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Abstract:- Image reconstruction in Electrical Resistance Tomography (ERT) is an ill-posed nonlinear inverse 

problem. Considering the influence of the sparse measurement data on the quality of the reconstructed image, the l1 

regularized least-squares program (l1 regularized LSP), which can be cast as a second order cone programming 

problem, is introduced to solve the inverse problem in this paper. A normally used method of implementing the l1 

regularized LSP is based on the interior point method whose main drawback is the relatively slow convergence 

speed. To meet the need of high speed in ERT, the fast iterative shrinkage-thresholding algorithm (FISTA) is 

employed for image reconstruction in our work. Simulation results of the FISTA and l1_ls algorithm show that the 

l1 regularized LSP is superior to the l2 regularization method, especially in avoiding the over-smoothing of the 

reconstructed image. In addition, to improve the convergence speed and imaging quality in FISTA algorithm, the 

initial guess is calculated with the conjugate gradient method. Comparative simulation results demonstrate the 

feasibility of FISTA in ERT system and its advantage over the l1_ls regularization method. 

 

Key-Words:- electrical resistance tomography; l1 regularization method; interior-point method; iterative shrinkage-

thresholding algorithm; linear inverse problem 

1   Introduction 

Electrical tomography (ET) has been investigated 

extensively during the past decades as a visualization and 

measurement technique [1]. It has advantages of low cost, 

rapid response, portability, non-invasive, safety and so 

on. Electrical tomography is based on the use of an array 

of sensing elements located around the circumference of a 

pipe or vessel [2]. For electrical resistance tomography 

(ERT), different excitation schemes or current patterns 

can be applied to the electrodes and the resulting changes 

in voltage are measured [3]. Based on the current-voltage 

relationship, the electrical properties of the internal 

distribution can be reconstructed. The major challenges 

with ERT are the relatively low image resolution, 

nonlinearity and ill-posedness [4] [5]. 

Conventional image reconstruction methods, such as 

conjugate gradient method, Landeweber method [6], 

Tikhonov regularization method [7] [8] [9] and so on, are 

optimization methods based on 2-norm. The methods 

based on 2-norm which are useful to deal with those 

smoothness signals are not effectively for the sparse 

signal. The signal of ERT reconstruction image is sparse 

and ill-posed, so the reconstructed images based on 2-

norm method have fuzzy boundaries and the images 

quality are not perfect. In this paper, the least square 

method based on 1-norm (
1
l -regularized least-squares 

program, 
1
l -regularized LSP) [10] [11] [12] for ERT 

image reconstruction is presented. The problem can be 

cast as a second order cone programming problem and 

thus could be solved by l1_ls algorithm via interior 

methods [11] [13]. However, in most applications, the 

matrix is large scale and the method is shown to converge 

very slowly. To improve the compute speed, we adopt the 

fast iterative shrinkage-thresholding algorithm (FISTA) 

[14]. In the optimization literature, this algorithm can be 

traced back to the proximal forward-backward iterative 

scheme introduced in [15] [16] within the general 
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framework of splitting methods. Another interesting 

recent contribution including very general convergence 

results by proximal forward-backward algorithms under 

various conditions and settings relevant to linear inverse 

problems can be found in [17].  The experimental results 

show that the FISTA algorithm can improve not only the 

computing speed but also the quality of reconstruction 

images． 

In section 2, we introduce the ERT principle and the 

mathematics model, the solution of forward problem and 

the inverse problem. Section 3, those regularized methods 

for the inverse problems based on 2-norm and 1-norm are 

introduced. In section 4, we present 
1
l -regularized least-

squares program, including the l1_ls algorithm via 

interior methods and the FISTA algorithm. In section 5, 

we provide the numerical simulation results for ERT 

inverse problems which indicate that the FISTA 

algorithm can be faster and more effective than the l1_ls 

algorithm. In particular, when we adopt the 50
th
 iteration 

result of conjugate gradient instead of vector 0 as the 

initial value, the speed of ISTA is faster and the 

reconstruction images are approximate to the true images. 

Section 6 closes the paper with a summary of our findings. 

We provide here a brief summary of the notations 

used throughout the paper. Matrices are bold capital, 

vectors are bold lowercase and scalars or entries are not 

bold. For instance, X is a matrix and Xij is its (i,j)th entry. 

Likewise, x is a vector and xi is its ith component. The 

adjoint of a matrix X is X
* 
and similar for vectors. x  

denotes the Euclidean norm of  x . The spectral norm of a 

matrix A  is denoted by
2

A . The inner product of two 

vectors , n∈x y ℝ  is denoted by
T

, =x y y x . 

2   ERT Principle 

The aim of image reconstruction for ERT is to obtain 

the conductivity distribution σ  using the boundary 

voltage vector V  and injected current vector I . 

According to Maxwell’s electromagnetic field theory [2], 

the physical model of the sensitive field for ERT system 

can be derived. Maxwell’s equations in an 

inhomogeneous medium can be written as:  

                           = ⋅J σ E                                      (1) 

0∇⋅ =J                                      (2) 

φ= −∇E                                       (3) 

     where J  is the current density vector, σ  the 

conductivity, E  the electric field, φ  the potential 

distribution. According to the equations (1)-(3), σ  

satisfies  

                 ( ) 0φ∇⋅ ⋅∇ =σ                                   (4) 

Using Ohm’s law, the Neumann boundary condition 

of   ERT can be expressed as 

       , , 1, 2, ,
l

l l
e

dS I x e l L
φ∂

= ∈ =
∂∫ σ
n

⋯     (5) 

        
1

0, \
L

l

l

x e
φ

=

∂
= ∈∂Ω

∂
σ

n
∪            (6) 

where n is the outward pointing normal vector to ∂Ω , 
l
I  

the injection current of  electrode I. 

      With the aid of physical modeling and FEM 

discretization skill, a deterministic observation model of 

ERT can be written as 

         ( ; ) ( )= =V U σ I R σ I                   (7) 

where ( )U σ; I  is the forward model mapping σ  and I  

to V ， and ( )R σ I  is the model mapping σ  to 

resistance. This model depends nonlinearly on the 

conductivity σ  and linearly on the current I [5].  

Based on the principle that a small change in 

conductivity can be reconstructed accurately by 

considering the linear problem, Jacobi matrix is proposed. 

It describes the changes in the measured voltages on the 

electrodes due to small changes in conductivity of the 

elements in a cross section, so that it can also be called 

sensitivity matrix in ERT. A linear approximation of an 

ERT model takes the following form: 

         
0

'( )δ δ δ= =U U σ σ J σ                 (8) 

where δσ  is the change in conductivity, δU  is the 

perturbation of boundary voltage due to the change of σ  

and J  is the Jacobi matrix at 
0

σ ，  i.e., the partial 

derivatives of voltages with respect to conductivity, 

which is called sensitivity map in ERT. 
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 ERT is an imaging technique which aims at 

estimating the interior conductivity of an unknown object. 

ERT system consists of sensing electrodes, data 

collection system, image reconstruction and visualization 

unit. A common ERT system is illustrated in Figure-1. 

 

                     Fig. 1: Configuration of ERT System 

     The ERT problem is consists of two parts: the forward 

problem and the inverse problem. The forward problem 

of ERT is to solve the distribution of electromagnetic 

field by the known distribution of object field, initial and 

boundary condition of sensing field. It can be commonly 

solved by Finite Element Method (FEM) via COMSOL 

Multiphase which is widely used as electromagnetic FEM 

simulation software. The inverse problem of ERT, 

namely image reconstruction aims at approximating the 

interior conductivity distribution by injected electrical 

currents and measured resulting boundary voltages. The 

problem is a typical ill-posed inverse problem because of 

the fewer measurements and the soft-field characteristics. 

The performance of its ill-condition is: 

1） The singular values of J decrease and tend to zero. 
2） The condition number of J (cond (J)), the ratio of 
the largest singular value to the smallest one of J, 

tends to∞ .  

Therefore, the solution to the ERT problem mainly 

depends on the inverse problem, namely, the degree of 

the accuracy and the computing speed   of   the image 

reconstruction algorithm. 

   For simplicity, we will be abbreviated to (8) as  

                                   =Ax b                                 (9) 

where  m n×∈A R , n∈x R , m∈b R , m n< .  

 

3   Regularized methods 

A classical approach to problem (9) is the least squares 

(LS) approach in which the estimator is chosen to 

minimize the data error: 

(LS):                     
2ˆ argmin

x

= −x Ax b                      (10) 

Generally, conjugate gradient method and Landweber 

method are originally developed for solving the well-

posed LS problems [19]. In ERT system, Jacobian matrix 

A is underdetermined, namely m n< .Since the singular 

values of matrix A gradually decay to zero, the linear 

image reconstruction is ill-condition and the LS solution 

is unstable. To overcome this difficulty, regularized 

methods are required to stabilize the solution. 

 

3.1 Tikhonov algorithm 

 

To overcome the high sparsity and ill condition of the 

sensitivity matrix A  of ERT system, usual standard-form 

Tikhonov regularization scheme for the linear ill-posed 

problem =Ax b  is 

{ }2 2

2 2
argmin λ= − +x Ax b x                 (11)  

where we denote 
2

2
Ax b−  the model fit and 

2

2
x  the 

penalty term [9]. λ  is regularization parameter, which 

can be chosen by L-curve criterion [18], generalized 

cross-validation, or the quasi-optimality criterion. 

The solution to the Tikhonov regularization problem 

can be computed by direct method, which requires 

3( )O n flops, when no structure is exploited. The solution 

can also be computed by applying iterative (indirectly) 

method (e.g., the conjugate gradients method) to the 

linear system of equations T T( )λ+ =A A I x A b .Iterative 

methods are efficient especially when there are fast 

algorithms for the matrix vector multiplications with the 

data matrix A and its transpose TA , which is the case 

when the matrix is sparse or has a special form such as 

partial Fourier and wavelet matrices.  

Both conjugate gradient and Tikhonov regularization 

methods are based on 2-norm. The solutions are continues 

or picewise continuous, so the reconstruction images are 

unavoidable smoothed and have blurry edges. It needs 

other image processing to obtain ideal effect. 
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3.2 
1

l -Regularized LSP 

With the development of compressive sensing theory, 

another regularization method that has attached a revived 

interest and considerable amount of attention in the signal 

processing literature is 
1
l -regularization in which one 

seeks to find the solution of   

{ }2

2 1
argmin x λ= − +x A b x                 (12)                 

where
1

x stands for the sum of the absolute values of the 

components of x . We call (12) an 
1
l -regularized least 

squares program (
1
l -regularized LSP), see [10] [12] [13]. 

1
l -regularized LSP yields a sparse vector x  which has 

relatively a few nonzero coefficients. The underlying idea 

in dealing with the 
1
l  norm regularization criterion is that 

most images have a sparse representation in the wavelet 

domain. The presence of the 
1
l  term is used to induce 

sparsity in the optimal solution of (9). Another important 

advantage of the 
1
l regularization over the 

2
l regularization is that as opposed to the latter, 

1
l  

regularization is less sensitive to outputs, which in image 

processing applications correspond to sharp edges. 

We list some basic properties of 
1
l -regularized LSP, 

pointing out the similarities and the difference with 
2
l -

regularized LSP [10]: 

(a) Nonlinearity. Tikhonov regularization yields a 

vector x which is a linear function of the observationb . 

By contrast, 
1
l -regularized LSP yields a vector x, which 

is not linear inb . 

(b) Finite convergence to zero asλ →∞ . As in 
Tikhonov regularization method, the optimal solution 

tends to zero as λ →∞ .For 
1
l -regularized LSP, 

however, the convergence occurs for a finite value of λ : 

                            
T

max 2A bλ λ
∞

≥ = . 

For maxλ λ≥ , the optimal solution of 
1
l -regularized LSP 

is 0. In contrast, the solution of Tikhonov regularization 

tends to 0 only in the terms ofλ →∞ .  
(c)       Regularization path. The solution to Tikhnov 

regularization problem varies smoothly as the 

regularization parameter λ varies over [0, )∞ .By 

contrast, the regularization path of  
1
l -regularized LSP is 

a piecewise linear curve on 
n
ℝ : 

                
1 ( 1) ( )1

1 1

l i ii i

i i i i

x x x
λ λ λ λ
λ λ λ λ

+ +

+ +

− −
= +

− −
, 

                     1 ,i iλ λ λ+ ≤ ≤  1,2, , 1i k= −⋯  

 Where 
( )ix is the solution of the 

1
l -regularized LSP 

with iλ λ= .    

4   Algorithm Analysis 

The objective function in the 
1
l -regularization problem 

(12) is convex but not differential, so solving it is more of 

a computational challenge than solving 
2
l -regularization 

problem (11). In this section, we will introduce two ways 

to the problem (12), l1_ls algorithm via interior point 

method and iterative shrinkage-thresholding algorithm 

(ISTA).  

 

4.1  l1-ls Algorithm 

The l1_ls algorithm is proposed by the compressive 

sensing research group from California Institute of 

Technology [12] [13]. The main idea is to transform (12) 

to a convex quadratic problem with linear inequality 

constraints. The equivalent quadratic program can be 

solved by standard convex optimization methods such as 

interior point methods. Standard methods can not handle 

large scale problems in which there are fast algorithms for 

the matrix vector operations with A and T
A . Specialized 

interior point methods that exploit such algorithms can 

prompt to large problems, as demonstrated in [10]. 
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The whole process is to transform the 
1
l -norm into a 

convex quadratic problem with linear inequality 

constraints: 

2

2
1

min

. . , 1,2, ,

n

i

i

i i i

u

s t u x u i n

λ
=

− +

− ≤ ≤ =

∑Ax y

⋯

           (13) 

We start by defining the logarithmic barrier for the 

bound constrains 
i i i

u x u− ≤ ≤ in (13): 

1 1

( , ) log( ) log( )
n n

i i i i

i i

u x u x
= =

Φ = − + − −∑ ∑x u  

The central path consists of the unique minimize value of 

the convex function: 

2

2
1

( ) ( , )
n

t i

i

t T xφ λ
=

= − + − +Φ∑x Ax b x u   

as the parameter t varies from 0 ~∞ .Then use Newton’s 

method as the basic principles of each iteration to 

minimize 
t

φ , i.e., the search direction is computed as the 

exact solution to the Newton system 

   
 

= − 
 

∆x
H g

∆u
 

Where 
2 2 2( , ) n n

tφ
×= ∇ ∈H x u ℝ  is the Hessian 

matrix，and 2( , ) n

tφ= ∇ ∈g x u ℝ is the gradient at the 

current iterative ( , )x u .        

In this algorithm, the choice of the parameter λ  is 

the key problem which decides the speed of the algorithm 

and the quality of the reconstruction images. λ changes in 

a range of
T

(0, 2 )
∞

A b . When 0λ → , it will 

approximate to the solution of the problem. 

When T2λ >
∞

A b , x tends to 0.  If λ  is too small, it 

will inevitably lead to long computing time, so that the 

real-time property is very poor. If λ  is too large, it will 

seriously affect the accuracy of the results. λ  depends on 

the sparsity of the reconstruction images which can be 

indicated by T

∞
A b . In this paper, we choose 

T0.01 2λ = ×
∞

A b commonly. 

For this algorithm, each iteration requires one 

multiplication by A  and TA which costs plenty of 

computing time.  

 

4.2 FISTA Algorithm 

In most applications, e.g., an image deblurring, 

the problem is not only large scale but also involves 

dense matrix data, which often precludes the use and 

potential advantage of sophisticated interior point 

method. Moreover, some experiences indicate that 

l1_ls algorithm costs more computing time and has poor 

real -time [21], so the algorithm does not satisfy the 

requirement to the real time of the ERT system. 

In the recent study [22], problem (12) is 

reformulated as a box-constrained quadratic problem and 

solved by a gradient projection algorithm. One of the 

most popular methods for solving (12) is in the class of 

iterative shrinkage-thresholding algorithm (ISTA), where 

each iteration involves matrix-vector multiplication 

involving A and TA  followed by a shrinkage/soft-

threshold step [23] [24]. Specifically, the general step of 

ISTA is  

T( 2 ( ))
t k

T t xλ= − −
k+1 k

x x A A b                    (14) 

Where t is an appropriate step-size and : n nTα →ℝ ℝ is 

the shrinkage operator defined by 

( ) ( ) sgn( )
i i i

T x xα α += −                      (15) 

        Consider the unconstrained minimization problem of 

a continuously differentiable function : n nf →ℝ ℝ : 

           (U)            min{ ( ) : }nf x x∈ℝ  

One of the simplest methods for solving (U) is the 

gradient algorithm which generates a sequence{ }kx via: 

               
0

,nx ∈ℝ   1 1( }k k k kx x t f x− −= − ∇              (16) 

Where 0kt > is a suitable step-size. It is cery well 

known that the gradient iteration (16) can be viewed as a 

proximal regularization of the linearized function f  

at 1kx − , and written equivalently as       
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2

1 1 1 1

1
argmin ( ) , ( )

2
k k k k k

x k

x f x x x f x x x
t

− − − −

 
= + − ∇ + − 

 

    Adopting this basic gradient idea to the nonsmooth 

1
l regularized problem 

                       { }
1

min ( ) :
n

f x x xλ+ ∈ℝ                     (17) 

Leads to the iterative scheme 

2

1 1 1 1 1

1
argmin ( ) , ( )

2
k k k k k

x k

x f x x x f x x x x
t

λ− − − −

  
= + − ∇ + − + 

  

After ignoring constant terms, this can be written as 

2

1 1 1

1
argmin ( ( )

2
k k k k

x k

x x x t f x x
t

λ− −

 
= − − ∇ + 

 
 

which is a special case of the scheme for solving (17). 

Since the 
1
l norm is separable, the computation of 

k
x reduced to solve a one dimensional minimization 

problem for each of its components, which by simple 

calculus produces 

             1 1( ( )),
kt k kT t f xλ − −= − ∇k kx x  

where : n nTα →ℝ ℝ  is the shrinkage operator given in 

(15).Thus, with 
2

( ) ,f = −x Ax b  the popular ISTA is 

recovered (14).   

The key of ISTA is the choice of step-size t. [14] 

discussed the convergence of the algorithm and the 

choice criteria of the parameter t. Let
2

( ) ,f = −x Ax b  

1
( ) ( 0)g λ λ= >x x . T2 ( )f∇ = −A Ax b is the  gradient 

of  f and T

max
: ( ) 2 ( )L L f λ= = A A  is the Lipschitz 

constant of  f∇ .  Then (12) reduces to the basic 

shrinkage method (14) with 1/ ( )t L f= . Define 

operator : n n

L
P →ℝ ℝ , T( ) ( 2 ( )),

L t k
P x T t xλ= − −

k
x A A b  

1/ ( )t L f=  . The process of ISTA algorithm with 

constant step-size is as follows: 

 

Input: L= T

max
2 ( )λ A A  

Step 0: take initial value 
0

nx ∈ℝ  

Step ( 1)k k ≥ : computer  

          
1

( )
k L k
x P x −=  

                         

 

ISTA is a natural extension of the gradient method. 

Therefore, ISTA belongs to the class of first order 

methods, that is, optimization methods that are based on 

function values and gradient evaluation. It is well known 

that for large-scale problems first order methods are often 

the only practical option, but as alluded to above it has 

been observed that the sequence { }kx converges quite 

slowly to a solution. In fact, as a first result we further 

confirm this property by proving that ISTA behave like  

             
*( ) ( ) (1/ )kF x F x O k− ≃  

namely, shares a sublinear global rate of convergence.  

To improve the complexity result, a fast iterative 

shrinkage-thresholding algorithm (FISTA) is introduced 

[14]. FISTA keeps the simplicity of ISTA but shares the 

improved rate 
2(1/ )O k  of the optimal gradient method 

for minimizing smooth convex problems. The process of 

FISTA algorithm with constant step-size is as follows: 

 

Input: L= T

max
2 ( )λ A A  

Step 0: take initial value 
1 0 1

, 1ny x t= ∈ =ℝ  

Step ( 1)k k ≥ : computer  

          ( )
k L k
x P y= ， 

           

2

1

1 1 4

2

k

k

t
t +

+ +
= ，         

1 1

1

1
( )k

k k k k

k

t
y x x x

t
+ −

+

 −
= + − 

 
. 

 

The main difference between FISTA and ISTA is 

that the iterative shrinkage operator 
L

P is not employed on 

the previous point
1k

x − , but rather at the point k
y which 

uses a very specific linear combination of the previous 

two points{ }1 2
,

k k
x x− − . Obviously the main computational 

effort in both ISTA and FISTA remains the same, namely, 

in the operator
L

P .  

5   Simulation Experiment Results 
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In this section we show the performance of the 

FISTA, Landweber, l1_ls and Tikhonov regularization 

method. Adjacent excitation and measurement is 

adopted for a 16 electrodes ERT system. Reconstruction 

based on MATLAB7.6 is carried out using a PC with a 

CPU of Pentium(R) 4 2.93GHz and 1GB RAM. 

Simulations were carried out to evaluate the 

performance of these four different ways. The forward 

problem was solved using a complete electrode model 

and a finite element method (FEM) by COMSOL 

Multiphysics. A mesh of adaptive first-order triangular 

elements, produced in COMSOL, was used for the 

forward calculations (see Figure 2(a)). The conventional 

adjacent current injection and voltage measurement 

strategy were used. The reconstructed image presents 

onductivity values using another mesh with 812 square 

elements (see figure 2(b)).                                 

                       

(a) Mesh used for forward problem    (b) Mesh used for inverse problem 

Fig. 2:   Meshes for forward and inverse problems. 

Three conductivity distributions, as shown in figure 

3-5, were simulated. The contrast of background and 

objects conductivity was 1:2. ± 1% Gaussian random 

noise, corresponding to the typical noise levels in real 

measurement systems, was added to the simulated 

voltages. Images were reconstructed by the Landweber 

algorithm (Landweber), the Tikhonov regularization 

method (Tikhonov), l1_ls algorithm (l1_ls) and FISTA 

algorithm (FISTA). Fig. 3 shows the reconstruction 

results using these four algorithms.Table 1 and Table 2 

show the iterative times and the copution time of each 

algorithm. 

 

  

 True images    Landweber Tikhonov l1_ls  FISTA 

 

 

(a) 

      
 

 

(b) 

       
 

 

(c) 

      

             Fig. 3:  Reconstructed images of simulated data with conductivity contrast of 1:2, 

using Landweber algorithm, Tikhonov regularization  method, l1-ls 

algorithm and  FISTA algorithm. The medium ration is 0.2:1. 
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Table 1: Comparison of four different algorithms in terms of iterative times  

 

 

        

 

Table 2: Comparison of four different algorithms in terms of compution time (unit:s)  

 

 

 

 

  

 

From the above, we can see that the artifacts of the 

reconstructed images in the first two columns are largely 

reduced and the objects are located more accurately using 

the 
1
l -regularized LSP (including the l1_ls algorithm and 

FISTA algorithm). The reconstruction results obtained 

using the 
2
l regularized least square programs (including 

the Tikhonov regularized method and Landweber 

algorithm) have blurry edges, which make it hard to 

identify the flow pattern from the reconstructed image. 

Comparing the l1-ls algorithm with the FISTA algorithm, 

we can easily find that the reconstruction images obtained 

using the FISTA algorithm are close to the real phantoms. 

By contrast, the reconstructed images of the l1-ls 

algorithm can be located accurately but the image quality 

is relatively poor.Furthermore, from Table 2, we can see 

that the computation time required for reconstructing an 

image of the FISTA algorithm has greatly imprvoed 

comparied with the l1_ls algorithm, although the speed is 

much slowly by comparision with those of the 

2
l regularized least square programs (Landweber 

algorithm and  Tikhonov regularized method).

  True images Iterative results as 

Initial value  

Iterative 

 times 

0 initial value Iterative 

 times 

  

 

 

300 

 

 

 

500 

  

 

 

300 

 

 

 

500 

  

 

 

300 

 

 

 

500 

Fig. 4:  Reconstruction images and the iterative times using 50
th
 iterative results of  

the conjugate gradient algorithm as initial value and vector 0 as iterative 

Conductivity 

distribution 
Landweber Tikhonov L1-ls FISTA 

(a) 300 500 1271 400 

(b) 300 500 1187 400 

(c) 300 500 1064 400 

Conductivity 

distribution 
Landweber Tikhonov L1-ls FISTA 

(a) 0.073420 0.113301 7.939994 0.471249 

(b） 0.081700 0.1202539 7.401061 0.451912 

(c) 0.075112 0.1231321 7.033425 0.447283 
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iterative scheme for solving the inverse problem in ERT 

system. Compared to the l1-ls algorithm, it is both faster 

and more accurate. Furthermore, its potential for 

designing faster algorithms in other research areas and 

being applied in other types of regularization are the 

topics of our future work. 
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