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Abstract: - When designing error detecting and correcting systems, cryptographic apparatus, scramblers and 
other secure, safe and authenticated communication and digital system response data compression devices, the 
division of polynomials are frequently involved. Commonly, the process of division is implemented by using 
hardware known as Linear Feedback Shift Registers (LFSRs). In digital system testing the technique of Built-In 
Self Test (BIST) uses this LFSR based division process for response data compression and is popularly known 
as Signature Analyzer (SA). This paper presents a simulation experiment on the effectiveness study of the SA 
schemes. The finding of the results of the simulation study reveals that in SA implementation; in general the 
uses of primitive characteristic polynomials are the best.  However, the study further investigates that the use of 
some critical primitive characteristic polynomials may reverse the effectiveness of the SA schemes i.e. lead to 
observe maximum aliasing errors.  
 
Key-Words: - Signature Analyzer, Linear Feedback Shift Registers, Built-In Self-Test, VLSI, Aliasing Errors, 
Characteristic Polynomial, Primitive Polynomials, Polynomial Division, Cyclic Redundancy Check   
 
1 Introduction 
Because of its many inherent advantages, currently, 
Built-In Self-Test (BIST) has become an effective 
and widely acceptable tool for tackling test 
problems for VLSI chips and digital systems [1-6]. 
By building test circuitry on chip, BIST techniques 
usually combine a built-in stimulus source (test 
sequence generator) with a response data 
compressor. This approach eliminates the complex 
task of integrating separate circuits for test-pattern 
generation and response data compression. Besides, 
BIST approach minimizes the storage requirements 
of test sequences and large response data, as well as 
reduces the test time, and isolates defect to chip 
level itself. Furthermore, because test stimuli are 
applied using normal clock rate, testing of a self-
testable chip can be performed at-speed. 
Additionally, since the test resources are available 
during the entire life of the chip, they can 
significantly simplify the diagnostics and 
maintenance procedures for digital systems [1 - 8]. 

In built-in self-test environment Linear 
Feedback Shift Registers (LFSRs) is an integral part 
of sequential design, such that they can be used for 

both generating the test sequences and compressing 
the output response data using SA scheme (see Fig. 
1).  

 

 
Figure 1: BIST approach of testing 

 
But the difficulty arises when the resulting 

response data obtained from the Circuit Under Test 
(CUT) is compressed into small signatures using 
Signature Analyzer (SA) via response data 
compression tool. Although, SA scheme is easily 
implemented by an LFSR, but this leads to loss of 
information, due to the erroneous response patterns 
that gets compressed into the same signature as the 
fault free signature of the CUT. Thus, some of the 
faults might go undetected due to this error-masking 
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phenomenon. Therefore, this compression technique 
can further reduce the fault-coverage in the BIST 
scheme. This particular problem of error masking is 
called ‘aliasing’ phenomenon in the field of digital 
system testing [1 - 14]. 

Methods to determine the extent of error-
masks caused by a response data compressor are not 
readily available. However, various attempts [1 – 
25] been made to analyze and improve the basic 
signature scheme. The end goal of these schemes, 
individually, or with a combination of these, is to 
reduce the deception volume. In the research papers 
it is conjectured that the changed order of the test 
patterns applied to the CUT may change the level of 
the probability of error masking behaviour.  
Whereas some of the simulation results via one of 
the communications have been demonstrated that 
the changes in the polynomial seed (‘initial loading 
of LFSR’) in LFSR based BIST technique do not 
affect the error-masking behaviour of an SA 
scheme.  This paper further investigates the SA 
schemes and presents the results through a 
developed simulation model which demonstrates 
that there exists a special relationship between the 
pairs of primitive characteristic polynomials of the 
SA. It is found that in a circumstance the use of a 
primitive characteristic polynomial may be the best 
effective but at the same time the use of the 
reciprocal of the same primitive characteristic 
polynomial may prove the effectiveness of SA as 
the worst one.  
 
 
2 LFSR Theory 

The theory of LFSR and related issues are readily 
available in the literatures [26 – 34]. Just to make 
this paper more readable we reintroduce the 
available theory of LFSR in brief. Fig. 2 depicts a 
general model of an n-bit LFSR realized by an 
external exclusive OR bank. An LFSR has two 
components: a shift register (or the law describing 
shifts in each bit which uses D flip-flops) and a 
feedback function (the new bit can be translated to 
an actual number or a useful message; realized by a 
bank of exclusive OR function). It is simply a 
sequence of different bits created by shifting 1-bit to 
the right. The extreme left bit is obtained as a 
function of the other bits in the register depending 
on the feedback taps [c0, c1, c2, . . . , cn-1, cn].  In 
an LFSR connection, the number of cells tapped 
determines the polynomial that characterizes the 
entire connection of the LFSR. Obviously, the last 
cell is always tapped (cn = 1).  The characteristic 
equation given in equation (1) always starts with xn 

(1*xn = xn) and  has a one at the end since the 
feedback connection starts with the cell 0 and 
therefore, c0 will always 1 and  x o = 1, hence 1*1 
gives 1. The cells that are tapped are linked to XOR 
operation giving a feedback of different bits every 
time. Consider the following example elaborated 
through Table 1. Table 1 illustrates that how the 
patterns are produced by the LFSR having feedback 
taps from 1st and 3rd (c0 = c1 = c3 = 1; characteristic 
polynomial P(x) = 1 + x +x3) also, assume that the 
pattern of 111 is used as an initial loading (seed) of 
LFSR. It can be visualized as the pattern 8 becomes 
as the pattern 1, repetition starts thus the period of 
LFSR sequence is 7. Equation (1) denotes the 
governing equation of LFSR characteristic 
polynomial P(x). 

 
Figure 2: An n-bit LFSR 

 
Table1: LFSR pattern for P(x) = 1 + x +x4 
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As shown in Equation 2, that the transition 

matrix (represented by [A] of order nxn of an n-
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stage LFSR) which, if multiplied by the initial or the 
present state Y(t)  of the LFSR gives the state of the 
LFSR one clock later or the next state Y(t+1). The 
matrix A is demonstrated in Equation (3). 

 
[Y (t+1)]= [A] [Y (t)]                                         (2) 
 

( )
( )

( )
( ) ⎥

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

+
+

+
+

−

1
1

1
1

1

2

1

ty
ty

ty
ty

n

n

M =

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡ −

01000
00000

00001
1321

L

L

MMLMMM

L

L nn ccccc ( )
( )

( )
( ) ⎥

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

ty
ty

ty
ty

n

n 1

2

1

M  (3) 

 
Where    cj = 0 or 1, for 1≤ j ≤ n-1 shows absence or 
presence of the respective feedback taps; cj = 1, for j 
= n to complete the feedback connection for the 
entire LFSR.  

The period p of the shift register is the 
number of new bits created without repetition i.e. [Y 
(t+p)] = [Y (t+1)]. A sequence generated from an n-
stage LFSR has a maximal length of 2n-1. However, 
if we start with a shift register filled with all zeros 
the LFSR will generate a never-ending stream of 
zeros i.e. the period of LFSR sequence becomes 
zero. 

Not all (2n-1) the characteristic polynomials 
(corresponding to feedback taps of an n-bit LFSR) 
would be capable of generating maximal length 
sequence. There are many properties of polynomials 
which generate maximal length sequence. Like only 
the nth order primitive characteristic polynomials 
can generate the sequence of length 2n-1. Some of 
such properties related to LFSR are summarized 
below in the form theorems and definitions. 
 
Theorem 1:  

In an n-bit LFSR, the total number of 
possible characteristic polynomials (NPP) will be 
equal to 2n-1. 
Proof: 

Since the last bit of the LFSR is always 
tapped, and the taps (ci has binary option either 0 or 
1, representing the absence and presence of the taps 
respectively) therefore, NPP = 2n-1. 
 
Definition 1: 

The period p of an n-bit LFSR is the length 
of the cycle after which the LFSR sequence repeats.  
 
Definition 2: 

The period p of an n-bit LFSR will only be 
maximal when p = m = 2n-1. 

Definition 3: 
A sequence produced by an n-bit LFSR 

which has period m is called a PN-sequence (or a 
pseudo-noise sequence or m-sequence or maximal 
length sequence).  
 
Definition 4: 

In an n-bit LFSR model a characteristic 
polynomial is characterized as an irreducible (which 
cannot be factored) has a period p which divides m 
(p < m).  
 
Definition 5: 

In an n-bit LFSR model an irreducible 
characteristic polynomial is characterized as a 
primitive polynomial whose period is m (p = m).  
 
Theorem 2:  

In an n-bit LFSR, a characteristic 
polynomial P(x) is primitive, if and only if, it’s 
reciprocal characteristic polynomial P*(x) is also 
primitive.  

 
The reciprocal characteristic polynomial of 

P(x), denoted by P*(x) and can be given as shown in 
Equation (4). 
 
P*(x) = xn P(1/x) = c0 xn + c1 xn-1 + ... + cn            (4) 
 

That is if P(x) corresponds to the taps {n, .., 
i, …, j, …} then, P*(x) will correspond to the taps 
{n, … n-i, …, n-j, …} where n > i > j. 
 

Theorem 3 below which is consequence of 
Theorem 2 can be interpreted as: 
 
Theorem 3:  

The characteristic polynomial of an n-bit 
LFSR can be primitive, if and only if the number of 
taps in that LFSR is even excluding the tap c0. 
 

The determination of the primitive 
polynomial involves the use of the Euler phi-
function Φ(.) and search for primes. The Euler 
function has the property that its value for an integer 
m is the product of the values of the Euler phi-
function at the prime powers that occur in the 
factorization of m. The Euler phi-function is 
computed on the basis of the prime factorization of 
m (m = p).  The following equation (Equations (5) 
and (6)) are embodied in the proposed algorithm for 
finding primitive polynomials. 

The number of possible primitive 
polynomials (NPP) of order n can be found out by 
using Euler’s phi-function Φ(m) as stated below.  
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Let   be the prime-power 

factorization of a positive integer m.  Then 
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The NP can be computed as in Equation 5.   

NPP =  Φ ( )m
n

                                                     (6) 

Let us consider n = 3, there exists 23-1 = 4, 
total possible polynomials, m = 2n –1 = 7, so, m is 
prime therefore, = 6, whereas, NPP will be 
equal to 2. Let us consider another example of n = 4 
which has 8 possible characteristic polynomials, m 
= 15 (p1 = 3, p2 = 5), = 8 gives NPP = 2.  

)(mφ

(mφ )
Golomb's [33] principles related to maximal 

length sequence are nothing but known as the 
properties of the sequence and, described below: 

- An n -bit LFSR generates a maximal length 
sequence of period 2n-1. 

- A maximal length sequence produces 
exactly 2(n-1) total ones and 2(n-1)-1 total 
zeros in the sequence. 

- The run length of a maximal length 
sequence will have  

    1 run of ones of length n, and 1 run of zeros of 
length n-1.  
    1 run of ones and 1 run of zeros, each of length 
n-2.  
    2 runs of ones and 2 runs of zeros, each of 
length n-3 
    4 runs of ones and 4 runs of zeros, each of 
length n-4.  

Table 2 provides the data to demonstrate the 
properties of maximal length sequences of LFSRs of 
sizes 2 to 5.  

 
Table 2: Different runs of maximal length sequences 

 

3 Signature Analysis Process  
Signature Analyzer is a response data compression 
tool based on the concept of Cyclic Redundancy 
Checking (CRC). The LFSRs are used to realize a 
SA in hardware form. The first signature analyzer, 
HP5004A, was manufactured by Hewlett-Packard 
[35]. The SA is used to detect errors in data streams 
caused by the faults in a CUT. The simplest form of 
the SA consists of a single-input LFSR and is 
known as Single Input Shift Register (SISR). A 
SISR type SA with internal exclusive OR 
arrangement is shown in Fig. 3. In the operation of 
such SA schemes the signature is then the contents 
of the register after the last data input bit has been 
sampled. The Table 3 demonstrates the process of 
obtaining the signature vector [s] for a given data 
vector [d] = [1001011], using a 3-bit LFSR circuit 
with feedback connections (CON) as CON = [c0, c1, 
c2, c3] = [1, 1, 0, 1].  
 

 
Figure 3: An n-bit SISR type SA 

 
Table 3: The state table of a 3-bit SA 

Clock Register’s states Comments 
 Q1 Q2 Q3  
t = 0 0 0 0 Initialization of SA 
t = 1 1 0 0 The MSB entered ‘1’
t = 2 0 1 0 The bit entered ‘0’  
t = 3 0 0 1 The bit entered ‘0’ 
t = 4 0 1 0 The bit entered ‘1’ 
t = 5 0 0 1 The bit entered ‘0’ 
t = 6 0 1 0 The bit entered ‘1’ 
t = 7 1 0 1 The LSB entered ‘1’ 
t = 7 1 0 1 The signature [s] 

 
        The SA process can be defined as a 
polynomial division in GF(2) of the data polynomial 
d(x) by the polynomial P(x), which is a function of 
the feedback coefficients of LFSR circuit of the SA. 
The polynomial P(x) is conventionally referred to as 
the characteristic polynomial of the SA. The 
signature polynomial s(x) is simply the remainder of 
the polynomial division of d(x) over P(x). The 
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Equation (7) describes the division process. In 
Equation (7), the q(x) is the quotient polynomial. 
The Example 1 below demonstrates the polynomial 
division process of SA. 

)(
)()(

)(
)(

xP
xsxq

xP
xd

+=                                       (7) 

 
The SA process can also be defined by 

using state space model as given in Equation 
(8). 

 
[Y(t+1)] =  [A]*[y(t)] + [d]                             (8) 
 

To make it more readable we present the 
example as below.  
 
Example 1: 

Let us consider the same data as considered 
for the Table 3. i.e. [d] = [1001011], using a 3-bit 
LFSR circuit with feedback connections (CON) as 
CON = [c0, c1, c2, c3] = [1, 1, 0, 1].  

Then d(x) = 1 + x + x3 + x6 and P(x) will be 
as P(x) = 1 + x + x3. 
 
Using Equation (7), we get  
s(x) = 1 + x2, and 
q(x) = x + x3 
        
        To verify the results which are obtained by 
the LFSR circuit and the polynomial division 
process the Test1, Test2, and Test3 are the 
procedures of polynomial multiplication, 
polynomial division, and binary division processes 
in GF(2), are described below respectively. 
 
Test 1:  

Using Polynomial Multiplication Process in 
field GF(2) 
 
q(x) P(x) + s(x) = d(x)  
                         = (x + x3) (1 + x + x3) + 1 + x2  
                         = 1 + x + 2x2 + x3 + 2x4 + x6 
                         = 1 + x + x3 + x6 = d(x) 

This verifies the model of SA process. 
 
Test 2:  

Figure 4 demonstrates the verification of 
Example 1 using Polynomial Division Process in 
GF(2). 
 
Similarly, Test 3 below verifies and demonstrates 
Binary Division   

Test 3:  
Figure 5 demonstrates the verification of Example 1 
using Binary Division Process 
 

 
Figure 4: Test 2; Polynomial Division Process  

 

 
Figure 5: Test 3; Binary Division Process  

 
The above Tests demonstrates the results 

are having the conformity with the results of the 
LFSR based SA circuit. It can be seen in the Table 3 
that at t = 7, [1 0 1] is the signature vector s 
whereas, the vector [0 0 1 0 10], obtained from the 
output Q3, of the register D3 collected before the last 
bit of the data is entered (i.e. up to t = 6) is the 
quotient q.  
 
 
4 Simulation Set-Ups  
Data (input) to the SA in Fig. 6 is maximal length 
sequence (m-sequence) generated by the respective 
possible primitive polynomials, MGP(x) of order n. 
The m-sequence generator model used in this set-up 
is shown in Fig. 4. This m(x) is applied to CUT (see 
Fig. 1). The divisibility of SA is tested for each of 
the m-sequence vectors through all possible 
primitive characteristic polynomials of order n. The 
procedure adapted in this study is summarized 
below in the form of an algorithm. 
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Figure 4: An n-bit LFSR – sequence generator 

 
ALGORITHM 
 
Begin 
STEP 0: 
For n = 3: N 
 % (for this communication the N is used as 6)  
STEP 1: 
Generate and list all possible primitive polynomials 
of order n, (Pi,n (x))  
% (where i vary from 1 to NPP; the NPP is the total 
%number of primitive polynomials of order n) 
STEP 2: 
Obtain and list the pairs of reciprocal polynomials 
from the list of NPP number of primitive 
polynomials of order n 
STEP 3: 

For j = 1: NPP 
Generate and document the binary and hex 
forms of m-sequence by using the generator 
polynomial Pj,n(x) 

For k = 1: NPP 
Check the divisibility of SA by 
using the characteristic polynomial 
Pk,n(x) while inputting the m-
sequence generated by polynomial 
Pj,n(x); 
End; 

Document the divisibility result (the 
quotient polynomials q(x) and the 
remainder polynomial s(x)); 
End; 

End 
 
 
5 Simulation Run  
Hence using the algorithm described in Section 4, 
the obtained data are presented through Tables 4 – 
8. The Table 4 lists the primitive polynomials and 
their respective reciprocal pairs. For acquiring more 
knowledge about findings of such pairs one can 
refer to research papers [31], [32], and [36]. 

Whereas, Tables 5 - 8 are demonstrating the SA 
divisibility with respect to all possible combinations 
of Pj,n(x) and Pk,n(x). The quotients are presented in 
the tables only for n = 3 and 4. Although the 
simulation experiment provides all the q(x) values 
however, it is difficult to present for the large sizes 
of n. 
 
Table 4: Primitive polynomials and reciprocal pairs 
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3 / 2 P13 = 1 + x2 + x3 P13, P23 
P23 = 1 + x + x3 

4 / 2 P14 = 1 + x3 + x4 P14, P24 
P24 = 1 + x + x4 

5 / 6 P51 = 1+x3+x5 P51, P52 
P53, P56 
P54, P55 

P52 = 1+x2+x5 
P53 = 1+x2+x3+x4+x5 
P54 = 1+x+x3+x4+x5 
P55 = 1+x+x2+x4+x5 
P56 = 1+x+x2+x3+x5 

6 / 6 P61 = 1+x5+x6 P61, P63 
P62, P65 
P64, P66 
 
 

P62 = 1+x2+x3+x5+x6 
P63 = 1+x+x6 
P64 = 1+x+x4+x5+x6 
P65 = 1+x+x3+x4+x6 
P66 = 1+x+x2+x5+x6 

 
Table 5: Divisibility measure for SA (n = 3)  
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P13 P23 P13 P23 

P13 [1001011] 0  1 + x2  q13 q23 

P23 [1001110] 1 + x2  0  q33 q43 
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q13 = +x+x2+x3 ; q23 = x+x3 ; 
q33 = x+x3 ;  q43 = 1+x+x2+x3 

 
Table 6: Divisibility measure for SA (n = 4)  
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P14 P24 P14 P24 

P14 m1 0 1 + x2 + x3 q14 q24 

P24 m2 1 + x2 + x3 0 q34 q44 

 
m1 = [100010011010111];  
m2 = [100011110101100] 

q14 = 1+x+x2+x3+x4+x6+x7+x8+x9+x10 ;  
q24 = x+x2+x4+x7+x10 ; 

q34 =  1+x3+x4++x5+ x6+x7+x8+x9+x10 ; 
q44 = x2+x5+x7+x10 

 
Table 7: Divisibility measure for SA (n = 5)  
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P51 P52 P53 P54 P55 P56 

P51 4259F1BA  0 19 0 0 0 0 

P52 42BB1F34 14 0 0 0 0 0 

P53 42D477C9 0 0 0 0 0 1D 

P54 439BE895 0 0 0 0 15 0 

P55 43522FB3 0 0 0 1D 0 0 

P56 4327DC56 0 0 11 0 0 0 

Table 8: Divisibility measure for SA (n = 6)  
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P61 P62 P63 P64 P65 P66 

P61 m1 0 0 31 0 0 0 
P62 m2 0 0 0 0 29 0 

P63 m3 31 0 0 0 0 0 

 
m1 = 410C53D1C96ECD5F;  
m2 = 417E5467BAD36223; 
m3 = 41FAB376938BCA30;  
m4 = 41E4A9A116FD719D; 
m5 = 41C246CB5DE62A7E;  
m6 = 41B98EBF68859527 

 
 
6 Results and Analysis   
Analyzing the results through Tables 5-8 given 
in Section 5, the following findings are 
summarized and presented in the forms of 
theorems. 
 
Theorem 4: 

The m-sequence generated by an n-bit 
primitive characteristic polynomial P(x) will be 
divisible if the same characteristic polynomial P(x) 
is used in the signature analysis scheme.    

 
In Tables 5 - 8 it can be seen that when the 

m-sequence generator polynomial and the SA 
polynomial are same the values of the remainders 
are zeros i.e. the input sequence polynomials are 
exactly divisible by its respective SA polynomials.   
 
Theorem 5: 

The m-sequence generated by an n-bit 
primitive characteristic polynomial P(x) will not be 
divisible if the reciprocal of characteristic 
polynomial P(x)  is used in the signature analysis 
scheme.    
 

It can be seen in Tables 3 - 6 that when the 
m-sequence generator polynomial and the SA 
polynomial are reciprocals the values of the 
remainders are not zeros i.e. the input sequence 
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polynomials are not divisible by its respective 
reciprocal polynomials used in SA.   
 
 
7 Conclusion 
The effectiveness of any SA scheme depends upon 
following factors, 

i. The size of SA scheme n, 
ii. The characteristic polynomial of SA 

tool, and 
iii. The nature of the inputted data stream 

into the SA scheme. 
The findings through this paper clearly, 

indicates that the use of primitive characteristic 
polynomials in SA scheme is intended to give the 
best results however, it can also be critically 
analyzed that all the primitive characteristic 
polynomials will not provide the same effectiveness 
for the SA scheme. As it can be seen from the 
Tables 5 - 8 that the use of reciprocals of primitive 
polynomials results the totally different situations of 
divisibility of the SA scheme which turns from 
divisible to not divisible. In Table 7 we observe that 
the m-sequence (410C53D1C96ECD5F) given in 
hexadecimal base is generated by a characteristic 
primitive polynomial, P61; which is represented by 
the polynomial 1+x5+x6 is divisible by all other 
possible primitive polynomials except P63 which is 
reciprocal of P61. When P63 is used as characteristic 
polynomial in the SA then the data denoted in 
hexadecimal as (410C53D1C96ECD5F) gives the 
signature as (31) given in hexadecimal notation 
hence not divisible. We obtained the results for n = 
3 to 16 and similar findings exist. This finding 
provides a breakthrough in the research of the study 
of the effectiveness of SA schemes.  
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