all the threads 
become active but the core code of the threads 
(except clock) is disabled while Thread#n_active=0. 
The thread CLOCK is under execution in most of the 
times because its priority has the maximum value as 
compared to the rest of the threads. Thus, the clock 
(super thread) synchronizes the thread core code 
activation and execution. Initially, the core code of 
thread#1 is activated. After Thread#1_limit time the 
core code is deactivated. Thus, the rest of the threads 
(core codes) are executed in a controlled order and 
for a specific time period. 
 

2.5 Experimental Models 
A set of multi-threaded model variations has been 
implemented in order to show:  

• The model instability based on default JVM 
when different numbers of computational 
threads are used. 

• How thread execution sequence and core 
code activation time can be controlled based 
on a complementary to JVM scheduler, the 
PQ-TDM Layered Multithreading proposed 
above. 

For achieving the above goals, two sets of 
implementation model variations have been tested. 
Tables 1 and 2 show the corresponding 
implementation parameters. 

 
Model 

 
No of 

threads 

 
Thread 

type 

Additional 
computational 

time 
A1 4 basic - 
A2 8 4 basic 

4 
dummy 

 
- 

A3 16 4 basic 
12 

dummy 

 
- 

A4 4 basic Loop in RC 
A5 4 basic Conditional 

loop  
in RC 

A6 8 4 basic 
4 extra 

 
Loop in 4 extra 

A7 8 4 basic 
2 

dummy 
2 extra 

 
Loop in 2 extra 

A8 6 4 basic 
2 extra 

Loop in 2 extra 

Table 1. Computational thread variations 
 
Model Thread Pri Sleep core 

code 
exec 

core 
code 
active 
time 

exec 
seq 

B1 Net 5 - Def 
JVM 

Sym Unpr 

B2 Net 10 Sym Clk Sym Pred 
 Clk 1 Sym Clk Sym Pred 
B3 Net 1 Sym Clk Sym Pred 
 Clk 10 Sym Clk Sym Pred 
B4 Net 1 Asym Clk Asym Pred 
 Clk 10 Asym Clk Asym Pred 

Table 2. Thread scheduling variations 
(Pri=Priority, Net=Network threads, Clk=Clock thread, 
Sym=Symmetrical, Asym=Asymmetric, Unpr= 
Unpredictable, Pred=Predictable) 
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3 Network Model Validation 
 
The implemented algorithms and models in this 
paper have been tested in a simulation environment 
that integrates the basic simulation and network 
components. The necessary validation of the 
simulation environment consists of three different 
validation levels which are: 

• Calendar Queue (State of the art) scheduling 
mechanism implementation algorithm 

• Network environment which includes signal 
propagation, interference and signal 
measurements 

• Network performance compared to 
theoretical computations 

The most known statistical metrics for the wireless 
network performance evaluation are blocking and 
dropping probabilities [33-41]. Blocking probability 
represents the blocked calls, while dropping 
represents the unsuccessful channel reallocation for 
an ongoing call. The dropping probability is strongly 
connected to Rcni (eq. 3), because when this ratio is 
not above the accepted threshold and the network 
can not allocate an appropriate channel, the call is 
dropped. On the other hand, blocking probability can 
be theoretically calculated. If the received power of 
each MU is high enough, it is assumed that the 
interference from other MUs can be ignored. The 
theoretical formula known as Engset's formula [42] 
is as follows:  

( )

( )
_

0

1

1

s

blocking theoretical s
i

i

n
vh

s
P

n
vh

i=

−⎛ ⎞
⎜ ⎟
⎝ ⎠=

−⎛ ⎞
⎜ ⎟
⎝ ⎠

∑

 
 
 
(3)

 
where n is the number of users, s is the number of 
channels, v is the average call arrival rate (for no 
connected MU) and h is the average call holding 
time. 
Equation 3 shows only the basic relation between 
channels and users, and does not take into 
consideration critical factors that affect the blocking 
probability such as traffic conditions, service type, 
channel allocation strategy, etc. 
Figure 6 shows the theoretical blocking probability 
that is derived from eq. (3) as compared to the 
simulated blocking probability, derived in the 
proposed WCS simulation system. The simulated 
probability has been generated from the large scale 
network based on the classical DCA algorithm [41] 
and the above reported network services. 
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Fig. 6 Theoretical blocking probability versus simulated. 

 
4 Experimental Results 
 
Figures 7 through 11 contain sample executions that 
show the thread execution sequence and core code 
activation based on the tested models. The numbers 
1 through 4 inside figures 7 to 11 represent the 
network services NC, RC, MC and FC respectively. 
Figures 7 and 8, show that the thread execution 
sequence is different in every simulation execution 
and also, that threads do not have constant execution 
periodicity. 
33333333333333333333333333142142314231423142314
23142314231423142314231423142314231431431231243
24324324324324324324324324324324324324324324324
31431241241241241241241241241241241241241241241
24124124324312312312312312312312312312312312312
31231231231231241243143143143143143143143143143
143143143143143143143123124324 

Fig. 7 Thread execution #1,  
Default JVM, equal priorities 

 
32323232323232323232323412121212121212121212121
21212121243232341313131313131313131313131421212
12121243232323232323232323232323413131313131421
21212121212121212121212432323232323413131313131
31313131313131421212121212432323232323232323232
32323413131313131421212121212121212121212124323
232323234132132132132132132132 

Fig. 8 Thread execution #2,  
Default JVM, equal priorities 

 
111111……111111{NC:1031,332} 
{RC:1031,0} 
{MC:1031,0} 
{FC:1031,0} 
--------------------------------- 
111111……111111{NC:1235,14575} 
{RC:1031,0} 
{MC:1031,0} 
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{FC:1031,0} 
--------------------------------- 
111111……111111{NC:1219,21591} 
222222……222222{RC:1093,17704} 
333333……333333{MC:1000,21929} 
444444……444444{FC:1188,15734} 
Fig. 9 Thread execution, Symmetrical Sleep, Clock 
priority=1, Network thread priorities=10 
 
Figure 9 shows that some threads are not executed 
due to the fact that the clock is rarely activated by 
the default scheduler when minimum priority is 
applied and therefore, the required thread control is 
not possible. Moreover, the thread activation time 
leads to different number of core code execution 
times for each thread (e.g. NC:1219=real thread core 
code active time in ms, 21591 executions, 
RC:1093=real thread core code active time in ms and 
17704 executions) 
111111……111111{NC:1000,70} 
222222……222222{RC:1000,72} 
333333……333333{MC:1000,72} 
444444……444444{FC:1000,72} 
--------------------------------- 
111111……111111{NC:1000,72} 
222222……222222{RC:1000,72} 
333333……333333{MC:1000,72} 
444444……444444{FC:1000,72} 
--------------------------------- 
111111……111111{NC:1000,72} 
222222……222222{RC:1000,72} 
333333……333333{MC:1000,72} 
444444……444444{FC:1000,72} 
Fig. 10 Thread execution, Symmetrical Sleep, Clock 
priority=10 (super thread), Network thread priorities=1, 
Dp =9 
 
Figure 10 shows that the thread core code active time 
and also, the number and sequence of executions can 
be controlled based on the proposed PQ-TDM 
layered multithreading approach. 
111111……111111{NC:500,34} 
222222……22222222222{RC:1000,72} 
333333……3333333{MC:500,36} 
444444……44444444444{FC:1000,72} 
--------------------------------- 
111111……11111111{NC:500,36} 
222222……22222222222{RC:1000,72} 
333333……33333333{MC:500,36} 
444444……44444444444{FC:1000,72} 
--------------------------------- 
111111……11111111{NC:500,36} 
222222……22222222222{RC:1000,72} 
333333……33333333{MC:500,36} 
444444……44444444444{FC:1000,72} 
Fig. 11 Thread execution, Asymmetric Sleep, Clock 
priority=10 (super thread), Network thread priorities=1, 
Dp =9 
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Fig. 12 Standard deviation of blocking probability for 
different multi-threaded implementation models 
 
Figure 12 illustrates that the proposed PQ-TDM 
Layered Multithreading scheduling mechanism 
improves simulation model stability in the resource 
allocation (channel assignment) problem for voice 
services in a cellular network with 100 cells, 50 users 
maximum per cell and 32 available channels per cell. 
This is shown by examining standard deviation of 
blocking probabilities (above discussed) over 
simulation time in 30 Monte Carlo executions of the 
wireless network simulation model. The channel 
assignment algorithm used in these experiments is 
the classical DCA one [41, 42] 
 
5 Conclusions and Future Trends 
 
In this paper, an efficient event scheduling 
mechanism, which supports wireless network 
concurrent events occurrence is presented, based on 
a novel extension of the classical CQ algorithm to 
handle concurrent events. The proposed PQ-TDM 
layered multithreading scheduling algorithm based 
on TDM principles is suitable for Multithreading 
Architectures, exploiting concurrent execution 
capabilities of threads. Moreover, the 
implementation issues concerning the default 
features of the JVM multi-threading platform are 
also presented. The service sequence and interleaved 
execution of the network events are the most critical 
modelling issues that affect the network performance 
in a dynamically changing wireless environment. 
The scheduling mechanism must guarantee the 
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efficient processing of user requests according to 
current user needs and network performance. Our 
PQ-TDM layered multithreading proposed algorithm 
controls the thread execution sequence and also, the 
core code active time. It is shown that the proposed 
simulation model, by taking into account the above 
scheduling principles in its design, outperforms all 
conventional simulation models concerning its 
stability validated through specific statistical metrics. 
Such a research opens a new field in wireless 
networks simulation modelling since scheduling 
mechanisms and specifically, how they affect 
designed network performance evaluation, have been 
so far ignored by the scientific community. 
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