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Abstract: - This paper deals with generalization of the Brayton-Moser network decomposition and related 
structural properties to a relatively large class of finite dimensional strictly causal systems, which can be 
described in the state-space representation form. The resulting energy-metric function is defined for dissipative 
systems and is induced by the output signal dissipation power. It is demonstrated that such a power-oriented 
approach determines both, the structure of a system representation as well as the corresponding system state 
space topology. A special form of physically correct internal structure of an equivalent state space 
representation has been derived as a natural consequence of strict causality, the state-space energy 
conservation, dissipativity assumption and the state minimality requirement. 
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1 Introduction 
It is well known that a large class of real world 
systems admits modelling based on Hamilton`s 
principle of clasical mechanics either in the form of 
Euler-Lagrange equations or in the form of 
Hamilton canonical equations [1]. In deriving both 
the sets of equations a crucial role plays a 
representation of the energy storage in the system. 
Although the Hamilton principle was originally 
formulated for mechanical systems only, from a 
general point of view the specific physical nature 
of the system is immaterial. Despite of almost 
generally accepted opinion that both, the energy-
based paradigm as well as system conservativity 
are necessary for construction of physically correct 
system representations, there are also known some 
approaches in which a power-based paradigm 
plays the key role. Most of them are based on the 
general concept of state [2], [3]. One of resulting 
network models is known as the Brayton-Moser 
equations [4], [5]. The another one is known as the 
Nosé-Hoover dynamics 
 
 
2 Problem Formulation 
The well known Brayton-Moser equations, 
resulting from a special choice of state variables in 
electrical circuits theory, represent one of the most 

important systematic tools for formulation of state 
space equations for nonlinear networks. The 
network is considered as an abstract system, i.e. as 
a collection of components joined to a box inside 
which all the connections are made. In fact, these 
connections represent a set of internal and external 
interactions between system components which are 
considered as a set of workless constraints on the 
component variables. There are four kinds of 
electrical network components: inductors, 
capacitors, resistors and sources. Because resistors 
and sources are both specified by voltage-current 
constitutive characteristics it seems natural to 
consider them as a same kind of components; thus 
for both the term converter will be used. 

From a mathematical point of view the 
dynamical behavior of a nonlinear electrical circuit 
may in principle be described by a set of state 
equations – set of first order ordinary nonlinear 
differential equations  

{ }1 2( , , , ) ,  1, 2, ,i i n ix f x x x v i n= + ∈� " "      (1) 

together with output equations 

{ }1 2( , , , ),  1, 2, ,k k ny h x x x k p= ∈" "        (2) 

where the variables x1, x2,…xn are the state 
variables, the variables  v1, v2, … vn  represent the 
effect of inputs, and the variables y1, y2,…yp 
represent the observed outputs. 
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Any such mathematical structure is called state 
space representation of the electrical network. The 
state variables may be taken as coordinates of a 
vector referred to a basis in a Euclidean space of n 
dimensions, called the state space of the system 
representation. Each solution of the state equations 
determines a state space trajectory.  

Any state space representation having a 
particularly simple or useful structure is called 
canonical. It will be demonstrated that one of the 
most effective electrical network canonical state 
space representations, the Brayton-Moser 
equations, can be interpreted as a direct 
consequence of a very special state space 
decomposition.  

In this paper, a class of linear and especially 
nonlinear systems is discussed from the abstract 
system state energy point of view. A conceptually 
new approach is based on the idea that abstract 
state space energy can be measured by a distance 
of the actual state x(t) from the equilibrium. Thus a 
metric is defined ρ[x(t), x*] and used as a key for 
definition of a new concept of abstract state-space 
energy E(x) [6, 7, 8, 9]. 
 
 
3 Classical form of Brayton - Moser 
Network State Space Decomposition  
Let v and i be vectors whose entries are the 
voltages and currents of the network components. 
The total network power is given by scalar product 

,P v i=                                         (3) 

     Thus for voltage and current variations the 
corresponding differential in power is given by 

dP dG dJ= +                                    (4) 
where dG and dJ are defined by  

, ,    ,dG i dv dJ v di= =                    (5) 

and represent differentials in total network content 
and the total network co-content, respectively.  
     For converters, integrals of these quantities may 
be interpreted in terms of areas on constitutive 
characteristics. On the other hand for inductors and 
capacitors no such interpretation is possible. What 
is really important is that the total network content 
and total network co-content, defined by these 
integrals, are zero when evaluated along any 
curvilinear arc in the state space. For any 
instantaneous value of the state we may put 

( ) ,    ( )dv dii C v v L i
dt dt

= =                      (6) 

where C(v) and L(i) are matrices whose elements 
are the appropriately evaluated values of an 
incremental capacitance and incremental 
inductance, respectively.  
     Now, since all the converter variables are 
determined by the state variables together with the 
converter constitutive characteristics, we may 
define a power-like scalar function Q(i,v) of 
currents i(t) and voltages v(t) [10-12], and use it to 
derive the Brayton-Moser canonical form of 
equations: 

( )
Tdi QL i

dt i
∂ = −  ∂ 

                     (7) 

( )
Tdv QC v

dt v
∂ = −  ∂ 

                      (8) 

Example 1.  For further motivation and deeper 
understanding the following example of 6th order 
electrical circuit with two nonlinearities, as 
introduced in the Fig. 1. seems to be useful.  
 

1V

1R

2V

2R

3R

1L 2L

3L

1C 2C

3C

1N 2N

 
Fig. 1. Example of nonlinear electrical network 

 
     The content of all tree converters reads 

2 2 2
2 2 2 2 3 3 1 1 1 1

1 1 1
2 2 2tree L L L L LG R i v i R i v i R i= − + − +   (9) 

the corresponding co-content is given by the 
expression 

1 2

1 1 2 2
0 0

( ) ( )
C Cv v

chords C C C CJ f v dv f v dv= +∫ ∫        (10) 

the tree structure is described by the interaction 
matrix 

1 0 0
0 1 0
1 1 1

D
 
 =  
 − − 

                            (11) 

and the power-like function Q can be specified 
using the general expression 

T
tree chordsQ v Di G J= + −             (12) 
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 Its explicit final form for the given network reads 

1 2

1 1 2 2 3 1 3 2 3 2

2 2 2
2 2 2 2 3 3 1 1 1 1

1 1 2 2
0 0

1 1 1
2 2 2

( ) ( )
C C

C L C L C L C L C L

L L L L L

v v

C C C C

Q v i v i v i v i v i

R i v i R i v i R i

f v dv f v dv

= + − + −

+ − + − +

− +∫ ∫

     (13) 

It contains all the necessary information for 
specification of the state equations of the given 
nonlinear network in the so called Brayton-Moser 
canonical form:  

1
1 1 3 1 1 1

1

2
2 2 3 2 2 2

2

3
3 3 3 3

3

1
1 1 1

1

2
2 2 2

2

3
3 1 2 3

3

( )

( )

L
C C L

L

L
C C L

L

L
C L

L

C
L C

C

C
L C

C

C
L L L

C

di QL v v v R i
dt i
di QL v v R i v
dt i

di QL v R i
dt i

dv QC i f v
dt v

dv QC i f v
dt v

dv QC i i i
dt v

∂
= − = − + + −

∂
∂

= − = − − − +
∂
∂

= − = −
∂
∂

= = −
∂
∂

= = −
∂
∂

= = − + −
∂

    (14) 

 
 
4 State Space Energy Based 
Generalization of Conservation Laws 
for Dissipative Systems  
The class of frequently postulated mathematical 
models of many physical systems is usually 
restricted to classical conservative Hamiltonian 
systems, i.e. without any energy dissipation. In such 
systems a total stored energy is not allowed to 
change in time. In many cases such restriction is 
not  adequate to real situations. 

Let us now consider an abstract structure 
shown in the Fig. 2.  

 
Fig. 2.  Decomposition of a system with dissipation 
 

The recently proposed new concept of the state 
space energy (SSE) [8], [9], is closely related to the 
classical concept of total system energy (TSE), but 
both the notions must not be confused in general.  

There are at least three fundamental differences 
between them:  
• at first, the classical concept of TSE is directly 
connected to the knowledge of a specific physical 
nature of the system under consideration (e.g. 
physical, biological, chemical, mechanical, etc.), 
whereas the concept of the SSE is a pure 
abstraction which has been defined quite 
independently of any priori  physical knowledge . 
• at second, the concept of SSE is defined 
exclusively as a function of state without any regard 
to a set of (physical or abstract) system parameters.  
• at third, the concept of SSE is defined in such a 
way that in general it represents only that part of 
the total system energy, which is accumulated in 
the actual state of the system under consideration, 
i.e. it represents a property of the state space only, 
and does not include any effects of actual inputs. In 
contrary to the TSE which is closely related to the 
total power the definition of the proposed concept 
of SSE is based on the so called output dissipation 
power only. We start with some basic ideas of the 
state space energy based approach [9].  

Let P0(t) ≥ 0 denotes the instantaneous value 
output dissipation power of a zero-input causal 
system with informational output  y(t) defined by:  

0 0( ) ( ) ( ) 0,y t P t P t= ± ≥            (15) 

Notice that for a conservative system, i.e. for 
zero dissipation power, no information can be 
gained by measurement the output.  

Let E(t) denotes the instantaneous value of the 
state space energy stored in a state vector x(t) 

0

0 0( ) ( ) ,  :  
t

E t P d t t tτ τ
∞

= ∀ =∫           (16) 

The following differential form of an abstract 
state space energy conservation principle holds 

0 ( )( ), ( ) P t
dE x f x
dt

ψ = −=            (17) 

where ψ is the gradient vector of the state space 
energy potential field E, f  is the state space 
velocity vector, and the symbol 〈.,.〉 denotes the Lie 
derivative in form of the dual product operation. 
Because the choice of origin and of the state space 
coordinate system is free we can without any 
restriction of generality define the gradient vector 
ψ(x) of the energy E in its most simple form  

   ( )
n

T 2
i

i=1

x x
1E = x
2

ψ = → ∑                  (18) 

where n is the order of the system representation.  
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Example 2. In order to illustrate the idea of the 
state space energy conservation principle the 
following 4th order system representation is 
introduced 

  +

  +

1 1 2 2

2 2 1 3 3

3 3 2 4 4

4 4 3 5 5

1 

x = - x   + x
x = - x x
x = - x   + x
x = - x x
y = x

 ω
ω σ
σ ω
ω σ

1

1±

∆

∆

�
�
�
�                     (19) 

The state space energy E(t) is given by  

1 1 1 1( ) [ , , , ] [ ]T 2 2 2 2
1 2 3 4x x x x x

1E= x x x x
2

ψ = → + + +   (20) 

the dissipation power 0 ( ) 0P t ≥  is defined by: 
2

0 1
2 ( )( ) tP t y x1= = ∆                       (21) 

and the state space energy conservation law reads:  

     
2
1

0 ( )

( )

( ) ( )
2 2 1 2

4 4 43 3 2 3 3

dE x x x
dt

x x x x P t

ω ω

σ σ ω ω

1= −∆ −

− − = −

+ +

+ +
(22) 

where ∆1 is the dissipation parameter, ω2, ω4 are 
eigen-frequencies of two oscillating subsystems 
and σ3 is the interaction parameter, representing the 
interaction between both the 2nd order subsystems.  
     The other terms determine a “total exchange 
power” PE 

1 1 3 2 2 3 3 3( , ) ( ) ( )EP ξ η ξ η η ξ η η ξ η= − + + −    (23) 

where 2| |ω� and 4| |ω� represent absolute values of 
the “frequency fluctuations” defined by 

2 1 2 1 2 2

4 3 4 3 4 4

| | | |    
| | | |

s s
s s

ω ω ω ω
ω ω ω ω
= = −
= = −

�� �
�� �

              (24) 

      Similarly 3| |σ�  represents an absolute value of 
the “interaction fluctuations” defined by 

3 2 3 2 3 3 2 { 1,1}| | | |,    s s sσ σ σ σ −= = − ∈�� �   (25) 

and the binary parameters sk, k∈{1,2,…n-1} define 
a “spin structure”. 

Observation 1: It is worthwhile to notice that for 
all values of the frequency parameters ω2, ω4 and 
for arbitrary value of the interaction parameter σ3 
the positivity condition of the dissipation parameter 
∆1 is necessary and sufficient for strict dissipativity 
of the complete system representation (19). 

Observation 2: Notice that for zero value of the 
interaction parameter σ3=0 the system degenerates 
to two isolated 2nd order subsystems: the first 
subsystem remains dissipative, but the other one 

will become conservative. Thus the same kind of 
the state space decomposition appears as that 
introduced in connection with the Brayton-Moser 
canonical form.   

Observation 3: Notice further that for a special 
case of zero dissipation parameter ∆1=0 the system 
representation becomes conservative for any value 
of the interaction parameter σ3 without any regard 
to values of frequency parameters ω2, ω4. 

The nth -order system has 2n-1 possible sign-
combinations of frequency- and interaction 
parameters, i.e. spin parameters sk. Thus for the 
4th-order system there are just 8 possible “spin 
structures”, corresponding to 8 different, but state 
equivalent, system state space representations: 

  +

 

1 1 2 2

2 2 1 3 3

3 3 2 4 4

4 4 3

1

u(t)x = - x   + x
x = - x x
x = - x   + x
x = - x
y(t) =  x

 ω
ω σ
σ ω
ω

1

1∆

± ∆

�
�
�
�

  

  +

 

1 1 2 2

2 2 1 3 3

3 3 2 4 4

4 4 3

1

u(t)x = - x   - x
x = x x
x = - x   + x
x = - x
y(t) =  x

 ω
ω σ
σ ω
ω

1

1∆

± ∆

�
�
�
�

 

      

  -

 

1 1 2 2

2 2 1 3 3

3 3 2 4 4

4 4 3

1

u(t)x = - x   + x
x = - x x
x =   x   + x
x = - x
y(t) =  x

 ω
ω σ
σ ω
ω

1

1∆

± ∆

�
�
�
�

            . . . etc.        (26) 

The courses of the state space energy for 
corresponding spin structures with parameter 
values ω2 = ±1, σ3 = ±1, ω4 = ±1 and for the 
dissipation ∆1 = 0.1, i.e. for |ω2| = 1, |σ3| = 1, |ω4|= 
1, are displayed in the Fig.3. for illustration. 
 

 
Fig. 3.  Courses of the state-space energy E(t). 

 
Let a concept of the state space hyper-energy J 

be defined by integration of the state space energy: 
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1

0

( ) ,
t

t

J E dτ τ= ∫    1t →∞                      (27) 

It is important to note that the new concept of 
the state space hyper-energy J, divided by the 
length of the time interval T=[t0,t1], defines a mean 
value of  the state space energy E[x(t)] on [t0, t1]. 

The rate of dissipation of the eight different 
state space energy courses, shown in the Fig. 3. 
may be evaluated by means of the state hyper-
energy in dependence on the 8 possible spin 
structures as follows from  the Table 1. 
 

 
Spin 

struct. 
{s1,s2,s3} 

 

2ω

1s
 

 

3σ  
2s  

 

4ω

3s
 

 
Hyper-
energy 

J 

 
Normalized 
inverse of J 

P 

S1 1 1 1 27.6 1 
S2 -1 1 1 49.5 0.56 
S3 1 -1 1 68.5 0.4 
S4 -1 -1 1 52.6 0.53 
S5 1 1 -1 47.6 0.58 
S6 -1 1 -1 71.5 0.39 
S7 1 -1 -1 50.5 0.55 
S8 -1 -1 -1 32.6 0.85 

 
Table 1. Hyperenergy based system evolution and 

its probabilistic interpretation 
 

Recall that the concept of the hyper-energy has 
no meaning for Hamiltonian systems. The reason is 
that for any non–vanishing constant energy E(x) = 
const. > 0, the definition integral would diverge. 
Hence due to mathematical reasons, the 
dissipativity axiom is necessary.  

Notice that the normalized inverse value of the 
state space hyper-energy may be interpreted as a 
probabilistic measure P on the complete set of 
possible state space trajectories. By this way we 
can try to decide which spin structure of the 
equivalent state space representations is the most 
likely to be realized. 

Observation 4: Possibility of the probabilistic 
interpretation above, together with a modified 
Hamilton`s optimality principle, obviously opens 
new perspectives to blend some fundamental 
concepts of the classical Hamiltonian mechanics, 
(deterministic) chaos theory, and the (probabilistic) 
quantum theory. 

Observation 5: It is worthwhile to notice that 
the last equation in (19) says that no information 
about the internal system behavior can be gained 
by measurement the output, if dissipation 
parameter ∆1 vanishes.  

Observation 6: The last equation in eqn. (19) 
should be interpreted as a plausible signature of 
necessity of a Heisenberg-like uncertainty 
principle not only in the quantum theory. 

The topological structure of the 4th order 
example of the dissipative system representation 
(19) is displayed in the Fig. 4. for illustration. 

Σ ∫

2-ω2ω

1x� 1x

Σ∫

3-σ 3σ

1∆
1()y t

2x 2x�

Σ ∫

4ω 4-ω

3x� 3x

1-∆

( ) 0u t =

Σ∫
4x 4x�

 
Fig. 4.  Topological structure of the 4th order linear 

dissipative system representation. 
 

If the state representation (19) is given, it is easy 
to determine the corresponding 4th-order ordinary 
homogenous differential equation: 

(4) (3) (2)
1 2 3 4(t) (t)x (t) x (t) x (t) x + x = 0a+ a + a + a �    (28) 

where the parameters ak for k=1,2,3,4 are given by 
nonlinear  parameter space transformation 

1

1

2 2 2

2 3 4
2 2

3 4
2 2

2 4

1

2

3

4

( )

a
a
a
a

ω σ ω
σ ω

ω ω

∆

∆

=

= + +

= +

=

                (29) 

On the other hand, the energy motivated state 
space representation (19) exists if and only if the 
corresponding parameter space transformation is 
real and  invertible.   

Expressing the algebraic structure of the state 
space representation in a semi-linear vector-matrix 
form as follows 
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{ }: ( ) ( ) ( )
( ) ( ),

x t A x t Bu t
y t C x t

ϕℜ = +
=

�
               (30) 

it becomes obvious that it can be generalized for a 
general class of strictly causal systems of any finite 
order n as follows: 

1 2

2 3

3 4

4 5

5

1

0 0 0 0 0
0 0 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0
0 0 0 0 0 0

n n

n

A

ω
ω σ

σ ω
ω σ

σ

σ ω
ω

−

−∆ 
 − 
 −
 − =  −
 
 
 −
 

−  

"
"
"
"
"

# # # # # # # #
"
"

(31) 

1 0 0 0 0 0C  = ± ∆ "          (32) 

Observation 7: From a system-theoretical point 
of view the strictly Hamiltonian systems, as a 
limiting case of the dissipative structure (31), (32) 
for ∆1→0, have to be excluded because of 
impermissible idealization.  

It is of crucial importance to realize that the 
essential structural features of the proposed state 
space energy approach are independent of the 
standard assumptions of linearity and time-
invariance. 

Postulating validity of a Hamilton optimality 
principle, it can be concluded that the most 
probable spin structure to be realized is {1, 1, 1}. It 
corresponds to minimum mean value of the state 
space energy E(x).  

If we interpret normalized inverse state hyper-
energy P as a proper probability measure on the 
space of allowed values of the state energy E(x) we 
are able to prove that even by means of a periodic 
spin structure switching even a controlled 
quantum-chaotic behavior can appear.  
Example 3: Let us illustrate the idea by applying it 
to the Josephson junction, (as an example of a 
nano-structure), in form of a 4th-order bilinear 
system representing two oscillators in a weak 
interaction σ3: 

                    

  +

 

1 1 2 2

2 2 1 3 3

3 3 2 4 4

4 4 3

1 

u(t)
u(t)

x = - x   + x
x = - x x
x = - x   + x
x = - x
y = x

 ω
ω σ

σ ω
ω

1

1±

∆

∆

�
�
�
�

              (33) 

Parameters ω2, ω4 may be seen as frequencies of 
two isolated oscillating subsystems. The 

superconductivity assumption implies that ∆1→0, 
the system becomes conservative, and behavior of 
its state becomes unobservable by the output. 

 On the other hand, using u(t) as an external 
input, the behavior of state may be controlled by a 
properly chosen signal u(t), e.g.: 

    u(t) = sign[v(t)],κ v(t) = sin(2πft/30)          (34)    

Some results of simulation experiments for 
parameter values   

                 1, ,2 4
2 1
3 2

ω ωπ κ == =                    (35) 

shown in the Fig. 5. and 6. illustrate the essence of 
the proposed quantum-chaos oriented approach. In 
the 3-D projection shown in the Fig. 5., the 
chaotic-like nature of the system trajectories  
obviously dominates. 

 
Fig. 5.  Projection of the quantum-chaotic-like 
behavior into a 3-D subspace of the state space. 

 
In contrary, the 2-D projection shown in the Fig. 

6. suggests that the quantum-like nature of the 
system behavior should not be ignored, too. 

 
Fig. 6.  Projection of quantum-chaotic system 

behavior into the state plane (x3, x4). 
 

It is important to stress that in the example above 
the chaotic behaviour is undetectable by the output, 
or externally un-measureable because of the 
conservativity. In contrary to this, in the dissipative 
chaos, where the system behaviour is observable by 
output, the state space energy conservation law 
holds in the average only.  
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5 State Space Energy Conservation 
for Brayton-Moser Decomposition 
In general case the results obtained may be 
expressed in the following vector form: 

[ ]
[ ]

( ) :   , ( )

             

S x f x u Fx Gu x

y h x Hx

φℜ = + +

=

� �

�
         (36) 

For considered example 1. of the Brayton-
Moser system decomposition the matrices F and G 
take the form: 

11

22

33

0 0 1 0 1
0 0 0 1 1
0 0 0 0 1
1 0 0 0 0 0
0 1 0 0 0 0
1 1 1 0 0 0

F

α
α

α

− − 
 − − − 
 −
 
 
 
 
− −  

�  , 

1 0
0 1
0 0
0 0
0 0
0 0

G

 
 
 
 
 
 
 
 
  

�    (37) 

Thus the general structure of system 
representations obtained by Brayton-Moser 
canonical state space decomposition may be 
visualized by the structural diagram shown in the 
Fig. 7. 

Σ ∫
ξ�

( )dh ξ
dy

1G ξ

12F

11F

12
TF−

Σ∫

Φ(.)( )ch η

η η�

cy

u

 
Fig. 7.The Brayton-Moser state space 

decomposition 
 

As a consequence of the Brayton-Moser state 
space decomposition a corresponding system 
decomposition arises and may algebraically be 
expressed by matrix decomposition  

11 12
21 12

21 22

,   TF F
F F F

F F
 

= = − 
 

                (38) 

where the submatrix F12 is defined by the matrix D 
in the form 

  12

1 0 1
0 1 1
0 0 1

F
− 
 = − − 
  

                          (39) 

and represents the interaction matrix between two 
3rd order isolated subsystems characterized by 
submatrices F11, F22. The submatrix F11 represents 
the strongly dissipative subsystem with real 
negative roots of the corresponding characteristic 
polynomial 

[ ]
1

11 11 2

3

1 2 3

0 0
( ) det det 0 0

0 0
         ( )( )( )

s R
F s sI F s R

s R
s R s R s R

+ 
 = − = + 
 + 

= + + +

 (40) 

and the second one described by zero matrix F22 = 
0, is strongly conservative with zero roots of the 
corresponding characteristic polynomial 

[ ] 3
22 22

0 0
( ) det det 0 0

0 0

s
F s sI F s s

s

 
 = − = = 
  

     (41) 

For the two dimensional vector input signal  

1

2

u
u

u
 

=  
 

                           (42) 

representing the two voltage sources as displayed in 
the Fig. 1. we obtain the corresponding input 
matrix decomposition in the form 

1 2

1 0 0 0
0 1 ,   0 0
0 0 0 0

G G
   
   = =   
      

             (43) 

Finally the nonlinear interaction term, which 
can be interpreted as a vector feedback control 
signal, is determined by  

1 1

1 2 2 2

0 ( )
0 ,   ( )
0 0

φ η
φ φ φ η

−   
   = = −   
      

                       (44) 

As a result the state space velocity vector field is 
given by 

11 12 1 1

12 22 2 2

( , )
( , )

F F G v
F F G v

ξ ξ η φ ξ η
η ξ η φ ξ η
= + + +
= − + + +

�

�
              (45) 

and hence, similarly as the state vector x, it is 
decomposed into the dissipative and conservative 
vector components: 
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1

2 2

3 3

,    
ξ η

ξ ξ η η
ξ η

   
   = =   
     

� �
� � � �

� �
                          (46) 

Because of skew-symmetry of the total interaction 
matrix 

12

12

0
0I T

F
F

F
 
 − 

�                                (47) 

a nonvanishing interaction between both the 
subsystems exists but from energy transfer point of 
view it is completely neutral. Thus the state space 
energy may be decomposed: 

  ( , ) ( ) ( )D CE E Eξ η ξ η= +                  (48) 

2 2 2
1 2 3

2 2 2
1 2 3

1( ) ,
2
1( )
2

D

c

E

E

ξ ξ ξ ξ

η η η η

 + + 

 + + 

�

�
                    (49) 

Computing the Lie derivative of the state space 
energy along the network state space representation 

       

1 1 1 1 3 1

2 2 2 2 3 2

3 3 3 3

1 1 1 1

1 2 2 2

3 1 2 3

( )
( )

R v

R v

R

ξ ξ η η

ξ ξ η η

ξ ξ η
η ξ φ η
η ξ φ η
η ξ ξ ξ

= − − + +

= − − − +

= − +
= −
= −
= − + −

�
�
�

�
�
�

                    (50) 

for the total power ( )DP t of the dissipative 
subsystem we obtain the expression 

( )

1 1 2 2 3 3 ( )

2
1 1 1 1 2 2 2 2 3 3

( )
,

( )

( ) ( ) ( , ) ( )

D D

S

S

E D

s

dE E
dt

v R v R R P P t

ξ
ξ

ξξ ξξ ξξ

ξ ξ ξ ξ ξ ξ η

ℜ

ℜ

ℜ

∂
=

∂

= + +

= − + − − −

�

� � �

�

(51) 

and for the total power PC(t) of the conservative 
one we get 

( )

1 1 2 2 3 3 ( )

1 1 1 2 2 2

( )
,

( )

( ) ( ) ( , ) ( )

C C

S

S

E C

s

dE E
dt

P P t

η
η

ηη η η η η

η φ η η φ η ξ η

ℜ

ℜ

ℜ

∂
=

∂

= + +

= − − +

�

� � �

�

        (52) 

where the interaction term   

1 1 3 2 2 3 3 3( , ) ( ) ( )EP ξ η ξ η η ξ η η ξ η= − + + −   (53) 

in contrary to the other active power components of 
both the individual subsystems is of a reactive 
nature, and obviously represents the exchange 
power between these subsystems. 

Because the internal interactions of the system 
are neutral both the reactive powers are 
compensated, and thus we obtain: 

( , ) ( ) ( )D CP P Pξ η ξ η= +                       (54) 

As a consequence the total system power is of 
active nature: 

1 1 1 1 2 2 2 2
2

1 1 1 2 2 2 3 3

( , ) ( ) ( )
( ) ( )

P v R v R
R

ξ η ξ ξ ξ ξ

η φ η η φ η ξ

= − + −

− − −
       (55) 

and it may be decomposed into the total input 
signal power PIS  

1 1 2 2( , )ISP v v vξ ξ ξ= +                           (56) 

delivered by both the ideal voltage sources, 
decreased by the amount of the total input 
dissipation  power PID given by 

2 2
1 1 2 2( ) [ ]IDP R Rξ ξ ξ− = − +                      (57) 

by the total feedback dissipation  power PFD, 
defined by  

1 1 1 2 2 2( ) [ ( ) ( )]FDP η η φ η η φ η− = − +                 (58) 

and by the total output dissipation power POD, 
defined by the instantaneous value of the output 
signal power inducing the output equation in a 
typical form of the eq. (19), (32) as follows 

 
2 2

3 3

3 3 31

( ) [ ( )]

       ( )
ODP y y t R

y t R

ξ

ξ ξ∆

− = − = −

= =
                    (59) 

 
 
6 Fundamentals of Non-Hamiltonian 
Nosé-Hoover Dynamics 
The interest of scientific community in control of 
natural processes has along history. In the 20th 
century numerous challenging control problems of 
molecular dynamics have been studied, especially 
in connection with automatic control of nuclear and 
chemical reactors. 

Major practical difficulties when controlling 
processes at the atomic and/or molecular level are 
closely connected with the tiny spatial size and the 
fast speed of the processes in the micro-world.  

Typically, an average size of a molecule of a 
chemical substance is of the order 10 nm, and 
average interatomic distance in a molecule is of 
order 1 nm. An average period of natural 
oscillations of a molecule is of the order 10-100 
femto-seconds, i.e. 10-14-10-13s.  
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Construction of devices for measurement and 
control at such spatiotemporal scales is an 
enormously hard scientific and technological 
problem. In such a way a new scientific-
technological field, which became known as the 
femto-chemistry, arose.  

There is certainly no surprise that besides of 
practical difficulties mentioned above also a variety 
of new challenging theoretical problems of the so 
called molecular dynamics appeared. Because of 
great number of interconnected particles (of the 
order 1023) new problems in the field of numerical 
simulation required development of new theoretical 
approaches, too. Since the beginning of the 1980s 
there has been a growing interest in modeling and 
control problems in classical and quantum-
theoretic formulation. One of the most promising 
theoretical tools is known as the Nosé-Hoover 
dynamics [13, 14] as a generalization of the well 
known classical Hamiltonian dynamics. 

It is now widely recognized that a concept of the 
geometrical structure plays a crucial role in 
classical as well as in the quantum-theory based 
dynamics. For instance, the numerical integration 
methods for ordinary differential equations 
preserving the geometrical structure of the 
underlying vector fields are likely to lead to more 
accurate long-term trajectory behavior than those 
more traditional methods ignoring the geometrical 
structure of the corresponding state space [16, 17]. 

Recall that according the Liouville`s theorem for 
divergenceless vector fields the time evolution of 
state trajectories under Hamiltonian dynamics 
conserves the state space volume element. Because 
of such special structure (called symplectic 
structure) the corresponding numerical integration 
methods are called symplectic integrators. 
Symplectic integrators represent a main tool of the 
conventional statistical mechanics [15], and have 
been applied to a broad class of Hamiltonian 
dynamical problems in classical as well as in the 
quantum-mechanical setting. The non-Hamiltonian 
dynamics characterized by non-vanishing 
divergence seems, at least from the theoretical 
point of view, to be significantly more satisfying 
because of assumed “state space compressibility”. 
Such situations typically arise in the treatment of 
non-equilibrium steady states and/or, for instance 
when treating mechanics of “thermostatted 
systems”. In order to summarize the main features 
of the non-Hamiltonian approach known as the 
Nosé-Hoover dynamics, consider an even order 
state space representation with the state vector  x: 

1 2[ , , , ]T
nx x x x= "                   (60) 

Following the standard approach of Hamiltonian 
dynamics, we divide the state variables xk, 
k∈{1,2,…,n} into two sub-vectors: the vector of 
coordinates q and the vector of moments p (of 
dimension n/2) [13, 14, 15]. 

Let the vector field f with components fi reads 
( ),     ( ) ( )i

i i
dx H xf x f x A x
dt x

∂
= = =

∂
�        (61) 

where H(x) is Hamilton function representing the 
total system energy and A(.) is n x n antisymmetric 
matrix:  

                       ( ) ( )T TA x A x= −                    (62) 
It follows from anti-symmetry of A(.) that it holds 

, 0
T

f
HL H f
x

∂ = = ∂ 
             (63) 

i.e. that Lie derivative of the Hamilton function 
according to the vector field f along the trajectories 
induced by the field f(x) vanishes. It means that the 
energy function H(x) is conserved along any 
trajectory generated by any vector field f(x). 

It is important to note that the energy function    
can in general be decomposed as follows: 

1
( ) ( , )

m

H x H x
α

α
=

=∑              (64) 

where the decomposition is of course not unique. 
Obviously, the decomposition of the energy     

induces a corresponding decomposition of the 
vector field 

1
( ) ( , )

m

f x f x
α

α
=

=∑              (65) 

and that of the Lie derivative  

1

m

L Lα
α=

=∑                      (66) 

where the Lie derivative operation L is defined by 

                             ( )i
i

L f
x

α α ∂
=

∂
                     (67) 

      It is not difficult to recognize that the Nosé-
Hoover approach is closely related to the proposed 
state space energy based approach. In fact, the 
essence of the Nosé-Hoover decomposition can be 
reduced to the special case of the state space 
energy based structures for limiting value of the 
dissipation parameter ∆1 = 0 and for properly 
transformed energy function H. 

For further motivation and deeper understanding 
several simple examples of closely related 4th-order 
system representations may be useful. 
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Example 4. (A 4th –order dissipative structure) 

11 2

2 22 3

3 33 4

4 44

0 0
0

=
0
0 0

A

ω
ω σ

σ ω
ω

−∆

−∆

−∆

−∆

 
 − 
 −
 

−  

        (68) 

Two coupled harmonic oscillators with 
interaction  parameter σ3, with four independent 
dissipation channels ∆kk, k=1,2,3,4, and with two 
eigen-frequences ω2, ω4.  

The characteristic polynomial A(s) of the matrix 
A is given in the form: 

4 3
11 22 33 44

2 2 2
2 4 3 11 22 11 33

2
11 44 22 33 22 44 33 44

2 2 2 2
11 4 33 2 22 4 44 2

2 2
11 3 44 3 11 22 33 11 22 44

11 33 44 22 33 44
2 2 2 2
2 4 11 22 4 33 44 2

( ) = ( )

(

)

(

)

A s s s

s

s

ω ω σ

ω ω ω ω

σ σ

ω ω ω ω

+ ∆ + ∆ + ∆ + ∆ +

+ + + ∆ ∆ + ∆ ∆

+∆ ∆ + ∆ ∆ + ∆ ∆ + ∆ ∆ +

∆ + ∆ + ∆ + ∆ +

∆ + ∆ + ∆ ∆ ∆ + ∆ ∆ ∆ +
∆ ∆ ∆ + ∆ ∆ ∆ +

+ ∆ ∆ + ∆ ∆ + ∆ 2
11 44 3

11 22 33 44

σ∆ +
∆ ∆ ∆ ∆

  (69) 

Example 5. (Parametrically minimal canonical 
structure of the state space energy based dissipative 
system representation) 

1 2

2 3

3 4

4

0 0
0 0

=
0 0
0 0 0

A

ω
ω σ

σ ω
ω

−∆ 
 − 
 −
 

−  

        (70) 

Two coupled harmonic oscillators with two 
eigen-frequences ω2, ω4. with interaction  
parameter σ3,  and with unigue dissipation channel 
∆1=∆11.  

The characteristic polynomial A(s) of the matrix 
A is given in the form: 

   
4 3 2 2 2 2

1 2 4 3
2 2 2 2

1 4 1 3 2 4

( ) ( )

( )

A s s s s

s

ω ω σ

ω σ ω ω

= + ∆ + + + +

∆ + ∆ +
  (71) 

Example 6. (A 4th –order conservative  structure) 

2

2 3

3 4

4

0 0 0
0 0

=
0 0
0 0 0

A

ω
ω σ

σ ω
ω

 
 − 
 −
 

−  

          (72)  

Two coupled harmonic oscillators with 
interaction parameter σ3, with zero dissipation, and 
with two eigen-frequences ω2, ω4.  

The characteristic polynomial A(s) of the matrix 
A is given in the form: 

4 2 2 2 2 2 2
2 4 3 2 4( ) ( )A s s sω ω σ ω ω= + + + +   (73) 

Example 7.  (A 4th –order symplectic structure) 

     

0 1 0 0
1 0 0 0

=
0 0 0 1
0 0 1 0

A

 
 − 
 
 − 

                  (74) 

Two uncoupled harmonic oscillators with the 
same normalized eigen-frequences  ω4 = ω2 =1 
The characteristic polynomial A(s) of the matrix A 
is given in the form: 

                          4 2( ) 2 1A s s s= + +    .        (75) 

Example 8.  (Structure of a 4th –order Nosé-Hoover 
system representation) 

0 1 0 0
1 0 0

=
0 0 0 1
0 1 0

p
A

p

 
 − − 
 
 − 

              (76) 

Two coupled harmonic oscillators with 
interaction  parameter p, with zero dissipation, and 
with two normalized eigen-frequences  ω4=ω2=1.  

The characteristic polynomial A(s) of the matrix 
A is given in the form: 

4 2 2( ) (2 ) 1A s s p s= + + +             (77) 

Comparing the characteristic polynomials eqn. 
(77) and (71) it follows that the structure of the 
Noseé-Hoover system representation (76) can be 
considered as a special case of the parametrically 
minimal canonical structure of the state space 
energy based dissipative system representation 
(70) for vanishing dissipation parameter ∆1 = 0. 
     Notice that the Hamiltonian energy function 
corresponding to the standard Nosé-Hoover 
dynamics for a single degree of freedom above is 
defined by 

22

( ) ( )
2 2

ppH x Φ q kT
Q
ηη= + + +        (78) 

The resulting state equations of the 4th –order 
Nosé-Hoover system representation read: 
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pq
m

=�   .                                 (79) 

                          nppp Φ
Q

= − −�                       (80) 

                          np
Q

η =�                                     (81) 

                          
2pp kT

mη = −�                        (82) 

and the corresponding internal structure can be 
illustrated by the structural diagram displayed in 
the Fig. 8. 

∫
1/m

q

p p�

η

Σ∫

2φ−

1/Q−

pη� Σ∫
1/m

∫

k−

1/Q
η�

pη

q�
2( )i

 
Fig. 8. Structure of the 4th order Nosé-Hoover 

system 
 
 
7 Parametric ambiguity of dissipative 
state representations and parameter 
space transformations 
Notice that set of binary parameters si, si∈{-1,+1} 
appeared as a consequence of the fact that the  
solution of the nonlinear set of equations (29) 
resulting from the state equivalence relation was 
not unique.  

     In the given context the logical variables si with 
values in a binary set play a similar role like spins 
in the quantum theory.  

Notice that a set of parameters ∆k, k = 1, 2,…,n  
represents the well known set of diagonal minors of 
the corresponding Hurwitz determinant important 
in the asymptotic stability theory [6, 7, 8].  

It is easy to prove that it is the case if and only if 
all the diagonal minors ∆1, ∆2, ∆3, . . ∆n. of the 
corresponding Hurwitz determinant Hn 

1

3 2 1

5 4 3 2 1

7 6 5 4 3

1 0 0 0 0
1 0 0

0
0

0 0 0 0 0

n

n

a
a a a
a a a a a

H a a a a a

a

…
…
…

� …
# # # # # # #
# # # # # # #

"

 (83) 

are real and positive. 
Let a 6-th order system representation is given. 

1 1 1 2 2

2 2 1 3 3

3 3 2 4 4

4 4 3 5 5

5 5 4 6 6

6 6 5

1 1

( ) : ( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ...

( ) ( )

S x t x t x t
x t x t x t
x t x t x t
x t x t x t
x t x t x t
x t x t

y t x t

ω
ω σ
σ ω
ω σ
σ ω
ω

∆

∆

ℜ =− +
=− +
=− +
=− +
= − +
=− ∆ +

= ±

      (84) 

     The corresponding transformation of the 
parameter space into the well known so called 
Frobenius structure reads: 

  

1

2 2 2 2 2
2 3 4 5 6

2 2 2 2
1 3 4 5 6

2 2 2 2 2 2 2 2 2
2 4 5 6 3 5 6 4 6

2 2 2 2 2
1 3 5 6 1 4 6

2 2 2
2 4 6

1

2

3

4

5

6

( )

( ) ( )

( )

a
a
a
a
a
a

ω σ ω σ ω

σ ω σ ω

ω ω σ ω σ σ ω ω ω

σ σ ω ω ω

ω ω ω

∆

∆

∆ ∆

=

= + + + +

= + + +

= + + + + +

= + +

=

 (85) 

It easy to find the unique solution of the set of 
the algebraic equations (29) with respect to the 
dissipation parameter ∆1, as well as with respect to 
the set of quadrats of the unknown frequency 
parameters ω2, ω4, ω6, . . . , as well as that of the 
unknown interaction parameters σ3,  σ5,  σ7, . . .  in 
the following form: 
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2 2

1 2 3 3 1 4 3

1 2 3 1 2 1

24 1
5

2 3

26 3

4 5

1 1

2 1 3 3 2
2

1 1

2
3

2 5 2
4

3 4

2 3
6

2 1

   

,

,

, , , ,

( )

,

... ...k
k k

k k

a

a a a a a a

a a a a

a a a
a

ω

σ

σ

σ

ω

ω −

− −

==

=

=

∆ =

∆

∆

− − ∆
= =

− ∆ ∆

∆ ∆
=
∆ ∆

∆ ∆
=
∆ ∆

−

∆ ∆

∆ ∆
∆ ∆

∆ ∆

    (86) 

It follows that for an nth-order system there exist 
n-1 spin numbers si with values in the set {-1,+1} 
defining N possible combinations of the so called 
spin structures Si ={s1, s2, ,,. . .,sn-1}, i = 1,2, . . . , 
N, with  N=2n-1. 

As a consequence a general analytical solution 
in terms of the (n-1) unknown parameters ωk and σk 
is non-unique and can be expressed by means of a 
set of the (n-1) binary spin parameters {s1,  s2, . . ., 
sn-1} together with a set of n real positive 
parameters {α1, α2, . . ., αn } in the form:  

2 31 1 1 2 2 3

4 3 4 5 4 5

6 5 6 1

   

,

,

0, {1, 2..., }

,

, , ,..., ...
k

k k k

s
s s
s s

k n

sα ω α σ α
ω α σ α
ω α σ α
α

−

∆ =

= =

= =

> ∈

= =

          (87) 

where the parameters αk  and  sk are for general case 
of any finite order n  defined by: 

2
2

1

4 1
3

2 3

6 3

4 5

1 1 1

3
4

2 1

5 2
5 6

3 4

3

2 1

,

,

{ 1, 1}

0

0

0, 0

0, 0,

0,

,

...,

n n
n k

n n

a

s

α

α

α α

α α

α −

− −

∈ − +

∆
=

∆

∆ ∆
=

∆ ∆

∆ ∆
=

∆ ∆

=

= = ∆ >

>

∆
= > >

∆ ∆

∆ ∆
= > >

∆ ∆

∆ ∆
>

∆ ∆

    (88) 

Consequently the output observation equation 
is defined by the matrix C in the form 

             1 ,0.0,...,0C  = ± ∆                  (89) 

and the tridiagonal matrix A is given by 

1 1 2

1 2 2 3

2 3

2 1

2 1 1

1

0 0 0 0
0 0 0 0

0 0 0 0
0 0 0
0 0 0 0
0 0 0 0 0

n n

n n n n

n n

s
s s

s
s

s s
s

α α
α α

α
α

α α
α

− −

− − −

−

− 
 − 
 −

= 
 
 −
 

−  

%
% %

A  (90) 

Consequently the representation (31), (32) can 
be explicitly expressed as follows 

11 1 1 2 2

2 1 2 1 2 3 3

3 2 3 2 3 4 4

4 3 4 3 4 5 5

5 4 5 4 5 6 6

6 5 6 5

( ) : ( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ...

.........................................

s

s

s

s

S x t x t x t
x t x t s x t
x t s x t s x t
x t s x t s x t
x t s x t x t
x t x t

α α

α α

α

α

α

α
α α
α

ℜ =− +
=− +
=− +
=− +
= − +
=− +

1 1

1 1

,{ 1, 1} , 0, {1, 2..., }

......................

( ) ( ) ,

k ks k n

y t x t
α α∆

∆

∈ − + = > ∈

= ±

   (91) 

 
 
8 State equivalence relation and 

state space transformations  
In order to be able to interpret the obtained results 
for any given n-th order ordinary differential 
equation like (28), we need an effective tool to 
transform any given state space representation, 
such as (31), but of arbitrary finite order, into the 
form like (28), and back.  

One straightforward approach suggests to 
compute successive derivatives of the output 
equation up to the order n, combined with 
successive elimination all of the state variables as 
follows (for n=6):  

1 1( ) ( )y t x t∆= ±                              

1 1 1 2 2sy y xαα ∆+ =±�                     (92) 
2

1 2 1 1 2 2 3 3s sy y y xα αα α ∆+ + = ±�� � ... 
(5) (4) 2 2 2 2

1 2 3 4 5
2 2 2

1 3 4 5

2 2 2 2 2 2 2 2
2 4 2 5 3 6 1 3 5

1 1 2 3 4 5 2 3 4 5 6 6

( )

( )

[ ]

s s s s s

y y y

y

y y

x

α α α α α

α α α α

α α α α α α αα α

α αα αα∆

+ + + + + +

+ + + +

+ + + =

±

���
��
�  

As a by-product the following state space 
transformation relations have been obtained: 
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1 1 1 1 1
1

1 ,     , 0x y γ α
γ

∆ ∆= = ± = >         

( )2 1
1 1 2

1 1 1 2

1 ,

, 1, 0

s

s

x y yα
γ α

γ α∆

= +

= ± = ± >

�
 

. . . . . .                                          (93)                                              
2 2

6 1 3 5
1 1 2 3 4 5 2 3 4 5 6

2 2 2 2 2 2 2 2 2
2 4 2 5 3 6 1 3 4 5

2 2 2 2 (4) (5)
2 3 4 5 1

1 1 1 2 3 6{ 1, 1},

1 [

( ) ( )

( ) ],

, 0, 0, 0,..., 0k

s s s s s

s

x y

y y

y y y

αα α
γ α αα αα

α α α α α α α α α α

α α α α α

γ α α α α∆ ∈ − +

= +

+ + + ++ + + +

+ + + + + +

=± > > > >

� ��
���

 

which can be expressed in a vector-matrix form 
1,     x Tx x T x−= =                         (94) 

with an invertible transformation matrix T which 
can be decomposed as follows 

.sT T Tα=                                (95) 

where the signature matrix TS is defined by 

1

1 2

1 2 3

1 0 0 0 .....
0 0 0 .....
0 0 0 .....
0 0 0 .....
: : : : :

s

s
s s

s s s

T

 
 
 
 =
 
 
  

          (96) 

with s1,2,3…=±1, and the parameter matrix Tα is 
defined by 

1

2 2

2 1

3 2 3 2 31
2 2

1 3 2 3 1

2 4 2 3 2 3 4 2 3 4

1 0 0 0 .....
1 0 0 .....

11 0 .....

1 .....

: : : : :

Tα

α
α α
α α
α αα αα

αα α α α
αα αα ααα ααα

∆

 
 
 
 
 
 =±
 
 

+ 
 
 
  

 (97) 

For the inverse matrix T-1 we get immediately 
11 1 1 1( . ) ( ) ( )s s sT T T T T T Tα α α
−− − − −= = =          (98) 

where the parameter matrix Tα equals to the inverse 
transpose of observability matrix of the system 
representation given  by 

2 1, , ( ) , , ( )T T T T T T n T
oH C A C A C A C− =  …   (99) 

9 Effect of nonlinear state energy 
feedback transformations 
Example 9. In this part, the example of switching 
system based on energy feedback is presented [18, 
19]. In this example the 4th order system described 
by eq. (33) is used and only sign of parameter ∆1 is 
switched so that state space energy values are 
changed between E1 and E2 and mean EM (desired 
value) is  

     EM=0.5(E1 + E2)             (100) 
In this example E1=2, E2=3 and EM=2.5. The 

structure diagram of the state space energy 
controlled feedback system is shown in Fig. 9. and 
simulation results are in Fig. 10 - 15. 
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Fig. 9. Structure of state space energy controlled 

feedback system. 
 

 
Fig. 10. The state space energy evolution of the 

state energy feedback controlled system. 
 

 
Fig. 11. 3-D projection of a chaotic-like state space 

trajectory. 
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Fig. 12. 2-D projection of an energy quantum-like 

state space trajectory. 
 

 
Fig. 13. Time evolution of the state variables. 

 

 
Fig. 14. The frequency spectrum of the state space 

energy. 
 

 
Fig. 15. Frequency spectrum of the output signal x1. 

10  Chaotic behavior of Nosé-Hoover 
system representations - example 
Example 10. In 1995 Hoover pointed out [Hoover, 
W. G.: Remark on “Some Simple Chaotic Flows”. 
Phys. Rev. E, vol. 51, nr. 1, 759-760, 1995] that the 
conservative system described by the 3rd–order  
nonlinear differential equation 

3( ) 0y y yy y
y
+

− − =
�� ����� �
�

                (101) 

found by Sprott is a special case of the Nosé-
Hoover thermostated system that had earlier been 
shown in [Posch, H. A., Hoover, W. G., and 
Vesely, F. J.: Canonical Dynamics of the Nosé 
Oscillator: Stability, Order, and Chaos. Phys. Rev. 
A, vol. 33, nr. 6, pp. 4253-4265, 1986] to exhibit 
time-reversible Hamiltonian chaos. 

One of the state space representations of the 
given system can be expressed as follows  

                       
1 2

2 1 2 3

2
3 2

 

1

x x
x x x x

x x

=
= − +

= −

�
�
�

                   (102) 

where the observed output signal is not defined.  
In vector-matrix notation we can write 

                            ( )x A x x B= +�                        (103) 

where the corresponding matrices A(x) and B read 

2

2

0 1 0 0
( ) 1 0 ,      0

0 0 1
A x x B

x

   
   = − =
   −   

         (104) 

Accepting the state space energy theory point of 
view, we may write  

2 2 2
1 2 3 1 2 3

1( , , ) ( )
2

E x x x x x x= + +             (105) 

for the state space energy E[x(t)] and hence the 
state space energy conservation principle reads 

2
1 2 2 1 2 3 3 2

3

3 3

( ) (1 )

( ) ( )o

dE x x x x x x x x
dt

x
x sign x P t

= + − + + −

= =

= = −

  (106) 

It means that for |x3|=0 the output dissipation 
power P0(t) changes its sign. Consequently the 
system behaves like antidissipative for x3 > 0, and 
as a dissipative one for x3<0. As a result the state 
space energy E[x(t)] has to be constant in the 
mean, i.e. the given chaotic Nosé-Hoover system 
has to be classified as “conservative in the mean”. 
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The corresponding internal structure of the 
given chaotic Nosé-Hoover system is compatible 
with the canonical structure derived above for 
general case of the state space energy motivated 
approach, and is displayed in the Fig. 16. 
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Fig. 16. Structure of the 3rd order Nosé-Hoover 

system 
 

The theoretical conclusions have been verified 
by computer experiments.  Some of the most 
typical are illustrated by following figures.   
 

 
Fig. 17. Typical course of state space trajectories. 

 

 
Fig. 18. Time evolution of state space trajectories. 

 
Fig. 19. 2-D projection into the state plane (x1, x2) 

 

 
Fig. 20. 2-D projection into the state plane (x1, x3) 

 

 
Fig. 21. 2-D projection into the state plane (x2 , x3,) 
 

 
Fig. 22. Frequency spectrum of the output signal x1. 
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Note that in the given structure chaos occurs for all 
coefficients equal to unity, and so it is especially 
simple in that sense. 

 
 
11 Conclusions 
The proposed state space energy based approach 
seems to open a new perspective in development of 
sufficiently universal and more adequate abstract 
system representations for variety of natural 
systems. A wave–like form of the hyper-energy, 
together with the new concept of spin structure 
provides a new paradigm for research of 
interactions in nano-scale. It also seems to open 
promising new directions for further work in the 
field of quantum-chaotic systems. 
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