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Abstract: - This paper presents the applications of hierarchical clustering to the generators in a power system. A 
useful application of fuzzy mathematics is that the correction of clustering results and determination of whether 
it can obtain correct transitive closure. Thus, the fuzzy transitive closure plays an important role in hierarchical 
clustering. Based on the fuzzy relation matrix, the hierarchical cluster analysis can be achieved by using firstly 
computing a transitive closure matrix on which serial α-cut operations are to be performed. A specific feature of 
the proposed method is that the hierarchical clustering work can be performed in parallel with the algorithm. The 
proposed method retains the correctness of transitive closure by reducing the computation complexity. Results 
from applying the method to a power system are demonstrated to show the validity and effectiveness of the 
proposed method. 
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1   Introduction 
The concept of similarity can be described in terms of 
regions in the feature space of a database. The fuzzy 
clustering analysis finds the fuzzy relation and then 
constructs the fuzzy model. The data clustering 
belongs to the area of fuzzy partitions, where 
similarity is measured by using membership values. 
A fuzzy similarity relation should satisfy some form 
of transitivity. The membership functions of 
clustering are defined based on a similarity relation; 
where the identification of clusters is based on 
transitive closure [1-5]. The cluster analysis refers to 
the partition of a data group into subgroups where the 
data points within a subgroup are more similar to one 
another than to any of the points belonging to other 
subgroups [6-13]. 

The cluster analysis of which the task is to 
classify non-processed data into certain categories 
depending on the features considered, is a 
fundamental tool commonly used in several scientific 
fields. Data in each category have the most 
resemblance while being very dissimilar with data 
from other categories. The cluster analysis divides 
highly complex systems into some smaller and 
relatively simpler systems. The traditional clustering 

method strictly divides each studied object into a 
certain data cluster—the hard clustering method. In 
reality, however, a certain object may be recognized 
to partially belong to multiple clusters. The 
utilization of fuzzy concepts in the data clustering 
analysis can naturally describe the real classification 
problems. Such a clustering method is referred to as 
the fuzzy cluster analysis. The fuzzy cluster analysis 
produces a soft partition for a given set of data and 
provides more flexibility in describing the inherent 
structure within those data under study. There have 
been successful applications of fuzzy clustering in 
various engineering disciplines [14-16]. 

The methods of fuzzy clustering are divided into 
two main categories, nonhierarchical clustering and 
hierarchical clustering. The fuzzy c-means is the 
most known method of nonhierarchical fuzzy 
clustering. The transitive closure influences a 
hierarchical clustering. It is equivalent to the method 
of the single link. Thus the fuzzy hierarchical 
clustering provides a new perspective for 
agglomerative clustering. By using a fuzzy clustering 
technique to establish a fuzzy rule-based modeling, 
most methods map membership functions into input 
variables. Consequently, too many membership 
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functions may increase computational complexity. 
The similarity measure of fuzzy sets is merged in 
order to obtain a generalized concept represented by 
a new fuzzy set. This reduces the number of models 
used in clustering. The result will reduce 
computational complexity and simplify the rules. We 
can generate fuzzy sets from the fuzzy relation 
projection defined by the fuzzy cluster in each of the 
input space. We can then use a linguistic 
approximation technique to obtain a quantitative 
fuzzy model of the system. 

In power system studies, creating a dynamic 
model is the very first step in system stability 
research, dynamic behaviors analysis, or other 
system functional tests. As systems become larger, 
their complexity likewise increases and the power 
system analysis has to tackle high-order models. 
However, computation on the high-order model is 
highly complex while the final analysis results may 
have unnecessary portions, leading to high 
investments but with no apparent advantages. If a 
group of generators can be aggregated into a single 
equivalent generator that constitutes a reduced-order 
equivalent group [16-18], then it simplify 
computational complexity and minimize time and 
costs. 

This paper aims to discuss a fuzzy classification 
in terms of membership degrees and without the 
relational composition of the fuzzy transitive matrix. 
The correctness of transitive closure and clustering is 
still retained by the proposed method but will reduce 
computational complexity. A specific feature of the 
approach is that clustering can be performed in 
parallel when the algorithm is applied. The proposed 
method is simple and practical to use in clustering 
generator groups of a power system. 

 
 

2 Fuzzy Relation 
2.1 Similarity Relation 
The fuzzy relation is a means of both mapping 
fuzziness from one universe to another and 
developing fuzzy functions through the Cartesian 
product of the two universes. Hence, the fuzzy 
relation R is a mapping from the Cartesian space 
X×Y to the interval [0, 1], where the strength of the 
mapping is expressed by the membership function 
of the relation for ordered pairs from the two 
universes, or ( , )R x yμ . 

Assume that [ ]ijR r=  is a binary fuzzy 
relation where 0 1ijr≤ ≤ . The relation R is a 
similarity relation if it has the following three 
properties. 

(1) Reflexivity, i.e.  
1=iir , for every Ui∈                       (1) 

(2) Symmetry, i.e. 
jiij rr = , for every Uji ∈,                   (2) 

(3) Transitivity, i.e. 

1
( )

n
n

ij ik kjk
r r r

=

⎡ ⎤= ∨ ∧⎢ ⎥⎣ ⎦
, for every Ukji ∈,,    (3) 

     or nR R R R R= ⊆  (or n
ij ijr r≤ ) 

then we call R the fuzzy equivalence relation 
matrix. 

The compatibility relation includes reflexive 
and symmetric. To obtain compatibility and 
transitivity, also called similarity relation, various 
forms of the composition operation can be 
described by the max-min transitive 
closure [ ]n n

ijR r= . 
 
2.2 Transitive Closure 
The fuzzy transitive closure plays an important role 
in hierarchical clustering. The algorithm for 
calculating transitive closure is presented in several 
works. 

Transitive closure is essential to detect hidden 
relationships between two arbitrary transactions. The 
composition can be determined from the 
corresponding join. Transitive closure finds the 
minimal path of transitivity. It is done as follows: 
Derive a dependency Z between transactions 

ix and 

jx from the given dependencies X between 
ix  and 

kx , and Y between 
kx  and 

jx , as shown in Figure 

1. The similarity relation can be considered to 
effectively group elements into crisp sets whose 
members are similar to each other in a specific 
degree. 

Actually, most membership matrices are 
reflexive and symmetric, i.e. compatible relations. 
Therefore it is necessary, when computing transitive 
closure, to obtain a similar relation and proceed to 
clustering analysis. The correctness of hierarchical 
clustering depends on the computation of the fuzzy 
transitive closure. A novel approach proposed in 
Section 3 will rapidly obtain the transitive closure. 

Zadeh advert the hierarchical classification by 
using the transitive closure, which is the fuzzy 
equivalence relation [3]. Dunn has provided that the 
transitive closure is equivalent to the single link 
method [6]. Miyamoto has shown the equivalence 
among the transitive closure, the single link, and the 
connected components of a fuzzy graph, and the 
clusters generated from the maximum spanning tree 
of a network [7]. 
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Fig. 1 Transitive relation 
 
 
3   Cluster Analysis 
The fuzzy clustering method is devised for defining 
linguistic labels on the input and output spaces. 
Clustering can be used to detect the possible groups 
that have similarity relations in their behaviors. It is 
also possible to make groups of related data to reduce 
computational complexity. 
 
3.1 Classic Clustering 
Clustering refers to identifying the number of 
subclasses of m clusters in a data universe X 
comprised of n data samples. For numerical data, one 
assumes that the members of each cluster bear more 
mathematical similarity to each other than to 
members of other clusters. Two important issues to 
consider in this regard are how to measure the 
similarity between pairs of observations and how to 
evaluate the partitions once they are formed. 

This section summarizes two popular methods 
of clustering. The first is classification using 
similarity relations. This method makes use of certain 
special properties of similarity relations and the 
concept of defuzzification, known as an α-cut on the 
relations. The second clustering method is a very 
popular method known as fuzzy c-mean. This 
method uses concepts in n-dimensional Euclidean 
space to determine the geometric closeness of data 
points by assigning them to various clusters or 
classes and then determining the distance between 
the clusters. Clustering analysis can be divided into 
two categories: 

 
(1) Hierarchical 

Assume that n samples can be classified into m 
groups according to similar degree of some levels 
(m n)≤ . 
(2) Partition 

Choose n initial prototypes from the input space 
and classify them as m groups using Euclidean 
distance. Every prototype belongs to a group 
(m n)≤ . 

By the use of fuzzy sets defined directly in the 
product space of the input variables, we can get the 

clusters. The fuzzy clustering can be used as the main 
tool in obtaining rapid prototyping of a fuzzy model. 
 
3.2 Proposed Method 
The fuzzy relation can be used to analyze hierarchical 
clustering based on similar relation such as the 
clustering analysis method. The trait is marked with 
an α-value the to show that a cluster belongs to 
another cluster in another level. The membership 
degrees of the feature vector in the clusters are firstly 
computed by using relational composition of the 
clustering algorithm. Later on, the output fuzzy set is 
obtained. 

Here we present a new method to obtain the 
accurate hierarchical clustering by using fuzzy 
similarity based on α-cut. The proposed fuzzy 
clustering method is summarized as: 

(1) Define a fuzzy membership matrix R of the 
compatible relation. 
(2) Make an α-cut operation of R, according to 
similar properties of membership matrix R.  
(3) Find the defuzzified crisp similarity relations R’.  

The result of the α-cut operation can be used for 
clustering while the transitive closure R* can also be 
computed in parallel. 

The hierarchical clustering based on fuzzy 
relation always finds similar relations—transitive 
closures and classifications. A specific feature of the 
proposed method is that the hierarchical clustering 
can be performed in parallel in the algorithm. The 
fuzzy hierarchical clustering analysis is shown in 
Figure 2. 

 

Membership matrix

Start

a -cut operation

Transitive closure

Partition tree

1iir =

End

YES

NO

 
Fig. 2 Clustering procedure 
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The procedure for an α-cut algorithm is shown 
below: 

 
Step 1： 

The binary fuzzy relation, R, is a mapping of 
: [0,1] [0,1] [0,1]i jR × → . It can be represented as an 

i j×  matrix and is reflexive and symmetric. 

11 12 1

21 22 2

1 2

[ ]

j

j
ij

i i ij

r r r

r r r
R r

r r r

⎡ ⎤
⎢ ⎥
⎢ ⎥= = ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

                      (4) 

 
Step 2： 

α-cut operation 
kjnjk r

≤≤
=

2
maxα                                 (5) 

We can get the level set of α-cut as:  
{ }1,,, mii ==Λ α , where ii αα >+1           (6) 

[ ], [0,1], [0,1]ij ijR r r α= ∈ ∈                      (7) 
The crisp relation matrix Rα: 

[ ]ijR tα =                                       (8) 

⎩
⎨
⎧

=
,0
,1

ijt  if   
α

α

<

≥

ij

ij

r

r
                                (9) 

In this way it is possible to represent a fuzzy 
relation as the series of crisp relations comprising its 
α-cuts, each scaled by the value α. 
 
Step 3： 

Find the set 
qppq JJJ ∪=  such that the   

intersection operation is not a null of one column pJ  
and the others columns pJ , that is, the defuzzified 
crisp similarity relations R’. If the kth column is 
linearly dependent on the jth column, then there is 
same clustering. Otherwise, go to step 2. 
 
Step 4： 

We can get the transitive closure *R . 
* ' ' '

1 2 tR R R Rα α α= ∨ ∨ ∨                        (10) 
where mt ≤≤1 . 
 
Step 5： 

Determine the number of clusters-the primary 
issue of this step. In hierarchical clustering methods, 
two fuzzy relations belonging to the same cluster at 
some level should remain together at all higher levels. 
It is needless to specify the number of clusters so that 
clustering proceeded autonomously. The complexity 
of the algorithm is determined from the number of 

clusters. It can be reduced by the techniques 
described. 
 
 
4   Complexity 
In constructing a model, we always attempt to 
maximize its usefulness. This aim is closely 
connected with the relationship between three key 
characteristics of every system model: complexity, 
credibility, and uncertainty. This is important when a 
work is high complex and the transitive closure has to 
be calculated. How a model is constructed plays an 
important role in reducing complexity. 

One of the main problems of applying fuzzy 
technique is the computational times and complexity. 
Engineers have to face this problem in complex 
system or especially in the field of information 
retrieval where the extremely large information maps 
of whole libraries or internet have to be processed at 
each user’s request. 

One of the important problems involved in the 
design of fuzzy clustering is their complexity. The 
complexity, which is defined as the size of the fuzzy 
transitive closures base of the fuzzy clustering, 
increases as the number of fuzzy relations increases; 
the number of fuzzy relations increases exponentially 
as the number of input variables increases. A 
value-based reduction technique is capable of 
reducing both the computational calculation and 
complexity. 

A good algorithm retains the correctness of 
transitive closure by reducing the computational 
complexity. Thus, fuzzy transitive closure plays an 
important role in hierarchical clustering. The 
algorithm for calculating transitive closure is present 
in several works. Some methods in literatures are 
described as follows.  
 
(1) Square algorithm [19] 

This popular method is known as the square 
algorithm. It can be found through two compositions 
of R2 that produce a transitive matrix R*. It means that 
the max-min composition of R with itself results in a 
similarity relation. The theorem suggests calculating 
the transitive closure, R* =R(n-1), by calculating the 
sequence of relations 

2 4 2 *kR R R R R→ → → → =                       (11) 

until no new relation is produced or 2 1k n≥ − . 
The max-min composition is defined by the set 

and membership function. The physical analogy 
behind transitivity is that the shorter the chain, the 
stronger the relation. In particular, the strength of the 
link between two elements must be greater than or 
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equal to the strength of any indirect chain involving 
other element.  

The relation must satisfy the following 
properties: 
The square operation may accelerate computing the 
transitive matrix by, at most, (log2 n)+1 
compositions. 
 
(2) Ascending value method [20] 

Assume a fuzzy matrix Ri-j-k. If Ri-j-k possesses 
similarity relation and it must satisfy the following 
two properties: 

Find the maximum r1 of all r, where 
1 2 kr r r> > > . The transitive closure will be formed 

by updating all r elements. R is thus symmetric. An 
advantage of this method is that the right upper 
matrix just has to be computed, reducing composition 
time. 
 
(3) Left-upper n-order sub-matrix algorithm [21] 

By looking for the next maximum of each 
left-upper matrix Ak, transitive closure is formed and 
its procedure is as follows. 
(a) Assume an n×n fuzzy relation matrix An. 

We get the first left-upper matrix A2. The 
transitive closure B2 of A2 equals to A2. 

(b) From the other (n-2) columns of An, find the 
next maximum *

2x , suppose *
13 2a x= , then a3 is 

replaced by b3 and the transitive closure B3 of A3 
formed. 

(c) Judging from this point, look for the 
maximum *

kx  of the other (n-k) columns in the 
k-th row. 

(d) When k=n-1, we can obtain transitive closure 
Bn of the fuzzy relation matrix An. 

 
(4) S-K-Q-Δ method [22] 

In this method, any two elements must be less 
than or equal to the third element between the three 
elements rij, rik, rjk of the upper triangle matrix. The 
matrix R(s) is replaced by R*(s). Afterwards, the 
transitive closure is obtained through the following 
three steps below. 
(a) Assume S-matrix R(s), 
(b) Take the fuzzy band, 
(c) The fuzzy values ijr , ikr , ijr  of any fuzzy 

band ( )
1 k

fQ −
 in relation matrix ( )

(k)
sR  must satisfy the 

properties below. 
Finally, transitive closure can be formed. 
 
 
 

Table 1 Comparison of Complexity 

Algorithm Complexity 
Computational

times 

Square algorithm  3 logn n  3 log( 1)n n −  

Ascending value 
method 

3n  2( 1) / 2n n −  

Left-upper n-order sub-
matrix algorithm 

3n  3 / 6 / 6 ( 1)n n n− − −

S-K-Q-Δ method 3n  ( 1)( 2) / 2n n n− −

Proposed method 2n  ( 1) / 2n n −  

 
The result of our method compared with others 

is given on Table 1. Table 1 show the proposed 
method simplifies the computation time. 
 
 
5 Example 
5.1 Example 1: The New England System 
In order to show the proposed fuzzy clustering 
method, the 10-machine New England power system 
is used here to demonstrate the effectiveness. The test 
system comprises 10 generators, 39 buses and 46 
lines, as given in Figure 3. The detailed system data 
and initial operating conditions can be found in [18].  

The swing curves of all generators in the 
external system are shown in Figure 4. Note that 
generator 10 is equivalent for representing a large 
system, and generators 6 and 7 are belonging to the 
study area; therefore, they will not belong in the 
external system. 

In this example we will directly characterize the 
membership matrix R, which satisfies the 
compatibility relation. It will later be formed into a 
fuzzy similarity relation matrix R*. This algorithm 
does not need composition of any fuzzy relation to 
complete the clustering. 
 
 
 1.00 0.92 0.57 0.56 0.61 0.56 0.60 0.58 0.15 0.64

0.92 1.00 0.58 0.59 0.64 0.57 0.60 0.59 0.15 0.64
0.57 0.58 1.00 0.57 0.72 0.79 0.64 0.43 0.11 0.67
0.56 0.59 0.57 1.00 0.54 0.48 0.42 0.59 0.19 0.44
0.61 0.64 0.72 0.54 1.00 0.87 0.58 0.48 0.12 0.

R =
62

0.56 0.57 0.79 0.48 0.87 1.00 0.62 0.42 0.11 0.65
0.60 0.60 0.64 0.42 0.58 0.62 1.00 0.44 0.10 0.85
0.58 0.59 0.43 0.59 0.48 0.42 0.44 1.00 0.23 0.46
0.15 0.15 0.11 0.19 0.12 0.11 0.10 0.23 1.00 0.11
0.64 0.64 0.67 0.44 0.62 0.65 0.85 0.46 0.11 1.00

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦
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Fig. 3 One-line diagram of the New England system 

 

 
Fig. 4 Swing curves of all generators in the external system 
 
 

*

1.00 0.92 0.64 0.59 0.64 0.64 0.64 0.59 0.23 0.64
0.92 1.00 0.64 0.59 0.64 0.64 0.64 0.59 0.23 0.64
0.64 0.64 1.00 0.59 0.79 0.79 0.67 0.59 0.23 0.67
0.59 0.59 0.59 1.00 0.59 0.59 0.59 0.59 0.23 0.59
0.64 0.64 0.79 0.59 1.00 0.87 0.67 0.59 0.23 0

R =
.67

0.64 0.64 0.79 0.59 0.87 1.00 0.67 0.59 0.23 0.67
0.64 0.64 0.67 0.59 0.67 0.64 1.00 0.59 0.23 0.85
0.59 0.59 0.59 0.59 0.59 0.59 0.59 1.00 0.23 0.23
0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 1.00 0.23
0.64 0.64 0.67 0.59 0.67 0.67 0.85 0.59 0.23 1.00

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
    By taking α-cuts of fuzzy relation R at α=1, 0.92, 
0.87, 0.85, 0.79, 0.67, 0.64, 0.59 and 0.23, we get the 
following: 
 

  

1

1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1

Rα=

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

=

 

0.92

1 1 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1

Rα=

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦

=

 

 
 
    In this case one can see in the relation, Rα=0.92, that 
there are four classes. Column 1 and 2 are identical 
while column 3, 4, 5, 6, 7, 8, 9 and 10 are each unique. 
The data points can be classified into four classes, as 
described below: 
{x1, x2}, {x3}, {x4}, {x5}, {x6}, {x7}, {x8}, {x9}, {x10} 
 

  

0.87

1 1 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1

Rα=

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

=

 

 
 

  

0.85

1 1 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0 0 0
0 0 0 0 0 0 1 0 0 1
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0 0 1

Rα=

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

=

 

 
Choosing α= 0.87 and 0.85, the following 

defuzzified crisp similarity relations and their 
associated classes are derived: {x1 , x2}, {x5, x6}, {x3}, 
{x4}, {x7}, {x8}, {x9}, {x10}and {x1 , x2}, {x5, x6}, {x7, 
x10}, {x3}, {x4}, {x8}, {x9}.  

When we take an α-cut of this fuzzy similarity 
relation at α=0.79, if the element of the similarity 
relation R is greater than α, it is set as 1, otherwise as 
0. We then get the defuzzified relation matrix 0.79Rα= . 
Then observing column 6, {x5, x6} and {x3} are 
similar to each other to a degree of α=0.79. Hence, 
the classes are formed by the refinement levels of a 
similarity relation '

0.79Rα= . This step can be 
interpreted as grouping elements that are similar to 
each other and only to each other to a degree not less 

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Shu-Chen Wang

ISSN: 1109-2734 336 Issue 10, Volume 10, October 2011



than α. Six distinct classes are identified:{x1 , x2}, {x3,  
x5, x6}, {x7, x10}, {x4}, {x8}, {x9}. The results of 
clustering for different values of α are shown in Table 
2. 

Finally, we can express the partition tree of 
10-generator as shown in Figure 5. 

 

0.79

1 1 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0
0 0 1 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0
0 0 1 0 1 1 0 0 0 0
0 0 0 0 0 0 1 0 0 1
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0 0 1

Rα=

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

=

      

 

'
0.79

1 1 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0
0 0 1 0 1 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 1 0 1 1 0 0 0 0
0 0 0 0 0 0 1 0 0 1
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0 0 1

Rα=

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
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1

 

 
 

Table 2 Clustering Groups for Different α  
α Clustering groups 

1 {x1},{x2},{x3},{x4},{x5},{x6},{x7},{x8},{x9},{x10} 

0.92 {x1 , x2},{x3},{x4},{x5},{x6},{x7},{x8},{x9},{x10}

0.87 {x1 , x2},{x5,x6},{x3},{x4},{x7},{x8},{x9},{x10} 

0.85 {x1 , x2},{x5, x6},{x7, x10},{x3},{x4},{x8},{x9} 

0.79 {x1 , x2},{x3, x5, x6},{x7, x10},{x4},{x8},{x9} 

0.67 {x1 , x2},{x3,  x5, x6, x7, x10},{x4},{x8},{x9} 

0.64 {x1 , x2, x3,  x5, x6, x7, x10},{x4},{x8},{x9} 

0.59 {x1 , x2, x3, x4,  x5, x6, x7, x8, x10},{x9} 

0.23 {x1 , x2, x3, x4,  x5, x6, x7, x8, x9, x10} 
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Fig. 5 Partition tree of 10-generator 
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5.2 Example 2: A 16-generator System 
In this subsection, the proposed hierarchical 
clustering method is applied to a 16-generator and 
68-bus test system as shown in Figure 6. The detailed 
system data and initial operating conditions can be 
found in [23]. Note that generator 15 is a large 
equivalent and thus not considered in clustering 
analysis because of its high inertia constant H = 300 
sec. Swing curves of system generators are to be 
shown for the purpose of comparison. 

The simulation process includes first applying a 
three-phase short circuit fault at bus 29 and then 
clearing the fault after three cycles by opening the 
line connecting bus 28 and bus 29. The study period 
is from 0 sec to 5 sec. Table 3 tabulates the computed 
normalized fuzzy similarity relation matrix. 

The hierarchical clustering method previously 
discussed is then applied to process the fuzzy 
similarity relation matrix in Table 3. Since there are 
15 generators considered in clustering study, the 
similarity relation matrix for this system will be of 
dimension 15 15× . After performing hierarchical 
clustering on the computed similarity relation matrix, 
the partition tree of 16-generator constructed is 
shown in Figure 7. 

The partition tree in Figure 7 gives the detailed 
description of generator clustering at different levels 
of α-cut. As seen in Figure 7, the generator pairs (2, 3) 
and (6, 7) have comparatively high degree of 
similarity relation and units 4, 5, 6 and 7 as a whole 
can also serve as a similarity group. However, 
generators 12 and 13 are similarity to a less extent. 
For example, in level 8, five similarity groups can be 
obtained:  

Group 1: (2, 3) 
Group 2: (4, 5, 6, 7) 
Group 3: (10, 11) 
Group 4: (12, 13) 
Group 5: (14, 16) 
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Fig. 6 One-line diagram of 16-generator system 

This observation is consistent with those made in 
[23]. 

For the purpose of comparison, the swing curves 
of system generators following the disturbance are 
shown in Figure 8, which depicts the swing curves of 
all generators under study, and Figure 9, which are 
resolved from Figure 8 with a view to revealing fuzzy 
similarity relation generators more clearly. From 
Figure 7 and Figure 9 it is found that the similarity 
relation groups obtained by examining the swing 
curves are the same as those identified by using the 
proposed transitive closure and hierarchical 
clustering method. Moreover, the partition tree in 
Figure 7 reveals more detailed information as to the 
relationship among the identified c fuzzy similarity 
relation by its specific feature of creating generator 
clusters at different levels of α-cut. For example, the 
group (2, 3) and (4, 6, 7) are recognized to have 
stronger association with respect to the group (10, 
11). 

The results presented above reveal that the main 
advantage of the proposed data analysis technique 
lies in its capability of creating objective clustering of 
generators at different levels of α-cut. An appropriate 
number of fuzzy similarity relation groups can be 
determined according to the need for reduction in 
model complexity when this method is to be utilized 
for transitive closure based dynamic equivalence. 

 
Table 3 Fuzzy Similarity Relation Matrix  

i 
j 

1 2 3 4 5 6 7 8 

1 1.0000 0.8484 0.8420 0.8417 0.8403 0.8490 0.8490 0.7619

2 0.8484 1.0000 0.9770 0.8892 0.8574 0.8498 0.8410 0.7606

3 0.8420 0.9770 1.0000 0.8890 0.8622 0.8588 0.8425 0.7932

4 0.8417 0.8924 0.8890 1.0000 0.9609 0.9746 0.9765 0.8268

5 0.8403 0.8574 0.8622 0.9609 1.0000 0.9628 0.9612 0.7880

6 0.8490 0.8498 0.8588 0.9746 0.9628 1.0000 0.9891 0.8016

7 0.8490 0.8410 0.8425 0.9765 0.9612 0.9891 1.0000 0.7978

8 0.7619 0.7606 0.7932 0.8268 0.7880 0.8016 0.7978 1.0000

9 0.5623 0.7465 0.5360 0.4982 0.5726 0.6049 0.8003 0.7619

10 0.4367 0.7618 0.6258 0.1952 0.7788 0.7854 0.4055 0.5614

11 0.4056 0.1773 0.4981 0.6357 0.6269 0.6542 0.2710 0.7606

12 0.5625 0.4549 0.3371 0.6538 0.5893 0.2994 0.4652 0.4367

13 0.7453 0.6381 0.7492 0.4437 0.3362 0.6345 0.5862 0.5624

14 0.8670 0.7642 0.5861 0.8391 0.7748 0.2995 0.6619 0.7616

16 0.9263 0.9380 0.7739 0.3721 0.5526 0.5741 0.7492 0.2664
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   i 
j 

9 10 11 12 13 14 16 

1 0.5623 0.4367 0.4056 0.5625 0.7453 0.8670 0.9263 

2 0.7465 0.7618 0.1773 0.4549 0.6381 0.7642 0.9380 

3 0.5360 0.6258 0.4981 0.3371 0.7492 0.5861 0.7739 

4 0.4982 0.1952 0.6357 0.6538 0.4437 0.8391 0.3721 

5 0.5726 0.7788 0.6269 0.5893 0.3362 0.7748 0.5526 

6 0.6049 0.7854 0.6542 0.2994 0.6345 0.2995 0.5741 

7 0.8003 0.4055 0.2710 0.4652 0.5862 0.6619 0.7492 

8 0.7619 0.5614 0.7606 0.4367 0.5624 0.7616 0.2664 

9 1.0000 0.2936 0.5622 0.4367 0.6755 0.8342 0.5644 

10 0.2936 1.0000 0.9590 0.6653 0.1994 0.3555 0.1996 

11 0.5622 0.9590 1.0000 0.8390 0.8328 0.6532 0.5626 

12 0.4367 0.6653 0.8390 1.0000 0.9547 0.5614 0.6049 

13 0.6755 0.1994 0.8328 0.9547 1.0000 0.4055 0.5938 

14 0.8342 0.3555 0.6532 0.5614 0.4055 1.0000 0.9380 

16 0.5644 0.1996 0.5626 0.6049 0.5938 0.9380 1.0000 

 
 
6   Conclusion 
A useful application of fuzzy mathematics is the 
hierarchical clustering whose correctness depends on 
the computation of fuzzy transitive closure. It does 
not have to specify the number of clusters so that 
clustering can proceed autonomously. Our method 
can easily retrieve the membership functions for 
input variables and can generate a small number of 
fuzzy subsets for each fuzzy variable. The α-cut 
algorithm proposed here is essentially a method of 
selecting the smallest clustering, which accurately 
represents the system. The proposed method is 
simple and practical to use in clustering generator 
groups of a power system. Its validity has been 
verified through computer simulations. Moreover, 
this new algorithm describes a given system by using 
fuzzy rules quite well and is easy to implement in a 
computer. In addition, the transitive closure 
computation complexity is reduced while the 
hierarchical clustering can be performed in parallel. 
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Fig. 7 Partition tree of 16-generator 
 
 

 
 

Fig. 8 Swing curves of all generators under study (The generators, in descending order of the rotor angle values 
at the time of zero, are: 16, 14, 9, 6, 7, 5, 4, 3, 2, 1, 10, 11, 12, 8, and 13.) 
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Fig. 9 Swing curves of (a) generators (2, 3) (b) generators (4, 5, 6, 7) (c) generators (10, 11)  
(d) generators (12, 13) (e) generators (14, 16) (f) generators (1, 8, 9) 
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