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Abstract: - The improvement in speed and power for calculating discrete Fourier transformation  using circular 

convolution is well established, but all the work so far been reported are at FPGA (gate) level. In this paper 

ASIC implementation of high speed processor for calculating Discrete Fourier Transformation (DFT) based on 

circular convolution architectures is reported for the first time. The IEEE-754 single precision format was 

considered for the representation of the twiddle factors. The improvement of the speed for floating point 

multiplication/addition was achieved by canonical sign digit implementation methodology, which reduced the 

stages of operation significantly. The functionality of these circuits was checked and performance parameters 

such as propagation delay, dynamic switching power consumptions were calculated by spice spectre using 

standard 90nm CMOS technology. The implementation methodology ensure substantial reduction of 

propagation delay in comparison with systolic array and memory based implementation, most commonly used 

architectures, reported so far, for DFT processors. The propagation delay of the resulting 16 point DFT 

processor is only 23.79µs while the power consumption of the same was 14.32mW only for a layout area of 

~12mm
2
.  Almost 50% improvement in speed from earlier reported DFT processors, e.g. systolic array and 

memory based implementation methodology, has been achieved. 

 

Key-Words: - DFT, FFT, Circular convolution, Multiply and accumulate (MAC), Canonical sign digit (CSD) 

adder, CSD Multiplier. 

 

 

1 Introduction 

Discrete Fourier Transformation (DFT) is of 

immense importance in the field of Digital Signal 

Processing (DSP), Digital Image Processing (DIP), 

data compressions, high speed broadband 

communication, general filter design and 

convolutions [1-4] etc. Almost all the design 

techniques require a large amount of precisions for 

the DFT computation [4].  Moreover, optimized 

circuit implementation in terms of low hardware 

usage, reduction of the propagation delay and power 

consumption is essential for many wireless 

applications [5]. On account of the wide range of the 

applications it is inevitable for the researchers to 

implement the ASIC processor for high speed DFT 

computation techniques.  

A substantial amount of work has so far been 

reported on DFT processor [2-18] for speed 

improvement  and power reduction, such as systolic 

array, reduced memory size, distributed arithmetic 

and CORDIC based implementations etc. The 

greatest disadvantages of Systolic array based 

implementation [2-3, 6-7] are huge area 

consumption due to presence of multipliers, while  
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distributed arithmetic [8-10] and memory based 

implantation [14] suffers from large ROM size 

requirement to accommodate the continued product. 

To the contrary, bottleneck of CORDIC based 

implementation [11-13] is its large overhead of 

pre/post processing units. Recently Benhamid et. al. 

[17] reported on radix 2
2
 Genetic Algorithm (GA) 

based Canonical Sign Digit (CSD) multiplier less 

architecture for DFT processor. But, all of these 

techniques suffer from the limitations owing to large 

pre/post processing elements, and/or a large ROM 

size. 

At algorithmic and structural level lot of 

implementation techniques have already been 

reported [2,3,5-8, 13,14,17] but to the best of our 

knowledge till date there is no report on transistor 

level (ASIC) implementation of such DFT 

processors. Moreover, most of the works reported so 

far, deals with the theoretical aspects of DFT 

processors, and did not fully discuss the practical 

circuit design issues like speed, power & layout 

area. In this paper we report of ASIC 

implementation of high speed DFT processor.  The 

proposed techniques have been implemented using 

the reformulation of the transformation equations 

into cyclic convolution formation. To implement the 

hardware architecture for circular convolution of 

two N point sequences, MAC based architecture has 

been proposed, which uses systolic array for 

generation of the convolution sums. The proposed 

architecture neither imposes any limits on the 

method for calculation of convolution sum; nor does 

introduce round off errors. CSD 

multiplication/addition methodologies have been 

considered, to reduce the propagation delay of such 

DFT processors. On account of the CSD algorithms, 

multiplication/addition can be performed in constant 

time which is independent of the number of bits 

[19].  

The proposed DFT processor architecture is fully 

optimized for N point DFT computation. The 

functionality of the circuits was designed and 

verified by Spice Spectre in 90nm CMOS 

technology. Proposed algorithm ensures substantial 

reduction in propagation delay and power 

consumptions compared to systolic array [2], 

distributed arithmetic [8], reduced memory [14], and 

radix 2
2
 based implementation methodologies. 

Propagation delay for the proposed 16 point DFT 

processor was only 23.79µs with only 14.32mw 

power consumptions for a layout area of ~12mm
2
. 

 

2 Algorithm formulation for Discrete 

Fourier Transformation (DFT) 

 
The Discrete Fourier Transform (DFT) of discrete 

signal x(n) can be directly computed as: 

���� � ∑ ����	
��
����     k=0,1,…N-1  (1) 

Where w� � e��Π ��  � Cos �Π�  –  jSin  �Π�   and 	
 

is called in phase or twiddle factor and “j
2
=-1”. Here 

x(n) and X(k) are the sequences of the complex 

numbers. 

An efficient method of computing the DFT that 

significantly reduces the number of required 

arithmetic operations is called FFT [20-21].   An 

FFT algorithm divides the DFT calculation into 

many short-length DFTs and results in huge savings 

of computations. If the length of DFT N= R
v
 , i.e.,  

the product of identical factors, the corresponding 

FFT algorithms are called Radix-R algorithms. 

Assume FFT length is 2M, where M is the number 

of stages. The radix-2 DIF FFT divides an N-point 
DFT into 2, N/2-point DFTs, then into 4, N/4-point 

DFTs, and so on. That is, the radix-2 DIF FFT 

expresses the DFT equation as two summations, and 

then divides it into two equations, each of which 

computes every two output samples. To arrive at a 

two-point DFT decomposition, considering w�� ! � w� �� !   and the following equations are derived by 

X�2k� �  ∑ %� �� � �� x�n� ' x�n ' ���(w� ��         )   

Where  k � 0,1, … … �N 2� / 1�  (2) 

X�2k ' 1� �  0 %� �� �
 �� x�n� / x�n ' N2�(w� w� ��         )  

Where              k � 0,1, … … �N 2� / 1�        (3) 

Above equations are frequently represented in 

butterfly format. The butterfly of a Radix-2 

algorithm is shown in Fig. 1(a).  

 

 

 

Where 

 

 

Fig. 1. (a) 

 

The complete flow graph of an N-point Radix-2 

FFT can be constructed by applying the basic 

butterfly structure (Fig.1. (a)) recursively, where N 
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= 2,4,8,... For an N-point Radix-2 FFT, it has log2N   

stages. Within stage s, for s = 1, 2,..., log2N, there 

are N/2
s
 groups of butterflies, with 2

s-1
 butterflies 

per group. The computation of the 8-point DFT, for 

instance, can be accomplished by the algorithm 

depicted in Fig. 1(b). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. (b) 

 

Fig. 1. (a) Basic Butterfly structure of DFT 

(b): Data flow graph of Butterfly structure for DFT 

 

2.1 Cyclic Convolution formulation form 

Mathematical Expressions of DFT 
For prime length DFT we can formulate equation 

(1) as  1�0� �  ∑ ����
����      (4) 

And 123�4 �  5�36� '  ��0�,    � � 1,2, … … . . , 8 / 1           

      (5) 

Where 

T2g)4 �  0 x�i�e���;�  <=>?���
@�� ,    k � 1,2, … . , N / 1 

      (6) 

And “g
i
” denotes the “g

i
 modulo N” operation. T(k) 

is the cyclic convolution of the sequence {x(i), 

i=1,2,….,N-1} and the kernels  ABCDEFG  HI>JK  	LBMB N O�P Q � 1,2, … . , 8 / 1R. 

Considering 5 point DFT, as an example. The input 

sequence is given as {x(n),  n=0,1,2,3,4} and the 

Kernel is �W � e�ETU �, Then  the equation (1) can 

be expressed as: 

 

VWW
WX1�0�1�1�1�2�1�3�1�4�[\\

\] �
VWW
WX1 1 1 1 11 	� 	� 	^ 	_1 	� 	_ 	` 	a1 	^ 	` 	b 	��1 	_ 	a 	�� 	�`[\\

\] c
VWW
WX��0���1���2���3���4�[\\

\]
    (7) 

 

Alternatively equation (7) can be written as: 1�0� � ∑ ����_���   

And 

 

d1�2�1�4�1�3�1�1�e � d��1� ��2� ��4� ��3���3� ��1� ��2� ��4���4� ��3� ��1� ��2���2� ��4� ��3� ��1�e c d	�	_	^	�e '
d��0���0���0���0�e       (8) 

The first part of RHS of equation (8) shown above is 

representing the 4 point circular convolution. 
 

3 Hardware Implementation of DFT 

 In this section, we have kept our focus on designing 

simplified as well as efficient hardware architecture 

for the purpose of evaluating DFT algorithm. 

Simple trigonometric identities have been applied 

for the implementation of the various twiddle 

factors. The overall block diagram for the 

computation of the discrete Fourier Transformation 

processor is shown in Fig. 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
There are four blocks in the overall architecture. In 

the first block convolving matrices for the input data 

points is generated using Matrix Vector Rotation 

 

 
Fig. 2. Proposed Flow chart diagram for the 

ASIC of the high speed processor for 

calculating DFT 
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methodology (MVR). At the same time, in the next 

block twiddle factors are generated by the twiddle 

factor generating circuitry.   During the time of the 

multiplication operation, special types (Complex 

Multiplication) of the multiplication circuit has been 

implemented and incorporated with MAC. And 

finally at the last stage, CSD adder circuit has been 

used for the addition of the output of MAC, and 

fixed point input vectors. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.1 Generation of the Convolving Matrix 

 
As defined in equation the cyclic convolution 

between two 4-point sequences x and w can be 

expressed in matrix form as: 

 

d1�2�1�4�1�3�1�1�e � d��1� ��2� ��4� ��3���3� ��1� ��2� ��4���4� ��3� ��1� ��2���2� ��4� ��3� ��1�e c d	�	_	^	�e   (9) 

It is to be noted that on the right hand side of 

equation (9), each row of the 4×4 square matrix can 

be generated by serial rotation of the input vector X 

= [x(1),x(2),x(4),x(3)]
 

from left to right. A 4-bit 

right shift register {SS_4→SS_1→SS_2→SS_3} 

has been employed for this purpose with a feedback 

connection from SS_3 output to SS_4 input via two 

block of serial to parallel converter and parallel to 

serial converter as shown in Fig. 3. Initially the line 

MUX Enable is set low in order to load the input 

vector X to the registers. After the input sequence is 

loaded into the registers, MUX Enable is set high to  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

perform the serial rotation on the arrival of each 

subsequent negative clock edge. The bus line MUX 

Enable is again set low after the generation of the 

fourth row of the square matrix before the arrival of 

the fourth clock edge. 

The architecture shown in Fig. 3 has been dedicated 

for the generation of the elements of the column 

matrix [Y]. This hardware module imposes a serious 

restriction on the time period of the system clock. 

The time period of the system clock “f” should be 

large enough to allow the evaluation of each Yi’s to 

be done within a single clock period. After 

generating the convolving matrix the convolving 

matrix is multiplied by the input sequences, and 

promoted to the input of the MAC.  

 

Fig. 3. 4×4 Convolution Matrix generation by Input Vector Rotation 
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3.1.1 Serial to Parallel Converter (S to P) 

The functionality of the circuit can be achieved by 

clock triggered Serial in Parallel out shift registers 

and demultiplexers. The selection inputs to the 

demultiplexers are fed from an auto generated 

counter which is driven by a clock signal input. In 

this paper to avoid the sequential mechanism a fully 

combinational scheme for serial to parallel 

conversion has been adopted. The RTL 

representation of the combinational serial to parallel 

converter is shown in Fig. 3. This circuit is 

providing parallel output as well as serial output 

depending upon the selection input (Parallel).If 

‘Parallel’ input is high then parallel outputs will be 

taken from the pins y0 to y3 which is indicated in 

Fig. 3. The clock driven shift registers has been 

replaced by parallel multiplexer shifters. The 

elements (bits) needed to be shifted are fed to the 

multiplexers in parallel as shown in Fig. 3. The 

select inputs to the multiplexers are fed from a 

parallel adder which is acting as a combinational 

counter. The clock input is replaced by a trigger 

input which is fed to the ‘carry in’ pin of the parallel 

adder. Again if any zero or one padding is needed 

then the bit input is fed to the Data in pin at the 

input side. At the output side the serial and parallel 

operation is monitored by AND gate arrays which is 

activated or deactivated depending upon the 

‘Parallel’ input. This particular circuit is devised to 

execute right shift operation. That is why the serial 

output is taken from the LSB (b0) bit. For left 

shifting the orientation of the inputs to the 

multiplexers will be reverse and the serial output 

will be taken from the MSB (b3) bit. 

 

3.1.2 Parallel to Serial Converter (P to S) 

Parallel to Serial converter has the just reverse 

mechanism that of Serial to Parallel converter. 

The functionality of the circuit can be achieved 

by clock driven Parallel in Serial out shift 

registers and multiplexers. In this paper the 

clock triggered shift registers has been replaced 

by multiplexers connected in parallel and the 

selection inputs are monitored by a parallel 

adder which is acting as a combinational 

counter to avoid the clock triggering and clock 

skewing. The RTL representation of the 

combinational parallel to serial converter is 

shown in Fig. 3. The parallel or serial 

mechanism is obtained by a selection input 

(Serial). If the ‘Serial’ input is low the serial 

data will be taken at the serial data out pin. The 

particular architecture is devised to achieve 

parallel outputs as well as serial output 

depending upon the selection input ‘Serial’. The 

parallel inputs are fed to the AND gate array 

which is activated or deactivated by the ‘Serial’ 

input. The multiplexer inputs are connected in 

shifted fashion shown in Fig. 3. This orientation 

is maintained to execute the right shift 

operation. The same reason forces us to take the 

serial output from LSB (y0) of the parallel 

output. For the left shift operation the 

orientation of the input bit array will be reverse. 

Similarly the serial output will be taken from 

the MSB (y3) of the parallel output bit array in 

case of left shift operation. If any zero or one 

padding is needed the corresponding input is 

fed to the ‘Data in’ pin. 
 

3.2 Canonical Sign Digit  

The second area reduction technique that is used 

attempts to reduce the number of 1’s required in a 

coefficient’s power-of-two representation. Using a 

canonical signed digit (CSD) representation, 

coefficients can be represented using the fewest 

number of non-zero bits [24]. 

3.2.1 Canonical Sign Digit Adder 

Carry propagation free CSD addition is performed 

in two steps. 

I. Determining the intermediate carry { Ci ϵ (1g, 0, 

1)} and intermediate sum digits  { Si  ϵ (1g , 0, 1) , 

satisfying the condition xi + yi= zi + Ci-1. Where xi+1 

and yi +1 are the augends and addend digits 

respectively. 

II. Obtain the sum digits  { Zi ϵ (1g, 0, 1)} at each 

position by adding the intermediate sum digits Si 

and Ci from the next lower order positions. 

3.3.2 Canonical Sign Digit Multiplier 

In general N bit floating point parallel 

multiplication, N×N  partial products are generated 

first  and then added to obtain the product [27]. The 

partial products may be added by using Full adder 

or Full adder and compressors.    In our algorithm, 

we add partial products pair-wise by means of CSD 

adders. We represent all intermediate results in CSD 
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format and perform all additions using CSD adders. 

Finally, we convert the product into binary 

representation.  

Multiplication Algorithm 

<Input> 

X and Y : Multiplicand and multiplier 

respectively (Both are N Bits). Both are 

signed digit floating point numbers. 

<Output> 

 Sum : the products of X and Y 

Algorithm 

Step 1: Generate N×N  bits partial products using 

Baugh-Wooley’s method. 

Step 2: Add the partial products using CSD adders. 

Perform the additions at each level in the tree in 

parallel. 

Fig. 4(a) illustrates an example of 4 bit 2's 

complement signed numbers multiplication. From 

the CSD multiplication algorithm it can observed 

that, multiplication algorithm consists two parts.  

(I) Partial Product Generation. 

(II) Partial Product Addition. 

Partial product generation is described in this 

section and the partial product addition stage is 

already described in the previous section. 

 

CSDC Based Partial Product Generator: 

In normal array multiplication the partial products 

can be achieved by normal AND operation. In the 

CSD architecture the partial products has been 

generated by CSDC encoding technique, because 

CSD encoding techniques considering positive as 

well as negative sign. In this technique the AND 

operation has been accomplished by considering 

each bit including its sign. Partial product 

generation technique for CSD multiplication can be 

implemented from Table 1, and the gate level 

implementation for Table 1 is shown in Fig. 4 (b). 

The Boolean expressions for the partial product Pi 

and its sign (signPi ) are expressed below. 

hi �  �iji                          (10) kN3�hi �  hi�Signx@ ⊕ Signy@�                 (11) 

 

Table 1 Truth Table implementation for partial 

Product generation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.3  Twiddle Factor Generation using 

Minimum Constant Multiplication 
 

In this subsection we are concentrating on the 

generation of real and imaginary parts of different 

twiddle factors. The resolution of this generation is 

based on the factor resolution around the unit circle 

of wN. For a small range of the twiddle  factor, 

algebric method is advantegious to calculate the 

twiddle factors, because only four terms i.e., (+1,-

 

 

 
(a) 

 
(b) 

Fig. 4. (a) CSD Multiplication Technique;  (b): 

Gate Level implementation Diagram for partial 

products 
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1,+j,-j) are generated for that case. For large values 

of ‘n’ we are simple considering the octave  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

symmetry of the twiddlw factors, because all the the 

range of the twiddle factor lies in between the range 

of (0<m<Π/4). For a W8-multiplier this leads to that 

only a multiplication by either 1 or sin n_   (=Cos n_ ) 

 is required. This can easily be realized using a 

multiplexer selecting between the input and the 

output of a constant multiplier with coefficient sin n_ .  

For the W16 multiplier a number of different 

approaches have been proposed. In [26] a W16-

multiplier based on the trigonometric identity sin 2m 

= 2 sinmcosm was introduced. Hence, as 2 na � n_  is 

possible to compute all the three required values for 

a W16 multiplier using only two multipliers with the 

constant values sin na and cos n_. Note that 

multiplication by two is equivalent to a left-shift,  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

and, hence, is not considered as a multiplication. 

The structure shown in Fig. 5 is slightly modified 

compared to that in [26] as two multiplexers and 

two de-multiplexers are added at the output to allow 

multiplication by 1 in the structure. The control 

signal requirement for generation of the twiddle 

factors are summarized in table 2. 

3.4 Multiplier and Accumulator (MAC) 

 

MAC is the composition of adders, complex 

multipliers and accumulators.  Complex multiplier 

and adder delays play an important role for the 

design of MAC. For the enrichment of the speed 

operation, Canonical Signed Digit  [19] is used. One 

                                 

Table 2 Requirement of the control signal for twiddle factor generation 

s0       s1        s2        s3      s4 Real Part of  

 twiddle factor 

Imaginary Part of  

twiddle factor 

0        1           0        0        0 

 

0        0           1        0        1 

   

1        0           1        1        0  

  

0        0           1        1        1 

  

0        1           0        1        1  

           1           cos na  

           cos n_  

           sin na   

              

            0 

            0           sin na   

           sin n_   

 

         cos na  

 

              1  

Fig. 5. Twiddle factor generation circuit 
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implementation of the multiplier could be as a 

canonical signed digit multiplier [19]. The inputs of 

MAC are coming from two external circuitry, i.e., 

twiddle factor generation circuits and input vector 

rotational circuits. The multiplication circuits are 

performing the complex multiplication and give the 

results to the adder. The function of the adder block 

is performing the accumulation of the results, and 

then the results are stored in the memory locations. 

The function of the conventional MAC unit is given 

by the following equation: 

p � ∑ Oii qi              (12) 

Fig. 6 indicates the functional block diagram of the 

MAC. The design consists of one N CSD multiplier 

[19], one N+2 bit accumulator register, one control 

logic/DeMUX block, one N bit register. The two N 

bit numbers are multiplied and stored in 2Nbit 

registers. In first clock pulse the numbers are 

multiplied and the result is added with zero. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 6.  Functional Block diagram of MAC 

 

4 Results and Discussion 

 

Transistor level simulation was performed 

using Spice Spectre simulator using 90nm CMOS 

technology with 1 volt power supply. Dual threshold 

voltage (VT) operating mode was considered for 

simulation to determine the performance 

parameters. The proper choice of threshold voltages 

for a particular transistor in the circuit is based on a 

number of logics as described below: 

a. Placement of high-VT transistors on the 

leakage path directly between supply and 

ground reduces the sub-threshold leakage 

current and hence static power. 

b. Placement of low-VT transistors on the 

signal propagation path from the input node 

to the output improves the performance 

substantially. 

c. A logical intersection of the conditions 

illustrated in (a) and (b) requires an 

optimized choice that leads to the minimum 

EDP.  

Proper modifications at the device, circuit and 

architectural levels of design hierarchy reduce the 

Energy Delay Product (EDP) for the proposed 

design. Transmission Gates (TG) are used for the 

design of different modules for faster operation and 

better logic transformation. 

Input data was taken in a regular fashion for 

experimental purpose. The delay and the power 

measured using the worst-case pattern and from the 

output where the delay is maximum. The individual 

performance parameters such as propagation delay, 

dynamic switching power consumption of the 

individual circuit modules, i.e., twiddle factor 

generator, MAC, CSD Adder, Input vector rotation 

matrix is shown in Fig. 7.  
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Fig. 7. (a)  Propagation Delay (µs) (b) Dynamic 

average power consumption analysis of different 

circuit modules as a function of Input Number of 

Points. 

 

We focused our main concentration for reducing the 

propagation delay, dynamic average power 

consumption and energy delay product. Fig. 8 

indicates the performance parameters such as 

propagation delay, and dynamic switching power 

consumptions and energy delay product analysis 

proposed DFT processor. All the mentioned 

designed have been simulated in using same 

technology through spice spectre simulator for the 

comparison purpose. Fig. 9 represents the graphical 

analysis of comparison results for performance 

parameters such as propagation delay and dynamic 

switching power consumption, and energy delay 

product of different architectures.  From the 

simulation result analysis we can claim that, 

incorporation of TG with dual threshold voltage 

CMOS technology may be the plausible choice in 

future technology for high speed DFT processors. 
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Fig. 8. (a)    Propagation Delay (µs), (b) Dynamic 

Average Switching Power (mW), (c) Energy delay 

product (10
-15

 J-s) analysis of the proposed DFT 

processor as a function of Input Number of Points. 
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Fig.  9.   Comparison results such as (a) Propagation 

Delay (µs), (b) Dynamic Average Switching Power 

(mW) consumption (c) Energy delay product (10
-12

 

J-s) analysis for different architectures.  

Layout of the proposed 16 point DFT processor has 

been implemented using L-Edit V-13 of T-Spice 

simulator with 90 nm CMOS technology and is 

shown in Fig. 10. Layout area was found to be  only 

~12 mm
2
 . The proposed DFT offered 73% and 55% 

improvement in terms of speed and power 

consumption respectively, in comparison with 

systolic array based implementation with operating 

voltage of 1v. Whereas, the corresponding 

improvement in terms of propagation delay and 

power was found to be 48% and 30% respectively, 

with reference to the reduced memory based 

implementation. 

 

 

 

 

 

 

 

Fig. 10. Layout of 16-point Discrete Fourier 

Transformation (DFT) processor using Circular 

Convolution Technique. Layout was  implemented 

using L-Edit V-13 of T-Spice simulator and area 

was ~12mm
2
 . 

5 CONCLUSIONS 

In this paper we report on transistor level 

implementation of a high speed DFT processor 

based on circular convolution technique. The 

implementation methodology of circular 

convolution architecture has been designed using 

MAC, which ensure the single kernel 

implementation, leading to the substantial reduction 

in the propagation delay. CSD 

multiplication/addition methodologies have been 

utilized, to increase the operating speed of such 

DFT processors. The transistor level implementation 

was carried out using Spice Spectre and obtained 

results were compared with the mostly used 

architectures like systolic array, distributed 

arithmetic, and reduced memory based 

implementation.  The proposed DFT  processor 

offered 73% and 55% improvement in speed and 

power consumption respectively, compared to  

systolic array based implementation. Whereas, the 

corresponding improvement in terms of propagation 

delay and power was found to be 48% and 30% 

respectively, with reference to the reduced memory 

based implementation.  
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