
A Proxy Caching System for MPEG-4 Video Streaming
with a Quality Adaptation Mechanism

YOSHIAKI TANIGUCHI NAOKI WAKAMIYA MASAYUKI MURATA
Graduate School of Information Science and Technology

Osaka University
1-5 Yamadaoka, Suita, Osaka 565-0871

JAPAN
y-tanigu@ist.osaka-u.ac.jp http://www.anarg.jp/˜y-tanigu/

Abstract: - In this paper, we propose, design, implement, and evaluate a proxy caching system for MPEG-
4 video streaming services for heterogeneous users. In our system, a video stream is divided into blocks for
efficient use of the cache buffer and the bandwidth. A proxy retrieves a block from a server, deposits it in its
local cache buffer, and provides a requesting client with the block in time. It maintains the cache with limited
capacity by replacing unnecessary cached blocks with a newly retrieved one. It also prefetches video blocks
that are expected to be required in the near future. In addition, the proxy server adjusts the quality of block
appropriately, because clients are heterogeneous, in terms of the available bandwidth, end-system performance,
and so on. Through evaluations, we proved that our proxy caching system could provide users with a continuous
and high-quality video streaming service in a heterogeneous environment.

Key-Words: - video streaming service, proxy caching, quality adaptation, MPEG-4, prototype, evaluation

1 Introduction
With the increase in computing power and the prolif-
eration of the Internet, video streaming services have
become widely deployed. Through these services, a
client receives a video stream from a video server over
the Internet and plays it as it gradually arrives. How-
ever, on the current Internet, only the best effort ser-
vice, where there is no guarantee on bandwidth, de-
lay, or packet loss probability, is still the major trans-
port mechanism. Consequently, video streaming ser-
vices cannot provide clients with continuous or reli-
able video streams. Furthermore, most of today’s In-
ternet streaming services lack scalability against in-
creased clients since they have been constructed on
a client-server architecture. A video server must be
able to handle a large number of clients, which have
diverse requirements on a received video stream for
their heterogeneity.

The proxy mechanism widely used in WWW sys-
tems offers low-delay and scalable delivery of data by
means of a “proxy server”. The proxy server deposits
multimedia data that have passed through it in its lo-
cal buffer, called the “cache buffer”, and it then pro-
vides the cached data to users on demand. By apply-
ing this proxy mechanism to video streaming systems,
high-quality and low-delay video distribution can be

accomplished without imposing extra load on the sys-
tem [1-5]. In addition, the quality of cached video
data can be adapted appropriately in the proxy when
clients are heterogeneous, in terms of the available
bandwidth, end-system performance, and user pref-
erences on the perceived video quality [6-9]. There
have been proposals for proxy caching mechanisms
for video streaming services. However, they do not
consider the client-to-client heterogeneity, lack the
scalability and adaptability to rate and quality varia-
tions, or assume specially designed server/client ap-
plications which are not widely available.

In this paper, we propose and design a proxy
caching system for MPEG-4 video streaming services
to attain high-quality, continuous, and scalable video
distribution using off-the-shelf servers and clients. On
the contrary to other proposals, our system does not
need any modifications in server/client applications or
systems as far as they conform to streaming standards.
In our system, a video stream is divided into blocks so
that the cache buffer and the bandwidth can be used
efficiently. A proxy retrieves a block from the server,
deposits it in its local cache buffer, and provides re-
questing clients with blocks in time. It maintains the
cache with a limited capacity by replacing unneces-
sary cached blocks with a newly retrieved block. A

WSEAS TRANSACTIONS on COMMUNICATIONS
Manuscript received May 16, 2007; revised Aug. 18, 2007

Yoshiaki Taniguchi, Naoki Wakamiya and Masayuki Murata

ISSN: 1109-2742
824

Issue 10, Volume 6, October 2007

P
la

y
e
r

RTP

Receiver

RTCP

Receiver

RTP

Receiver

RTP

Sender

RTCP

Sender

RTCP

Sender

RTSP Client

Filter

Server ClientProxy

RTSP/TCP

RTP/UDP

RTP/UDP

RTCP/UDP

RTCP/UDP

Signal Data MPEG-4 Video MPEG-4 Audio Module

RTP

Sender

TFRC

C
a

c
h

e

M
a

n
a
g

e
r

RTSP Server

S
tr

e
a

m
in

g
 S

e
r
v

e
r

RTSP/TCP

RTP/UDP

RTP/UDP

RTCP/UDP

RTCP/UDP

RTCP

Receiver

CacheTable

Fig. 1: Modules constituting system

proxy cache server prefetches video blocks that are
expected to be required in the near future to avoid
cache misses. It also adjusts the quality of a cached or
retrieved video block to the appropriate level through
video filters to handle client-to-client heterogeneity
without involving the original video server.

We built a prototype of our proxy caching system
for MPEG-4 video streaming services on a real cur-
rent system. We employed off-the-shelf and common
applications for the server and client programs to im-
plement our system. Through evaluations from sev-
eral performance points of view, we proved that our
proxy caching system could dynamically adjust the
quality of video streams to fit to network conditions
while providing users with a continuous and high-
quality service. Furthermore, it was shown our proxy
caching system can reduce the traffic between a video
server and a proxy in the limited cache buffer.

The rest of this paper is organized as follows. Sec-
tion 2 describes our proxy caching system and ex-
plains how it is implemented. Section 3 discusses
several experiments to verify the practicality of our
system. Section 4 concludes the paper and describes
some future work.

2 Proxy Caching System with Video
Quality Adaptation

Figure 1 illustrates modules that constitute our proxy
cache server. Video streaming is controlled through
RTSP/TCP sessions. There are two sets of sessions
for each client. The first is established between an
originating video server and a proxy to retrieve un-
cached blocks. The other is between the proxy and the
client. Each of video and audio stream is transferred
over a dedicated RTP/UDP session. The condition of
streaming is monitored over RTCP/UDP sessions. A
proxy server has a cache to deposit video data and a

Server

Proxy

Client

Playout

1

2

Time

Signal Video data

3 4

5

O
PT

IO
N

S

Establishing
sessions

R
E

PL
Y

D
E

SC
R

IB
E

SE
T

U
P

R
E

PL
Y

(V
id

eo
)

SE
T

U
P

(A
ud

io
)

R
E

PL
Y

R
E

PL
Y

PL
A

Y

PL
A

Y
 (

3-
4)

R
E

PL
Y

R
E

PL
Y

Play-out delay

Cache miss

Cache Manager

RTP Receiver

RTP Sender
1

2 3 4

T
E

A
R

D
O

W
N

O
K

Closing
sessions

5

Cache hit

Fig. 2: Basic behavior of our proxy

filter to adapt the quality of video to the TCP-friendly
rate [10]. A video stream is coded using an MPEG-
4 video coding algorithm, and it is compliant with
ISMA 1.0 [11]. In this paper, we employed the Dar-
win Streaming Server [12] as a server application, and
RealOne Player [13] and QuickTime Player [14] as
client applications. However, other server or client
applications being compliant with standard [11] with
no or small modification. If other coding algorithm,
e.g., MPEG-2, is used, the filtering module is only
needed to be changed, which adapts the video rate by
manipulating the video data, as far as server and client
applications employ a set of the standard protocols,
i.e., RTP/UDP, RTCP/UDP, and RTSP/TCP.

2.1 Basic Behavior
Figure 2 illustrates the basic behavior of our system.
In the proxy cache server, a video stream is divided
into blocks so that the cache buffer and the bandwidth
can be efficiently used. Each block corresponds to a
sequence of VOPs (Video Object Planes) of MPEG-
4. A block consists of a video block and an audio
block, and they are separately stored. The number of
VOPs in a block is determined by taking into account
the overhead introduced in maintaining the cache and
transferring data block-by-block. The strategy used
to determine the block size is beyond the scope of
this paper. We used 300 in our empiric implemen-
tation. Since an MPEG-4 video stream is coded at 30
frames per second, a block corresponds to ten seconds
of video. Segmentation based on VOP was reasonable
since packetization based on this is recommended in
RFC3016 [15]. Furthermore, we could use the range
field of the RTSP PLAY message to specify a block,
e.g., Range 20-30, because we could easily spec-
ify the time that the block corresponded to.

First, a client begins by establishing connections
for audio/video streams with the proxy server using a

WSEAS TRANSACTIONS on COMMUNICATIONS Yoshiaki Taniguchi, Naoki Wakamiya and Masayuki Murata

ISSN: 1109-2742
825

Issue 10, Volume 6, October 2007

series of RTSP OPTIONS, DESCRIBE, and SETUP
messages. An OPTIONS message is used to request
communication options. A DESCRIBE message is
used for media initialization and a SETUP message
is used for transport parameter initialization. These
RTSP messages are received by the Cache Manager
through an RTSP Server module. The proxy server re-
lays these RTSP messages to the video server. Thus,
connections between the video server and the proxy
server are also established at this stage. Then, the
client requests delivery of the video stream by send-
ing an RTSP PLAY message. When a connection be-
tween the video server and the proxy server is not used
for the predetermined timeout duration, the video
server terminates the connection according to RTSP
specification. In our system, the proxy server main-
tains the connection for future use by regularly send-
ing an RTSP OPTIONS message after 90 seconds idle
period.

A proxy maintains information about cached
blocks in the Cache Table. Each entry in the ta-
ble contains a block identifier, the size of the cached
block, and the flag. The size is set at zero when the
block is not cached. The flag is used to indicate that
the block is being transmitted. On receiving a re-
quest for a video stream from a client through the
RTSP Server, the Cache Manager begins providing
the client with blocks. The request is divided into
blocks, and Cache Manager examines the table ev-
ery interval of the block. If the requested block is
cached, i.e., cache hit, the Cache Manager reads it
out and sends it to the RTP Sender. The RTP Sender
packetizes the block and sends the packet to the client
on time. The quality of video blocks is adapted to fit
the bandwidth on the path to the client by the Filter.
Our proxy cache server adjusts the video rate to the
bandwidth estimated by the TFRC module to share
the bandwidth among video sessions and conventional
data sessions in a friendly and fair manner.

When a block is not cached in the local cache
buffer, the Cache Manager retrieves the missing block
by sending an RTSP PLAY message to the video
server. To use bandwidth efficiently, and prepare
for potential cache misses, it also requests the video
server to send succeeding blocks that are not cached,
by using the range field of the RTSP PLAY message.
Blocks 3 and 4 in Fig. 2 have been retrieved from the
video server by sending one RTSP PLAY message.
Block identifiers are indicated beside the PLAY mes-
sage in Fig. 2 for easier understanding.

On receiving a block from the video server through
the RTP Receiver, the Cache Manager sets its flag to
ON to indicate that the block is being transmitted, and
it relays the block to the RTP Sender VOP by VOP.
When reception is completed, the flag is cancelled
and the Cache Manager deposits the block in its lo-
cal cache buffer. However if the retrieved block is
damaged by packet loss, the Cache Manager doesn’t
deposit it. If there is not enough room to store the
newly retrieved block, the Cache Manager replaces
one or more less important blocks in the cache buffer
with the new block.

A client receives blocks from a proxy and first de-
posits them in a so-called play-out buffer. Then, af-
ter some period of time, it gradually reads blocks out
from the buffer and plays them. By deferring the play-
out as illustrated in Fig. 2, a client can prepare for un-
expected delay in delivery of blocks due to network
congestion or cache misses.

When a proxy server receives an RTSP TEAR-
DOWN message from a client, the proxy server re-
lays the message to the video server, and closes the
sessions.

2.2 Block Retrieval Mechanism
When a requested block is not cached in the local
cache buffer, the Cache Manager should retrieve the
block. Since we adopt an off-the-shelf application for
the video streaming server, it cannot adjust the quality
of video blocks. Therefore, in our system, the Cache
Manager always retrieves the missing block with the
highest quality, i.e., the quality with which the video
stream was coded, from the video server.

2.3 Rate Control with TFRC
TFRC enables a non-TCP session to behave in a TCP-
friendly manner. The TFRC sender estimates the
throughput of a TCP session sharing the same path
using following equation.

X =
s

R
√

2bp
3 + tRTO(3

√
3bp
8)p(1 + 32p2)

, (1)

where X is the transmit rate in bytes/second. s is the
packet size in bytes. R is the round trip time in sec-
onds. p is the loss event rate, between 0 and 1.0, of the
number of loss events as a fraction of the number of
packets transmitted. tRTO is the TCP retransmission
timeout value in seconds. b is the number of packets
acknowledged by a single TCP acknowledgment.

WSEAS TRANSACTIONS on COMMUNICATIONS Yoshiaki Taniguchi, Naoki Wakamiya and Masayuki Murata

ISSN: 1109-2742
826

Issue 10, Volume 6, October 2007

In the system we implemented, those information
are obtained by exchanging RTCP messages between
the RTCP Sender of the proxy cache server and the
client application. A client reports the cumulative
number of packets lost and the highest sequence num-
ber received to a proxy. From those information, the
proxy obtains the packet loss probability. RTT is cal-
culated from the time that the proxy receives LSR
and DLSR fields of a RTCP Receiver Report mes-
sage and the time that the proxy receives the message.
By applying an exponentially weighted moving av-
erage functions, the smoothed values are derived for
both. The estimated throughput obtained by Eq. (1)
is regarded as the available bandwidth, which is taken
into account in determining the quality of a block to
retrieve and send.

To derive the TCP-friendly rate, the TFRC requires
a client to send feedback messages at least once per
RTT. It means that a client application has to issue
RTCP Receiver Report messages at least once per
RTT. According to the RTCP specifications, a sender
can trigger feedback by sending an RTSP Sender Re-
port to a receiver. However, widely available client
applications such as used in the experiments in this
paper ignore this and issue RTCP Receiver Report
messages every three to six seconds by their own tim-
ing. To verify the practicality and applicability of our
proxy cache system, we used the client applications
as they are, without any modification. As a result, we
observed large variation in the reception rate as will
be shown in section 3.1. Problems inherent in public
applications remains for future research.

2.4 Video Quality Adaptation
We employed a frame dropping filter as a quality
adaptation mechanism. The frame dropping filter
adapts the video quality to the desired level by dis-
carding frames. The smoothness of video play-out
deteriorates but it is simpler and faster than other fil-
ters such as low-pass and re-quantization. Adopting
layered or multiple-description coding is also helpful
to treat the client-to-client heterogeneity. However,
no commercially or freely available client application
can decode and display a media stream with multiple
layers or multiple descriptions.

We should take into account the interdependency
of video frames in discarding frames. For exam-
ple, discarding an I-VOP affects P-VOPs and B-VOPs
that directly or indirectly refer to the I-VOP in cod-
ing/decoding processes. Thus, unlike other filters, we

VOP
1original

1 VOP
dropped

3 VOP
dropped

7 VOP
dropped

VOP
2

VOP
3

VOP
4

VOP
5

VOP
6

VOP
7

VOP
8

VOP
9

VOP
10

VOP
11

VOP
12

VOP
13

VOP
14

VOP
15

VOP
1

VOP
2

VOP
3

VOP
4

VOP
5

VOP
6

VOP
7

VOP
9

VOP
10

VOP
11

VOP
12

VOP
13

VOP
14

VOP
15

VOP
1

VOP
2

VOP
3

VOP
5

VOP
6

VOP
7

VOP
9

VOP
10

VOP
11

VOP
13

VOP
14

VOP
15

VOP
1

VOP
3

VOP
5

VOP
7

VOP
9

VOP
11

VOP
13

VOP
15

Fig. 3: Video structure after frame dropping

0

500

1000

1500

2000

0 100 200 300 400 500 600

bi
t r

at
e

[k
bp

s]

time [sec]

original
800kbps

500kbps

200kbps

Fig. 4: Adapted video rate by frame dropping filter

cannot do packet-by-packet or VOP-by-VOP adapta-
tion. Therefore, in our proxy cache server, the frame
dropping filter is applied to a series of VOPs of one
second. The Filter first buffers, e.g., 15 VOPs in our
system where the video frame rate is 15 fps. Then, the
order for discarding is determined.

To keep the smoothness of video play-out prefer-
ably, we propose an algorithm to decide the frame
dropping order. We first prepare a binary tree of VOPs
and discard frames in a well-balanced manner. The
VOP at the center of the group, i.e., the eighth VOP in
the example, became the root of the tree and was given
the lowest priority. Children of the eighth VOP were
the fourth and twelfth VOPs and respectively became
the second and third candidates for frame dropping.
Figure 3 shows the resulting sequences of VOPs af-
ter frame dropping. As shown Fig. 3, this algorithm
makes the number of VOPs among groups divided by
gaps the same to have smooth video play-out. How-
ever, the order itself does not take into account VOP
types. Then, considering inter-VOP relationships, we
first discard B-VOPs from ones that have the lowest
priority until the amount of video data fits the band-
width. If discarding all B-VOPs is insufficient to at-
tain the desired rate, we move to P-VOPs. Although
we could further discard I-VOPs, they have been kept
in the current implementation for the sake of smooth
video play-out without long pauses.

Figure 4 shows bit rate variation of filtered video
streams generated aiming at 200, 500, 800 kbps from

WSEAS TRANSACTIONS on COMMUNICATIONS Yoshiaki Taniguchi, Naoki Wakamiya and Masayuki Murata

ISSN: 1109-2742
827

Issue 10, Volume 6, October 2007

High Priority Low

Sending Sending
Start End

Cached block with
the highest priority

Cached block with
low priority

12345 678Stream

Fig. 5: Priority of cached blocks

the original VBR video stream whose average rate is
1000 kbps. Although our filtering algorithm is sim-
ple, resultant video rates are close to target rates with
small fluctuations. We can replace ours with any other
better algorithm as far as an off-the-shelf client appli-
cation can decode a manipulated video stream.

2.5 Block Prefetching
To reduce the possibility of cache misses and avoid
the delay in obtaining missing blocks from a server,
a proxy prefetches blocks that clients are going to
require in the future. In a case of a cache hit, the
Cache Manager examines the Cache Table in suc-
ceeding P blocks. Here, P is the size of a sliding win-
dow, called a prefetching window, which determines
the range of examination for prefetching. As long as
blocks are cached, the Cache Manager sequentially
reads them out and sends them to the RTP Sender.
If there exists any block which is not cached in suc-
ceeding P blocks, the Cache Manager prefetches the
missing block by sending an RTSP PLAY message to
the video server. The Cache Manager also prefetches
succeeding blocks that are not cached.

2.6 Cache Replacement
With our cache replacement algorithm, first, the
Cache Manager selects a video stream with the low-
est priority from cached streams using an LRU algo-
rithm. It then assigns priorities to blocks in the se-
lected stream using the following algorithm. Blocks
being sent to a client have the highest priority. The
block at the beginning of the stream is also assigned
the highest priority to provide potential clients with a
low-latency service. Among the others, those closer
to the end of a longer succession of cached blocks are
given lower priorities. Finally, blocks candidate for
replacement are chosen one by one until sufficient ca-
pacity becomes available.

Figure 5 illustrates an example of victim selection.
In this example, the block located at the end of the
stream is in the longest succession. Therefore, the
block is given the lowest priority and becomes the

“1”st victim. Among successions of the same length,
the one closer to the end of the stream has lower pri-
ority.

3 Experimental Evaluation
In this section, we show results of experiments on a
prototype. In the experiments, we use 10 and 30 min-
utes long video streams by coding animation, scenery,
action, fantasy, computer graphic, and sports movies
using an MPEG-4 VBR coding algorithm at the cod-
ing rate of 1 Mbps. Video data of 320×240 pixels and
30 fps and audio data of 96 Kbps are multiplexed into
an MPEG-4 stream. The maximum and minimum bit
rate are about 2 Mbps and 400 Kbps, respectively.
An example of rate variation is illustrated in Fig. 4
as “original”. The size of the video stream is about
84 Mbytes for 10 minute stream and 248 Mbytes for
30 minute stream, respectively. A block corresponds
to 300 VOPs, i.e., 10 seconds. Thus, the stream con-
sists of 60 or 180 blocks. A video server always has
the whole video blocks. A client watches a video from
the beginning to the end without interactions such as
rewinding, pausing, and fast-forwarding.

There have been proposals for proxy caching mech-
anisms for video streaming service [1-9]. However,
they do not consider the client-to-client heterogeneity,
lack the scalability and adaptability to rate and quality
variations, or assume specially designed server/client
applications which are not widely available. There is
no suitable work or implementation to compare with
our system. Therefore, we do not show comparison
results with other research work in following sections.

3.1 Evaluation of Rate Control with Video
Quality Adaptation

Figure 6 (a) illustrates the configuration for our ex-
perimental system. A proxy is directly connected to
a video server. Two video clients are connected to
the proxy through two routers. Video sessions com-
pete for the bandwidth of the link between two routers
with three FTP sessions and a UDP flow generated by
a packet generator. The proxy has no blocks and a
cache buffer capacity is limited to 50 Mbytes. The
prefetching window size P is set to 5. Video client 1
issues an OPTIONS message at time zero, and video
client 2 issues it at 150 seconds. Two clients watch
the same video stream. FTP sessions start transfer-
ring files at 300 seconds and stop at 450 seconds. The
packet generator always generates UDP packets at the

WSEAS TRANSACTIONS on COMMUNICATIONS Yoshiaki Taniguchi, Naoki Wakamiya and Masayuki Murata

ISSN: 1109-2742
828

Issue 10, Volume 6, October 2007

Server
redhat 7.2
Pen 3 550MHz

Proxy
redhat 7.2
Xeon 2.2GHz Dual

Router

Vine 2.5
Xeon 2.2GHz

Windows 2000
Pen4 2.4GHz

Client 1

FTP Client 2
Windows 2000
Celeron 1GHz

Router

10Base-T 10Base-T

redhat 7.2
Pen3 750MHz

100Base-T

FTP Client 1

Windows 2000
Pen4 2.4 GHz

FTP Client 3

Windows 2000
Pen3 1.2 GHz

FTP Sever 3

FTP Sever 2

FTP Sever 1

redhat 7.2
Pen3 700 MHz

Packet Generator

SmartBits600

Windows 2000
Pen4 2.4GHz

Client 2

(a) Configuration of experimental system

0

500

1000

1500

2000

0 100 200 300 400 500 600 700

th
ro

ug
hp

ut
 [

kb
ps

]

time [sec]

Client 1
Client 2

(b) Reception rate with traditional system

0

500

1000

1500

2000

0 100 200 300 400 500 600 700

th
ro

ug
hp

ut
 [

kb
ps

]

time [sec]

Client 1
Client 2

(c) Reception rate with quality adaptation

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 100 200 300 400 500 600 700

th
ro

ug
hp

ut
 [

kb
ps

]

time [sec]

with quality adaptation
traditional method

(d) Reception rate on FTP sessions

 0

 200

 400

 600

 800

 1000

 1200

 0 100 200 300 400 500 600 700

R
T

T
 [

m
se

c]

time [sec]

with quality adaptation
traditional method

(e) RTT at client 1

 0.01

 0.1

 1

 0 100 200 300 400 500 600 700

pa
ck

et
 lo

ss
 p

ro
ba

bi
lit

y

time [sec]

with quality adaptation
traditional method

(f) Packet loss probability at client 1

Fig. 6: Evaluation of rate control

rate of 8 Mbps. For purposes of comparison, we also
conducted experiments using a proxy without the ca-
pability of quality adaptation, which is called the tra-
ditional system hereafter.

Figures 6 (b), (c), and (d) illustrate variations in re-
ception rates observed at each client with tcpdump.
As Fig. 6 (c) shows, the reception rate changes in ac-
cordance with network conditions. During conges-
tion, the average throughput of TCP sessions is 277
kbps with our system. On the contrary, since the tradi-
tional system keeps sending video traffic at the coding
rate as shown in Fig. 6 (b), TCP session are disturbed
and, the attained throughput is only 37 kbps. As a re-
sult, the friendliness is 1.44 in our system and 23.1 in
traditional system, where the friendliness is given by
dividing the average throughput of video sessions by
that of TCP.

However, as observed in Fig. 6 (c), there are
large rate variations in video sessions. The average
throughput of video sessions during the competitive
period is higher than that of TCP sessions. TCP ses-
sions are sensitive to congestion and they suppress the
number of packets to inject into the network when
they occasionally observe packet losses. Video ses-
sions, on the other hand, do not notice sudden and
instantaneous packet losses due to the long control in-
tervals. The major reason for this is that the control
interval of adaptation is three to six seconds due to

the problem of the client application as described in
section 2.3. The interval is considerably longer than
that of TCP, which reacts to network conditions in
an order of RTT. By increasing the frequency that a
client reports feedback information by modifying the
client applications, such discrepancies are expected to
be eliminated. Another reason is that the experimen-
tal system is relatively small. As a result, only a slight
change during a session directly and greatly affects
the other sessions. Then, synchronized behaviors are
observed in Fig. 6 (c) and (d).

Figures 6 (e) and (f) show RTT and packet loss
probability calculated from information in RTCP Re-
ceiver Report messages. In the traditional system, the
proxy persists in sending video data at the coding rate
during congestion, and many packets are delayed or
lost at routers. The packet delay may cause freezes
at play-out due to underflow of play-out buffer. Fur-
thermore, the client application abandons playing out
a VOP which is seriously damaged by a packet loss.
The influnce of a packet loss propagates to the other
VOPs when I-VOP or P-VOP is damaged. During the
experiment, 9712 VOPs were played out with our sys-
tem, but only 9133 VOPs were played out with the
traditional system at client 1. Therefore the perceived
video quality is higher and smoother with our system
than with the traditional system owing to the inten-
tional frame discarding, although the amount of re-

WSEAS TRANSACTIONS on COMMUNICATIONS Yoshiaki Taniguchi, Naoki Wakamiya and Masayuki Murata

ISSN: 1109-2742
829

Issue 10, Volume 6, October 2007

Server

redhat 7.2
Pentium 3 Xeon
550MHz

Proxy

redhat 7.2
Xeon
2.2GHz Dual

Windows 2000
Pentium 4
2.4GHz

Client 1

100Base-T

Windows 2000
Pentium 4
2.4GHz

Client 2

100Base-T

Router

Windows 2000
Pentium 3
800MHz Dual

Client 3
redhat 7.2
Pentium 4
2GHz

Fig. 7: Configuration of experimental system to evaluate caching
mechanisms

ceived video data in the traditional system is larger
than that in our system.

3.2 Evaluation of Caching Mechanisms
Figure 7 illustrates the configuration for our experi-
mental system to evaluate our proxy caching mecha-
nisms. A proxy is connected to a video server through
a router. Three clients are directly connected to the
proxy. In order to control the delay, NISTNet [16], a
network emulator, is used at the router. The one-way
delay between the video server and the proxy is set
to 125 msec. Clients 1 through 3 issue an OPTIONS
message at time 0, 350, and 700, respectively. Three
clients watch the same video stream. The proxy has
no block at first. We do not introduce rate control with
quality adaptation at the proxy. For purposes of com-
parisons, we also conducted experimental evaluations
of cases where the proxy has no cache buffer, that is,
when clients always received video blocks from the
server.

Figure 8 (a) shows the total amount of traffic be-
tween the video server and the proxy during exper-
iments, and Fig. 8 (b) shows the amount of cached
data. Prefetching window size P is set to zero, i.e.,
no prefetching. As the buffer capacity increases, the
total amount of traffic between the server and the
proxy decreases. When the buffer capacity exceeds
84 Mbytes, i.e., the size of the whole video stream, the
total amount of traffic does not change any more. In
addition, the amount of cached blocks is kept within
the limitation of buffer capacity as Fig. 8 (b) shows.
Consequently, it is shown that the proxy can provide
clients with blocks from its local cache buffer by re-
placing less important blocks with newly retrieved
blocks.

We define the reception delay of client j, dj , as fol-
lows,

dj =
1
N

N∑
i=1

(Tj(i)−Tj(1)− i/F), (2)

where, N corresponds to the number of VOPs in a
stream, and F corresponds to the frame rate. Tj(i) is
the time that client j receives the VOP i. Thus, the
reception delay dj is the sum of differences between
the expected arrival time of a VOP and the actual ar-
rival time at a client. Figure 8 (c) shows the aver-
age of reception delay during a video session at each
client while prefetching window P is set to 0 or 5.
Since there is no cached block in the proxy at first,
the reception delay of client 1 is the same whether
the proxy conducts prefetching or not. However, for
client 2 and 3, the reception delay without prefetch-
ing is larger than that with prefetching, since there is
the delay in obtaining missing blocks from the server.
Specifically, when the buffer capacity is 50 Mbytes,
the reception delay on client 3 with a non-prefetching
proxy is 280 msec. When client 3, the last client
among three, joined the service, some parts of a video
stream had been swept out from a cache buffer due to
the limited capacity. As a result, the number of blocks
missing in a cache buffer is larger than the other two
clients. When a proxy does not have a capability of
prefetching, it has to retrieve all missing blocks from
a video server when they are requested by a client. It
introduces delay. Consequently, the reception delay
increases.

In this experiment, since we consider a small and
underloaded network, the reception delay is small
enough without the capability of prefetching. We
expect that the delay exceeds the initial buffering of
three seconds in a larger network. However, by intro-
ducing the prefetching mechanism and a larger value
of P , user becomes free from annoying freezes.

3.3 Evaluation with Many Clients
Finally, we conducted experiments on a system with
many clients. In our experimental configuration, a
proxy with 200 MBytes cache is directly connected
with a video server and five clients. 10 client ap-
plications are running on each client and request the
same video stream of 30 minutes. The client appli-
cations issue an OPTIONS message at random and
begin watching the movie. The proxy has no block at
first. The load on the proxy in terms of the memory
and CPU usage is measured by using vmstat every one
second, while increasing the number of client applica-
tions. Although not shown in figures, we verified the
smoothness of video play-out on a monitor for a case
of many clients.

Figure 9 shows the average memory usage and av-

WSEAS TRANSACTIONS on COMMUNICATIONS Yoshiaki Taniguchi, Naoki Wakamiya and Masayuki Murata

ISSN: 1109-2742
830

Issue 10, Volume 6, October 2007

 0

 500

 1000

 1500

 2000

 0 20 40 60 80 100

to
ta

l t
ra

ff
ic

 [
M

bi
t]

cache buffer capacity [MBytes]

(a) Total traffic between server and proxy

 0

 20

 40

 60

 80

 100

 120

 140

 0 200 400 600 800 1000 1200

am
ou

nt
 o

f
ca

ch
ed

 d
at

a
[M

by
te

]

time [sec]

84/100Mbytes cache
75Mbytes cache
50Mbytes cache
25Mbytes cache

(b) Amount of cached data

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500

 1 2 3

re
ce

pt
io

n
de

la
y

[m
se

c]

client

50Mbytes cache w/ prefetch
50Mbytes cache w/o prefetch
75Mbytes cache w/ prefetch

75Mbytes cache w/o prefetch

(c) Reception delay

Fig. 8: Evaluation of caching mechanisms

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 10 20 30 40 50
 0

 2

 4

 6

 8

 10

m
em

or
y

us
ag

e
[M

by
te

s]

C
PU

 u
sa

ge
 [

%
]

number of clients

memory usage

CPU usage

Fig. 9: Average memory usage and average CPU usage for the
number of clients

erage CPU usage for the number of clients. As shown
in Fig. 9, the memory usage is almost in proportional
to the number of clients, because a process of proxy
caching modules shown in Fig. 1 is invoked for each
client on the proxy cache server. The CPU usage also
linearly increases with the number of clients, but it is
less than 8% for 50 clients.

In conclusion, although we confirmed that our sys-
tem can offer heterogeneous services to more than 50
clients, we also observed that the load on the proxy
cache server is proportional to the number of clients in
the current implementation. By using the latest equip-
ment and applications and optimizing of the system,
we can expect that a proxy cache server can accom-
modate more clients. However, to have the higher
scalability, we need to improve our system, whereas
we adopted rather general approaches and mecha-
nisms in the current implementation.

4 Conclusion and Future Work
In this paper, we proposed, designed, implemented,
and evaluated a proxy caching system for MPEG-
4 video streaming services. We employed off-the-
shelf and common applications for the server program
and the client program to verify the practicality of

our proposed system. Through experiments, it was
shown that our proxy caching system could dynam-
ically adapt the quality of video streams to network
conditions while providing users with a continuous
and high-quality video streaming service. Further-
more, for the limited cache buffer, our proxy caching
system could reduce the traffic between a video server
and a proxy. We also verified that our system could
provide 50 clients with smooth video streaming.

In future research work, we plan to conduct addi-
tional experiments, e.g., within a larger network en-
vironment, with other filtering mechanisms, and with
other server and client applications. We would also
need to take into account user interactions such as
pauses, fast forwarding, and rewinding [17].

Acknowledgments
The authors would like to thank Mr. Atsushi Ueoka
and Mr. Fumio Noda of Systems Development Labo-
ratory, Hitachi Ltd. for their help, encouragement and
suggestions of this work.

References:

[1] Liu J. and Xu J. Proxy Caching for Media
Steaming Over the Internet. IEEE Communica-
tion Magazine, Aug. 2004, pp. 88–94.

[2] Wang B., Sen S., Adler M., and Towsley D.
Optimal Proxy Cache Allocation for Efficient
Streaming Media Distribution. IEEE Trans-
actions on Multimedia, vol. 6(2), Apr. 2004,
pp. 366–374.

[3] Song J. Segment-based Proxy Caching for
Distributed Cooperative Media Content Servers.
ACM SIGOPS Operating Systems Review,
vol. 39(1), Jan. 2005, pp. 22–33.

WSEAS TRANSACTIONS on COMMUNICATIONS Yoshiaki Taniguchi, Naoki Wakamiya and Masayuki Murata

ISSN: 1109-2742
831

Issue 10, Volume 6, October 2007

[4] Guo L., Chen S., Xiao Z., and Zhang X. DISC:
Dynamic Interleaved Segment Caching for In-
teractive Streaming Accesses. In Proceedings of
ICDCS 2005, Jun. 2005.

[5] Ip A.T.S., Liu J., and Lui J.C.S. CO-
PACC: An Architecture of Cooperative Proxy-
Client Caching System for On-Demand Me-
diea Streaming. IEEE Transaction on Parallell
and Distributed Systems, vol. 18(1), Jan. 2007,
pp. 70–83.

[6] Shen B., Lee S.J., and Basu S. Caching Strate-
gies in Transcoding-enabled Proxy Systems for
Streaming Media Distribution Networks. IEEE
Transactions on Multimedia, vol. 6(2), Apr.
2004, pp. 375–386.

[7] Zink M., Schmitt J., and Griwodz C. Layer-
enabled Video Streaming: A Proxy’s Perspec-
tive. IEEE Communication Magazine, Aug.
2004, pp. 96–103.

[8] Lin C.L., Lee H.H., Chan C.L., and Wang
J.S. Cooperative Proxy Framework for Layered
Video Streaming. In Proceedings of GLOBE-
COM 2005, vol. 1, Nov. 2005.

[9] He C.H. and Ko R.S. A QoS-Aware Transcod-
ing System Using Composite Multimedia Doc-
ument and Component Merge Queue. In Pro-
ceedings of the 10th WSEAS International Con-
ference on Communications, Jul. 2006.

[10] Handley M., Floyd S., Padhye J., and Widmer
J. TCP Friendly Rate Control (TFRC): Protocol
Specification. Internet Request for Comments
3448, Jan. 2003.

[11] Internet Streaming Media Alliance. Inter-
net Streaming Media Alliance Implementation
Specification Version 1.0, Aug. 2001.

[12] Darwin Streaming Server. Available at http:
//developer.apple.com/darwin/.

[13] RealOne Player. Available at http://www.
real.com/.

[14] QuickTime Player. Available at http://
www.apple.com/quicktime/.

[15] Kikuchi Y., Nomura T., Fukunaga S., Matsui Y.,
and Kimata H. RTP Payload Format for MPEG-
4 Audio/Visual Streams. Internet Request for
Comments 3016, Nov. 2000.

[16] NIST Net. Available at http://snad.
ncsl.nist.gov/itg/nistnet/.

[17] Psannis K.E. and Hadjinicolaou M.G. MPEG-
based Interactive Video Streaming: A Review.
In Proceedings of the WSEAS Multiconference,
Oct. 2003.

Authors:

Yoshiaki Taniguchi received his BE and ME De-
grees in Information and Computer Science from Os-
aka University in 2002 and 2004, respectively. He
is currently a doctoral course student and a research
assistant at Osaka University. His research interests
include wireless sensor networks and video streaming
systems. He is a member of IEICE and IEEE.

Naoki Wakamiya received his ME and DE Degrees
from Osaka University, Japan, in 1994 and 1996 re-
spectively. He was a Research Associate from 1996
and an Assistant Professor at the Graduate School of
Engineering Science of Osaka University from 1999
to 2002. Since 2002, he has been an Associate Pro-
fessor at the Graduate School of Information Science
and Technology, Osaka University. His research inter-
ests include wireless sensor networks, mobile ad hoc
networks, and overlay networks. He is a member of
IEICE, IPSJ, ACM and IEEE.

Masayuki Murata received his ME and DE Degrees
from Osaka University, Japan, in 1984 and 1988 re-
spectively. In 1984, he joined the Tokyo Research
Laboratory, IBM Japan, as a Researcher. He was an
Assistant Professor from 1987 and an Associate Pro-
fessor at Osaka University from 1992 to 1999. Since
1999, he has been a Professor at Osaka University,
and he is now with Graduate School of Information
Science and Technology, Osaka University. He has
more than 500 papers in international and domes-
tic journals and conferences. His research interests
include computer communication networks, perfor-
mance modeling and evaluation. He is a member of
IEEE, ACM, and IEICE.

WSEAS TRANSACTIONS on COMMUNICATIONS Yoshiaki Taniguchi, Naoki Wakamiya and Masayuki Murata

ISSN: 1109-2742
832

Issue 10, Volume 6, October 2007

