
An Efficient Scheduling Mechanism for Simulating
Concurrent Events in Wireless Communications Based on an Improved

Priority Queue (PQ) TDM Layered Multi-Threading Approach

P.M.PAPAZOGLOU1,3, D.A.KARRAS2, R.C.PAPADEMETRIOU3
1 Department of Informatics & Computer Technology

Lamia Institute of Technology, Greece
papaz@teilam.gr

2 Department of Automation Engineering
Chalkis Institute of Technology, Greece

dakarras@teihal.gr, dakarras@ieee.org, dakarras@usa.net
3 Department of Electronic & Computer Engineering

University of Portsmouth, United Kingdom

Abstract - The physical activities of a real wireless network are represented by events which are the main
components of a discrete event simulation (DES) system and are produced by its event generator during
simulation time. Each network service (e.g. voice, data and video) constitutes an event for a particular mobile
user. A critical component within the simulation system, called scheduler, runs by selecting the next earliest
event, executing it till completion, and returning to execute the next event. Calendar queue is the state of the art
implementation of the scheduler among the most popular networking simulation tools such as ns-2. However,
Calendar queue time-stamping mechanism presents drawbacks in the case of complex dynamical systems, like
wireless networks, where probability of events concurrency is large. In such a case sequential time-stamping of
calendar queue scheduling does not reflect real network events occurrence and generation. It should be
remarked that there are very few reports if any in the literature concerning research on events scheduling
mechanisms in such real time systems. On the other hand, multi-threading technology offers advanced
capabilities for modelling concurrent events. The main goal of this paper is to illustrate that multithreading
architectures provide the means for designing efficient schedulers in the simulation of wireless networks
resource allocation but, also, several critical issues such as deadlocks, synchronization and scheduling must be
effectively faced. In this paper, a stable simulation model is presented based on a novel layered thread
architecture and on an alternative network event scheduling mechanism, called the Priority Queue (PQ) – Time
Division Multiplexing (TDM) Layered Multithreading mechanism, which supports concurrent events as
compared to the state of the art approach which supports only sequential events. Moreover, specific drawbacks
of the JVM multi-threading platform such as thread execution unpredictability are also faced and presented.

Key-words: - cellular network, simulation, event scheduling, concurrent events, multi-threading

1 Introduction

1.1 Discrete Event Simulation (DES) in
Wireless Communication Systems (WCS)
Discrete Event Simulation [1-10] represents the most
known simulation methodology, especially for
communication systems. According to the DES
concept, events are happening at discrete points in
time within the simulation time. Simulation time is
moving forward based on the event sequence. These
events represent the basic physical network activities
such as new call admission, etc. Each event is
generated with a unique time stamp that is used for
the event execution at a later time. The event
processing over simulation time is defined by a

scheduler that selects events with the minimum time
stamp (maximum priority) [11-15]. Thus, the whole
scheduling procedure is based on a priority queue.
DES systems can be categorized as sequential or
parallel. Sequential DES systems are the most
popular among the scientific community. In such
systems, the scheduling mechanism can be analyzed
in a three step cycle:

• Dequeue: Removal of an event with the
minimum time stamp from the queue

• Execute: processing of the dequeued event
• Enqueue: Insertion of a new generated event

in the queue
NS-2 [16], which is adopted by the 44.4% of the
scientific community [17], uses this scheduling

WSEAS TRANSACTIONS on COMMUNICATIONS

P.M.Papazoglou, D.A.Karras, R.C.Papademetriou

ISSN: 1109-2742
207

Issue 3, Volume 7, March 2008

mechanism for event execution. In ns-2 [16], the
next earliest event is selected by the scheduler,
executing it till completion, and returning to execute
the next event (highest priority or lower time stamp
among the remaining events). Only one event can be
executed at any given time in ns-2 [16], and so it is a
single-threaded simulator. If two or more events are
scheduled to take place (to be executed) at the "same
time", their execution is performed on a first
scheduled – first dispatched manner (based on the
time stamp of each event) and so the adaptability of
the simulation model to the real network behaviour
(physical activities-events) is strongly based on the
type of the scheduler.

1.2 Event Scheduling
1.2.1 Why Event Scheduling
The physical activities of a real wireless network are
represented by events which are the main
components of a DES system. Regarding the above
mentioned network services, each service constitutes
an event for a particular Mobile User (MU). An
event generator produces events (e.g. new voice
calls) during simulation time. The scheduling
mechanism constitutes a model for the event service
occurrence sequence within the real wireless
network. If an event is not executed, it remains in the
pending event set (PES). PES, is the set of all events
generated during simulation time that have not been
simulated (processed) yet [4,18,19]. Thus, PES
corresponds to a priority queue which controls the
flow of event simulation based on current minimum
time stamp (highest priority) [4]. The selected
scheduling method determines how realistically the
occurred real network activities will be reflected in
the simulation model. In other words, scheduling is a
mapping method of the real network events
(activities) within the simulation time of the DES
system.

1.2.2 The State of the Art Event Scheduling
Mechanism
The major application of priority queues is the
implementation of PES inside DES systems [20-23].
The CQ concept was first introduced by [24], was
analysed by [19] and until today constitutes the most
popular scheduling mechanism among DES systems
such as ns-2 (Berkeley, USA)[16], Ptolemy II
(Berkeley, USA) [14], Jist (Cornel University, USA)
[25]. Several other variations of the CQ for
improving performance of the queue itself (e.g. by
optimal resizing of the queue) have been proposed in
the literature such as DSplay [12], MList [4],
Markov hold model [13], and SNOOPY CQ [18].

The idea of the CQ is derived from the ordinary desk
calendar with one page for each day. Every event is
scheduled on the appropriate page. The scheduled
time of each event defines its priority. When an
event is enqueued on the calendar, then this event is
scheduled for future execution. The earliest event on
the calendar is dequeued by searching the page for
today’s date and removing the earliest event written
on that page [24].
Inside the computer, a CQ consists of an array of
lists. Each list contains future events. According to
CQ principle, the large list of N events is partitioned
to M shorter lists called Buckets. Each bucket is
associated with a specific range of time
corresponding to future events. Any event with the
occurrence time t(e) is associated with the m-th
bucket in year y (y =0, 1, 2, . . .) if and only if

()() ()() , 1t e yM m yM mδ δ⎡ ⎤∈ + + +⎣ ⎦ (a)

In order to find the bucket number m(e) where an
event e will occur at time t(e) the following type is
used :

()() modt em e M
δ

⎢ ⎥= ⎢ ⎥⎣ ⎦

(b)

Assume that M=8, N=10, δ=1 and t(e)=3.52 (fig. 1)
for a new event e.
 Using the equation (b), the bucket number for event
e is m(e)=3.

Fig. 1 Instance of a CQ with 8 buckets

The existing state of the art event scheduling
strategy (CQ) suffers in supporting concurrent
network events as they happen in a real
wireless network and thus an improved event
scheduling mechanism implemented through
multi-threading technology is proposed.

An analytical study of the CQ can be found in [26].

1.3 Multi-Threading Technology
1.3.1 Multi-Threading as a Necessity
Multi Tasking is a prerequisite for today's software
development. All modern operating systems (OSs)
support this feature which enables different programs
to run at the "same time". In an ideal environment,
the best performance can be achieved by using one
processor for each running program, but in real

 2

WSEAS TRANSACTIONS on COMMUNICATIONS P.M.Papazoglou, D.A.Karras, R.C.Papademetriou

ISSN: 1109-2742
208

Issue 3, Volume 7, March 2008

computers there is usually only one processor
available. Due to that fact, the processor is shared
between the applications. Even if there are two or
three processors available, the processes outnumber
the processors. Pieces of the same program can run
concurrently as two or more different programs do.
This capability is called threading. Most of the
languages that support multi-threading (MT), are
OS-specific. Thus, no portability to different OS
platforms is achieved.
MT technology is a well known general development
technology. This technology can be applied in areas
where concurrent events (tasks) exist. Existing
programming languages support MT but on the other
hand, significant drawbacks such as deadlocks and
synchronization must be faced effectively. Java
supports native MT and constitutes the most known
development tool among the scientific community.

1.3.2 The JVM Platform
The Java implementation can be viewed as an
example; the developer may use another technology
for the implementation of the MT concept.
The MT operation in the case of Java is exclusive
responsibility of the Java Virtual Machine (JVM).
Thus, any Java code can be executed directly in any
platform. Threading methodology can be applied
when concurrency is needed. MT is a very efficient
methodology for a number of scientific tasks such as
simulations of real phenomena where many
processes occur at the same time (simultaneously). In
the context of the conceptual design of a program,
this approach can be quite useful even if it runs on a
single-processor machine. Thus, more reliable
modelling and simulation of a real system can be
achieved. When the code interleaving and the
execution sequence of the active threads inside the
processor affects the system behaviour and results,
only controlled scheduling by the designer must be
used. More information about the threading
capabilities of Java can be found in [27-30].
A variety of methods are available for changing the
thread status within an application. Using these
methods, efficient synchronization control between
threads can be achieved. The start() method activates
the selected thread that is running concurrently with
other threads.
A thread is terminated when the run() method returns
or when the stop() method is activated. Figure 2
shows all the possible thread status and the
corresponding status transitions.

Fig. 2 Thread status transitions

An internal mechanism of JVM, called scheduler,
defines the real-time order of thread execution.
Scheduling can be controlled by the programmer and
is categorized as follows:

• Non pre-emptive
• Pre-emptive

In non pre-emptive scheduling, the scheduler runs the
current thread forever and requires from this thread to
tell explicitly if it is safe to start another thread. In
pre-emptive scheduling, the scheduler runs a thread
for a specific time-slice (usually a tiny period within
a second) and then “pre-empts” it, (calling
suspend()), and resumes another thread for the next
time-slice. The non-pre-emptive scheduling can be
very useful especially in time critical (e.g. real time)
applications when the interruption of thread
execution can happen in the wrong moment. Modern
schedulers are usually pre-emptive, therefore, the
development of MT applications is easier. JVM uses
priorities for scheduling threads. Initially, it gives
equal priorities to all threads.

Fig. 3 Three threads share the same processor (sample

scenario)

A major drawback of JVM is that the
behaviour of its scheduler can not be predicted
[31]. Actually, JVM specifications have not

 3

WSEAS TRANSACTIONS on COMMUNICATIONS P.M.Papazoglou, D.A.Karras, R.C.Papademetriou

ISSN: 1109-2742
209

Issue 3, Volume 7, March 2008

been designed by taking into account event
scheduling constraints.
Figure 3 illustrates three threads sharing the same
processor. Note that there is no real parallel execution
between threads but only high speed switching
between them. The sleep() method deactivates
temporarily the current thread in order to give time
for the next thread execution. If the OS uses pre-
emptive multi tasking, the sleep() method is not
needed for switching between threads.

2 Proposed WCS Simulation model

2.1 Services Oriented Modelling
The effectiveness and functionality of a wireless
network are based on the offered services. The
services type combined with the offered
communication quality constitute the most critical
issues. For the above reasons, the evaluation of a
wireless network is performed through the
performance evaluation of the offered services using
specific statistical metrics.

2.1.1 New Call Arrival (NC)
The number or MUs is large, the calls by each MU
are limited and so the call arrivals can be assumed as
random and independent. In the simulation program,
the new calls result from a random or a Poisson
distribution according to a predefined daily model. In
the case of multimedia services, multiple channels
are allocated.

2.1.2 Call Termination (FC)
The program uses an exponential function that
generates the call duration for each new MU. The
call holding time is added to current simulation time
for later examination. The associated procedure
examines the progressive call time for connected
MUs. If this time has expired the User Registry
(UR) is updated with the new connection status of
the particular MU. In the case of data transfer, a call
is terminated only when the transfer is completed.

2.1.3 Reallocation Check (RC)
The computations are based on the signal strength
and the way it is affected by other connected MUs in
neighbour cells. If a MU signal does not fulfil the
Carrier to Noise plus Interference ratio (CNIR)
threshold the procedure tries to find another
appropriate channel. At first, the algorithm calculates
the signal strength between MU and base station and
later on it calculates any interference coming from
other connected MUs. If an accepted channel is
found, it is allocated to the new MU, otherwise the

call is dropped. In the case of multimedia services,
partial channel reallocation is also supported.

2.1.4 Mobile User Movement (MC)
The algorithm locates the connected MUs and
changes their current positions. A MU movement is
generated based on Gaussian distribution. This
distribution is also used in similar simulation models
found in the literature [32].

2.2 The Proposed Priority Queue (PQ) –TDM
Layered Multithreading Event Scheduling
Algorithm for Complex Real Time
Simulation Models
The proposed PQ-TDM Layered Multithreading
algorithm extends the CQ paradigm to handle
concurrent events in simulation models of complex
systems, where event occurrence time cannot be
specified as easily as in the CQ described simulation
systems. The basic entity of the algorithm, the event,
is specified as a thread. Besides, the basic new event
entity, instead of occurrence time t(e), is its priority
p(e). The basic architecture of the algorithm consists,
like CQ, of an array of lists. Each list contains future
events with their own priorities. According to the
PQ-TDM principle, the list of N concurrent/non-
concurrent events taking place within the system is
partitioned to shorter lists called Priority Buckets.
Moreover, there exists a basic periodic event-thread,
the Time Clock, which synchronizes all other events-
threads. This event-thread is associated with the
largest Priority PMAX. Provided that the
Multithreading Simulation Platform supports P
priorities, let’s DP be the priority distance between
PMAX priority of the Time Clock event-thread and the
priority associated with the priority bucket having
the largest priority. If we assume that the priorities
supported are 1,2,…P, then PMAX= P, and PMAX - DP
are the supported buckets in which the event list is
partitioned. Each such bucket, on the other hand, is
associated with a specific range of priorities
corresponding to future events. Any event with the
occurrence priority p(e) is associated with the m-th
bucket in Basic Priority p (p =0,1,2, ..) if and only if

])1)((,))([()(δδ ++−+−∈ mDPpmDPpep PMAXPMAX (1)

In order to find the bucket number m(e) where an
event e belongs with priority p(e) the following
formula is introduced:

)mod()()(PMAX DPepem −=
δ

(2)

Regarding time t(e) of the event-thread e, it should
be remarked that now it is determined by the
Multithreading Simulation Platform by a Time

 4

WSEAS TRANSACTIONS on COMMUNICATIONS P.M.Papazoglou, D.A.Karras, R.C.Papademetriou

ISSN: 1109-2742
210

Issue 3, Volume 7, March 2008

Division Multiplexing (TDM) procedure. Time slice
ΔΤ is the basic entity in this TDM procedure. That
is, ΔΤ computational time is given to each event out
of the events list to proceed its computations, within
which it might finish or not. If it doesn’t finish then,
it waits for a future assignment of a ΔΤ
computational time again. Events with higher
priority are assigned with more such ΔΤ time slices.
An important aspect in the proposed scheduling
algorithm is that DP should be as maximum as
possible in order for the Time-Clock Thread to be a
reliable controller of the multithreading architecture
of events-threads and face the known difficulties of
multithreading technology to reliably schedule
threads, due to absence of such specifications and
definitions in Multithreading Simulation Platforms
like JVM etc. Therefore, the proposed PQ-TDM
Layered Multithreading algorithm reliably extends
CQ capabilities in order to handle events
concurrency in complex simulation systems like
WCS, at least theoretically. It is the purpose of this
paper to show that such a proposed algorithm leads
to efficient scheduling of events and thus, to efficient
simulation modelling of WCS.

2.3 Implementation Issues Based on the JVM
Specification
2.3.1 Synchronization and Deadlocks
The proposed simulation system uses a User
Registry (UR) for keeping a detailed record of each
connected MU. Due to that fact, the UR constitutes a
shared resource area. When concurrent events take
place, two or more threads try to access the UR at the
"same time". An active thread can be pre-empted by
the scheduler, when an access activity in a shared
resource is not completed. While this thread is now
pre-empted, another thread tries also to access the
shared resource. Due to the given time slice to that
thread by the scheduler, the access activity is
completed. After the re-activation of the first thread,
the semi-completed access activity of the first phase
is now complete. If the above two threads try to
access the same record in the UR, then, the resulting
data are incorrect depending on the thread switching.
For the above reasons, the UR of the simulation
system must be accessed through the synchronized
method. This synchronization will prevent the shared
resource area from simultaneous access by two or
more threads. When a thread has locked an object
(e.g. access method for UR), and is waiting for
another thread to finish, while that other thread is
waiting for the first thread to release that same object
before it can finish then a deadlock occurs.

In most cases, when two or more threads try to
access the shared resource area, this is not for the
same MU. Thus, the synchronization mechanism is
necessary only in some cases. In order to remove
any deadlock possibility, the following features must
be designed and developed:

• Controlled thread switching (execution)
• Control points where the UR will be

accessed
• Conditional synchronization (synchro-

nization only if needed)
Every time a thread tries to access UR for a specific
MU, flag values are written in a local table that
belongs to that thread. After the update of the local
table, the thread scans all the local tables and decides
to access the main UR through non-synchronized
methods; otherwise, the access is completed through
synchronized methods. Using this mechanism, high
speed and data manipulation is achieved with no
deadlocks.

2.3.2 JVM Scheduler Unpredictability
As mentioned previously, the JVM scheduler
behaviour can not be predicted [31] and so a more
controlled scheduling mechanism must be applied. In
other words, the execution sequence of the threads
can not be guaranteed across all Java virtual
machines [27]. The event execution sequence plays a
major role for the network performance due to the
fact that the events represent the modelled network
services.

2.4 Proposed Event Scheduling Mechanism
The proposed scheduling mechanism supports
concurrent network events instead of the state of the
art approach (CQ) where only sequential events are
supported based on the above defined PQ-TDM
Layered Multithreading algorithm. Moreover, the
proposed mechanism has been implemented through
a multi-threading platform where improvements took
place in order to face the default JVM
unpredictability in thread execution sequence.
The basic goals of the proposed event scheduling
mechanism are:

• The control of thread execution sequence.
• The control of thread core code execution

time.
The thread execution sequence and activation is
controlled by a clock inside a thread (super thread,
the Time Clock thread of the PQ-TDM Layered
Multithreading algorithm) with maximum priority
instead of minimum priorities which are applied in
the rest of the threads, as discussed in the PQ-TDM

 5

WSEAS TRANSACTIONS on COMMUNICATIONS P.M.Papazoglou, D.A.Karras, R.C.Papademetriou

ISSN: 1109-2742
211

Issue 3, Volume 7, March 2008

Layered Multithreading algorithm. Figure 4 shows
the pseudo code of clock implementation.

Thread CLOCK
{
 Main action
 {
 While (simulation time step)
 {
 Thread#1_active=1;
 Sleep(Thread#1_limit);
 Thread#2_active=0;
 …
 …
 Thread#n_active=1;
 Sleep(Thread#2_limit);
 Thread#n_active=0;
 }
 }
}

Fig. 4 Super Thread (Clock) implementation

Figure 5 shows the thread implementation.

Thread #1
{
 Main action
 {
 While (simulation time step)
 {
 If (Thread#1_active==1)
 {
 //core code
 }
 }
 }
}

Fig. 5 Thread implementation

Using the Thread.start() method, all the threads
become active but the core code of the threads
(except clock) is disabled while Thread#n_active=0.
The thread CLOCK is under execution in most of the
times because its priority has the maximum value as
compared to the rest of the threads. Thus, the clock
(super thread) synchronizes the thread core code
activation and execution. Initially, the core code of
thread#1 is activated. After Thread#1_limit time the
core code is deactivated. Thus, the rest of the threads
(core codes) are executed in a controlled order and
for a specific time period.

2.5 Experimental Models
A set of multi-threaded model variations has been
implemented in order to show:

• The model instability based on default JVM
when different numbers of computational
threads are used.

• How thread execution sequence and core
code activation time can be controlled based
on a complementary to JVM scheduler, the
PQ-TDM Layered Multithreading proposed
above.

For achieving the above goals, two sets of
implementation model variations have been tested.
Tables 1 and 2 show the corresponding
implementation parameters.

Model

No of

threads

Thread

type

Additional
computational

time
A1 4 basic -
A2 8 4 basic

4
dummy

-

A3 16 4 basic
12

dummy

-

A4 4 basic Loop in RC
A5 4 basic Conditional

loop
in RC

A6 8 4 basic
4 extra

Loop in 4 extra

A7 8 4 basic
2

dummy
2 extra

Loop in 2 extra

A8 6 4 basic
2 extra

Loop in 2 extra

Table 1. Computational thread variations

Model Thread Pri Sleep core

code
exec

core
code
active
time

exec
seq

B1 Net 5 - Def
JVM

Sym Unpr

B2 Net 10 Sym Clk Sym Pred
 Clk 1 Sym Clk Sym Pred
B3 Net 1 Sym Clk Sym Pred
 Clk 10 Sym Clk Sym Pred
B4 Net 1 Asym Clk Asym Pred
 Clk 10 Asym Clk Asym Pred

Table 2. Thread scheduling variations
(Pri=Priority, Net=Network threads, Clk=Clock thread,
Sym=Symmetrical, Asym=Asymmetric, Unpr=
Unpredictable, Pred=Predictable)

 6

WSEAS TRANSACTIONS on COMMUNICATIONS P.M.Papazoglou, D.A.Karras, R.C.Papademetriou

ISSN: 1109-2742
212

Issue 3, Volume 7, March 2008

3 Network Model Validation

The implemented algorithms and models in this
paper have been tested in a simulation environment
that integrates the basic simulation and network
components. The necessary validation of the
simulation environment consists of three different
validation levels which are:

• Calendar Queue (State of the art) scheduling
mechanism implementation algorithm

• Network environment which includes signal
propagation, interference and signal
measurements

• Network performance compared to
theoretical computations

The most known statistical metrics for the wireless
network performance evaluation are blocking and
dropping probabilities [33-41]. Blocking probability
represents the blocked calls, while dropping
represents the unsuccessful channel reallocation for
an ongoing call. The dropping probability is strongly
connected to Rcni (eq. 3), because when this ratio is
not above the accepted threshold and the network
can not allocate an appropriate channel, the call is
dropped. On the other hand, blocking probability can
be theoretically calculated. If the received power of
each MU is high enough, it is assumed that the
interference from other MUs can be ignored. The
theoretical formula known as Engset's formula [42]
is as follows:

()

()
_

0

1

1

s

blocking theoretical s
i

i

n
vh

s
P

n
vh

i=

−⎛ ⎞
⎜ ⎟
⎝ ⎠=

−⎛ ⎞
⎜ ⎟
⎝ ⎠

∑

(3)

where n is the number of users, s is the number of
channels, v is the average call arrival rate (for no
connected MU) and h is the average call holding
time.
Equation 3 shows only the basic relation between
channels and users, and does not take into
consideration critical factors that affect the blocking
probability such as traffic conditions, service type,
channel allocation strategy, etc.
Figure 6 shows the theoretical blocking probability
that is derived from eq. (3) as compared to the
simulated blocking probability, derived in the
proposed WCS simulation system. The simulated
probability has been generated from the large scale
network based on the classical DCA algorithm [41]
and the above reported network services.

35 40 45 50 55 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Sample: Theoretical VS Simulated blocking probability (Voice)

Users

B
lo

ck
in

g
P

ro
ba

bi
lit

y

Simulated
Theoretical

Fig. 6 Theoretical blocking probability versus simulated.

4 Experimental Results

Figures 7 through 11 contain sample executions that
show the thread execution sequence and core code
activation based on the tested models. The numbers
1 through 4 inside figures 7 to 11 represent the
network services NC, RC, MC and FC respectively.
Figures 7 and 8, show that the thread execution
sequence is different in every simulation execution
and also, that threads do not have constant execution
periodicity.
33333333333333333333333333142142314231423142314
23142314231423142314231423142314231431431231243
24324324324324324324324324324324324324324324324
31431241241241241241241241241241241241241241241
24124124324312312312312312312312312312312312312
31231231231231241243143143143143143143143143143
143143143143143143143123124324

Fig. 7 Thread execution #1,
Default JVM, equal priorities

32323232323232323232323412121212121212121212121
21212121243232341313131313131313131313131421212
12121243232323232323232323232323413131313131421
21212121212121212121212432323232323413131313131
31313131313131421212121212432323232323232323232
32323413131313131421212121212121212121212124323
232323234132132132132132132132

Fig. 8 Thread execution #2,
Default JVM, equal priorities

111111……111111{NC:1031,332}
{RC:1031,0}
{MC:1031,0}
{FC:1031,0}

111111……111111{NC:1235,14575}
{RC:1031,0}
{MC:1031,0}

 7

WSEAS TRANSACTIONS on COMMUNICATIONS P.M.Papazoglou, D.A.Karras, R.C.Papademetriou

ISSN: 1109-2742
213

Issue 3, Volume 7, March 2008

{FC:1031,0}

111111……111111{NC:1219,21591}
222222……222222{RC:1093,17704}
333333……333333{MC:1000,21929}
444444……444444{FC:1188,15734}
Fig. 9 Thread execution, Symmetrical Sleep, Clock
priority=1, Network thread priorities=10

Figure 9 shows that some threads are not executed
due to the fact that the clock is rarely activated by
the default scheduler when minimum priority is
applied and therefore, the required thread control is
not possible. Moreover, the thread activation time
leads to different number of core code execution
times for each thread (e.g. NC:1219=real thread core
code active time in ms, 21591 executions,
RC:1093=real thread core code active time in ms and
17704 executions)
111111……111111{NC:1000,70}
222222……222222{RC:1000,72}
333333……333333{MC:1000,72}
444444……444444{FC:1000,72}

111111……111111{NC:1000,72}
222222……222222{RC:1000,72}
333333……333333{MC:1000,72}
444444……444444{FC:1000,72}

111111……111111{NC:1000,72}
222222……222222{RC:1000,72}
333333……333333{MC:1000,72}
444444……444444{FC:1000,72}
Fig. 10 Thread execution, Symmetrical Sleep, Clock
priority=10 (super thread), Network thread priorities=1,
Dp =9

Figure 10 shows that the thread core code active time
and also, the number and sequence of executions can
be controlled based on the proposed PQ-TDM
layered multithreading approach.
111111……111111{NC:500,34}
222222……22222222222{RC:1000,72}
333333……3333333{MC:500,36}
444444……44444444444{FC:1000,72}

111111……11111111{NC:500,36}
222222……22222222222{RC:1000,72}
333333……33333333{MC:500,36}
444444……44444444444{FC:1000,72}

111111……11111111{NC:500,36}
222222……22222222222{RC:1000,72}
333333……33333333{MC:500,36}
444444……44444444444{FC:1000,72}
Fig. 11 Thread execution, Asymmetric Sleep, Clock
priority=10 (super thread), Network thread priorities=1,
Dp =9

0 5 10 15

0.1

0.11

0.12

0.13

0.14

0.15

0.16

Executions (x2)
St

an
da

rd
 D

ev
ia

tio
n

Voice, Mean STD BLOCKING Progress

1. 4 Basic threads
2. 4 Basic threads, 4 dummy
3. 4 Basic threads, 12 dummy
4. 4 Basic threads, +comp.time RC
5. 4 Basic threads, +cond.comp.time RC
6. 4 Basic threads, +comp.time 4 extra threads
7. 4 Basic threads, 2 dummy, +comp.time 2 extra threads
8. 4 Basic threads, +comp.time 2 extra threads
9. 4 Basic threads, Clock, controlled scheduling

Fig. 12 Standard deviation of blocking probability for
different multi-threaded implementation models

Figure 12 illustrates that the proposed PQ-TDM
Layered Multithreading scheduling mechanism
improves simulation model stability in the resource
allocation (channel assignment) problem for voice
services in a cellular network with 100 cells, 50 users
maximum per cell and 32 available channels per cell.
This is shown by examining standard deviation of
blocking probabilities (above discussed) over
simulation time in 30 Monte Carlo executions of the
wireless network simulation model. The channel
assignment algorithm used in these experiments is
the classical DCA one [41, 42]

5 Conclusions and Future Trends

In this paper, an efficient event scheduling
mechanism, which supports wireless network
concurrent events occurrence is presented, based on
a novel extension of the classical CQ algorithm to
handle concurrent events. The proposed PQ-TDM
layered multithreading scheduling algorithm based
on TDM principles is suitable for Multithreading
Architectures, exploiting concurrent execution
capabilities of threads. Moreover, the
implementation issues concerning the default
features of the JVM multi-threading platform are
also presented. The service sequence and interleaved
execution of the network events are the most critical
modelling issues that affect the network performance
in a dynamically changing wireless environment.
The scheduling mechanism must guarantee the

 8

WSEAS TRANSACTIONS on COMMUNICATIONS P.M.Papazoglou, D.A.Karras, R.C.Papademetriou

ISSN: 1109-2742
214

Issue 3, Volume 7, March 2008

efficient processing of user requests according to
current user needs and network performance. Our
PQ-TDM layered multithreading proposed algorithm
controls the thread execution sequence and also, the
core code active time. It is shown that the proposed
simulation model, by taking into account the above
scheduling principles in its design, outperforms all
conventional simulation models concerning its
stability validated through specific statistical metrics.
Such a research opens a new field in wireless
networks simulation modelling since scheduling
mechanisms and specifically, how they affect
designed network performance evaluation, have been
so far ignored by the scientific community.

References
[1] Pasquini, R. (1999). Algorithms for improving the performance of

optimistic parallel simulation. Unpublished Doctoral dissertation,
Purdue University.

[2] Brade, D. (2003). A generalized process for the verification and
validation of models and simulation results. Unpublished Doctoral
dissertation, University of Bundeswehr, Munchen.

[3] Barr, R. (2004). An efficient, unifying approach to simulation using
virtual machines. Cornell University.

[4] Goh, R. S. M., & Thng, I. L.(2003). MLIST: An efficient pending
event set structure for discrete event simulation, international
journal of simulation. 4(5-6).

[5] Di Caro, G.A. (2003). Analysis of simulation environments for mobile
ad hoc networks. Technical Report No. IDSIA-24-03. Dalle Molle
Institute for Artificial Intelligence.

[6] Schriber, T.J., & Brunner, D.T. (1997). Inside discrete-event
simulation software: how it works and why it matters. Proceedings
of the 1997 Winter Simulation Conference.

[7] Misra, J. (1986). Distributed Discrete-event Simulation. ACM
Computing Surveys, 18(1).

[8] Overeinder, B.J. (2000). Distributed Event-driven Simulation.
Unpublished Doctoral dissertation, University of Amsterdam.

[9] Preiss, B.R., Loucks, W.M. & Hamacher, V.C. (1988). A unified
modeling methodology for performance evaluation of distributed
discrete event simulation mechanisms. The 1988 Winter
Simulation Conference.

[10] Perumalla, K.S. (2006). Parallel and distributed simulation:
traditional techniques and recent advances. Proceedings of the 2006
Winter Simulation Conference.

[11] Lacage, M., & Henderson, T.R. (2006). Yet Another Network
Simulator, ACM, Proceeding from the 2006 workshop on ns-2: the
IP network simulator.

[12] Siow, R., Goh, M., & Thng, I.L.J. (2004). DSplay: An Efficient
Dynamic Priority Queue Structure For Discrete Event Simulation.
Simtect Simulation Conference.

[13] Chung, K., Sang, J., & Rego, V.A. (1993). Performance
Comparison of Event Calendar Algorithms: an Empirical
Approach. Software—Practice and Experience, 23(10), 1107–
1138.

[14] Muliadi, L. (1999). Discrete event modeling in ptolemy ii.
University of California, Berkeley.

[15] Naoumov, V., & Gross, T. (2003). Simulation of Large Ad Hoc
Networks, MSWiM’03, September, San Diego, California, USA.

[16] Fall, K., & Varadhan, K. (2007). The ns Manual. UC Berkeley,
LBL, USC/ISI, and Xerox PARC, January 14.

[17] Kurkowski, S., Camp, T., & Colagrosso, M. (2005). MANET
Simulation Studies: The Current State and New Simulation Tools.

[18] Tan, K.L., & Thng, L.J. (2000). Snoopy Calendar Queue.
Proceedings of the 2000 Winter Simulation Conference.

[19] Siangsukone, T., Aswakul, C., & Wuttisittikulkij, L. (2003). Study
of Optimised bucket widths in Calendar Queue for Discrete Event
Simulator. Thailand's Electrical Engineering Conference (EECON-
26).

[20] Blackstone, J.H., Hogg, C.L., & Phillips, D.T. (1981). A two-list
synchronization procedure for discrete event simulation. Commun
ACM, 24(12), 825-629.

[21] Henriksen, J.O. (1977). An improved events list algorithm.
Proceedings of the 1977 Winfer Simulation Conference
(Gaithersburg. Md., Dec. 5-7). IEEE, Piscataway, N.J. pp. 547-557.

[22] Kingston, J. H. (1984). Analysis of Tree algorithms for the
simulation event list. Unpublished Doctoral dissertation, Basser
Dept. Computer Science, University of Sydney, Australia.

[23] McCormack, W.M., & Sargent, R.G. (1981). Analysis of future
event-set algorithms for discrete event simulation. Communications
of the ACM, 24(12), 801-812.

[24] Brown, R. (1988). Calendar queues: A fast O (1) priority queue
implementation for the simulation event set problem.
Communications of the ACM, 31(10), 1220–1227.

[25]http://jist.ece.cornell.edu/javadoc/jist/runtime/Scheduler.Calendar.ht
ml

[26] Erickson, K.B., Ladner, R.E., & LaMarca, A. (1994). Optimizing
Static Calendar Queues. Annual IEEE Symposium on Foundations
of Computer Science, 35, 732-743.

[27] Oaks, S., & Wong, H. (2004). Java Threads, O'Reilly, 3rd edition.
[28] Kramer J.M. (2006). Concurrency: State Models & Java Programs

(2nd Ed.). John Wiley & Sons.
[29] Lindsey, C.S., Tolliver, J.S., & Lindblad, T. (2005). An Introduction

to Scientific and Technical Computing with java. Cambridge
University Press.

[30] Pidd, M., & Cassel, R.A. (1998). Three phase simulation in java.
Proceedings of the 1998 Winter Simulation Conference.

[31] Mengistu, D., Lundberg, L. and Davidsson, P. (2007). Performance
Prediction of Multi-Agent Based Simulation Applications on the
Grid. international journal of intelligent technology volume 2
number 3 2007 issn 1305-6417

[32] Tripathi, N.D., Jeffrey, N., Reed, H., & VanLandingham, H.F.
(1998). Handoff in Cellular Systems. IEEE Personal
Communications.

[33]Bigham, J., & Du, L. (2003). Cooperative Negotiation in a
MultiAgent System for RealTime Load Balancing of a Mobile
Cellular Network. AAMAS’03, July, 14–18.

[34]Cheng, M., Li, Y., & Du, D.Z. (2005). Combinatorial Optimization
in Communication Networks. Kluwer Academic Publishers.

[35] Cherriman, P., Romiti, F., & Hanzo, L. (1998). Channel Allocation
for Third-generation Mobile Radio Systems. ACTS’ 98, 1, 255-261.

[36]Godara, L.C. (1997). Applications of Antenna Arrays to Mobile
Communications, Part I: Performance Improvement, Feasibility,
and System Considerations. Proceedings of the IEEE, 85(7).

[37]Grace, D. (1998). Distributed Dynamic Channel Assignment for the
Wireless Environment. Unpublished Doctoral dissertation,
University of York.

[38]Haas, H. (2000). Interference analysis of and dynamic channel
assignment algorithms in TD–CDMA/TDD systems. Unpublished
Doctoral dissertation, University of Edinburg.

[39]Hollos, D., Karl, H., & Wolisz, A. (2004). Regionalizing Global
Optimization Algorithms to Improve the Operation of Large Ad
Hoc Networks. Proceedings of the IEEE Wireless Communications
and Networking Conference, Atlanta, Georgia, USA.

[40]Katzela, I., & Naghshineh, M. (1996). Channel assignment schemes
for cellular mobile telecommunication systems: A comprehensive
survey. IEEE Personal Communications, 10–31.

[41]Salgado, H., Sirbu, M., & Peha, J. (1995). Spectrum Sharing
Through Dynamic Channel Assignment For Open Access To
Personal Communications Services. Proc. of IEEE Intl.
Communications Conference (ICC), pp. 417-22.

[42]Lee, W.C.Y. (1995). Mobile Cellular Telecommunications.
McGraw-Hill

 9

WSEAS TRANSACTIONS on COMMUNICATIONS P.M.Papazoglou, D.A.Karras, R.C.Papademetriou

ISSN: 1109-2742
215

Issue 3, Volume 7, March 2008

