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1 Introduction 
Several techniques for the design of 2-D (Two-

Dimensional)  filters have been published recently 

due to the vast applications of 2-D filters in image 

processing, satellite communications, biomedical 

imaging, computer vision etc.. Various popular 

methods have received considerable attention by 

engineers and research scholars.  In general the  

design of 2-D FIR filters includes a Fourier method 

that uses Fourier analysis, where appropriate 

window Functions can also eliminate Gibbs’ 

oscillations, a Transformations’ method which is 

based on McClellan Transformations from 

appropriate 1-D filters [1],[2] and an optimization 

method i.e. the minimization of an appropriate 

norm, [1],[2]. Similarly,  the  design of 2-D IIR 

filters includes also transformations, Mirror Image 

Polynomials, SVD (Singular Value Decomposition) 

and Optimization, [1],[2]. Several Authors have 

published works on optimization-based 2-D filter 

design while a great number of papers are dedicated 

to transformations and mainly to McClellan 

Transformations, [3]÷[18]. McClellan 

Transformations were introduced in [3] and have 

been used for the last forty years in many theoretical 

topics and engineering applications. Harn and 

Shenoi pointed out in [5] and Nguyen and Swamy 

reported in [6], that till now a transformation for IIR 

filter design analogous to McClellan transformation 

does not exist due to the requirements of 2-D 

stability.  

The purpose of this paper is to find such 

transformations and an attempt is made in section II.  

This paper examines this transformation as well as 

its generalization to the general 2-D filters design. 

The usefulness of the proposed transforms is 

verified through two examples in section III. 

Finally, there is a conclusion. 

 

2 The Transformation and its 

Generalizations 

Let us consider the 1-D function of the prototype 

low-pass Butterworth filter (cut-off frequency Ω =1)  
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The question here is “could it be possible after some 

appropriate transformation, for this function to 

derive the stable transfer function of a 2-D   low-

pass filter without the usual Transformations 

(McClellan Transformation) or the popular 

optimization techniques?” 

An easy transformation could be for example 
2 2

1 2
ω ωΩ = + , where

1 2
,ω ω are the frequencies of the 

discrete 2-D filter. However, in such a case, a filter 

with magnitude 1 2 2 2 2

1 2

1
( , )

1 ( )
n

H j jω ω
ω ω

=
+ +

can not 

be implemented since it does not correspond to a 

transfer function that would be a rational function of  
1 1

1 2
,z z− − . Another transformation could be, for 

instance, 2 2

1 2
sin ( ) sin ( )ω ωΩ = + . The problem in this 

case is that  

due to 2 1 cos(2 )
sin ( )

2

ϕ
ϕ

−
= the period of 

1
ω  (and 

2
ω ) 

would be π and not 2π  as the 2-D filter design 

demands. 

The transformation 2 21 2sin ( ) sin ( )
2 2

ω ω
Ω = +  or the 

more general 2 21 2sin ( ) sin ( )
2 2

p pω ω
Ω = +  seem more 

logical, where p is a positive integer.  

Obviously, the low frequencies of Ω  are depicted to 

a region of low frequencies of  
1 2
,ω ω  - details will 

be presented in the next paragraphs.  

 

In all the previous cases, the 2-D filter will be a non-

causal 2-D system. The non-causality in 2-D 

systems is not a problem, since the dimensions are 

spatial and do not correspond to time. 

By introducing 2 21 2sin ( ) sin ( )
2 2

p pω ω
Ω = +  from our 

prototype function of (1) we take 

     
1 2
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So, using 2 1 cos(2 )
sin ( )

2
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= , one gets 
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Considering now that our filter is of zero-phase, one 

can write 

1 2 2
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1
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that can be implemented because 
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(3) 

 

which can easily implemented provided that this is a 

BIBO (Bounded Input Bounded Output Filter).  

BIBO Stability of (3) can be proven easily taking 

into account that we have a non-causal 2-D system. 

So, a necessary and sufficient condition is ([28)] 
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However, this can be proven easily, since 
11

1

iz e ϑ− = and 21

2

iz e ϑρ− = .  

So, ( )21 1 2 2

1 2 1 2( , ) 1 cos ( / 2) cos ( / 2) 0
n
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which is obviously  0≠   

 

Therefore the BIBO Stability of the filter in (3) has 

been proved. 

 

A simple extension of (1) can be    

 

              
2
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( )

1 n n
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ε
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+ Ω
                          (4) 

 

where 0ε >  and cut-off frequency 1ε − . 

Under the transformation 2 21 2sin ( ) sin ( )
2 2

p pω ω
Ω = + , 

and following the same steps, one takes the stable 2-

D filter 
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3 Numerical Examples and Design 

Example III.1 

Consider (1) with n = 8, the magnitude
16

1

1
y =

+Ω
is 

depicted in Fig.1 

 

 

Fig.1 Plot 
16

1

1
y =

+Ω
 

Then, with the transformation 

4 41 2sin ( ) sin ( )
2 2

ω ω
Ω = + , i.e. p =2 , one gets the zero-

phase filter with magnitude response in Fig.2 

 

 

Fig.2.   Plot
1 2
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Example III.2 
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Consider  again (1), with n = 8, 
16

1

1
y =

+Ω
 

Under the transformation 8 81 2sin ( ) sin ( )
2 2

ω ω
Ω = + , 

i.e. p =4, one gets the zero-phase filter with 

magnitude response in Fig.3 

 

 

Fig.3.    Plot
1 2
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By considering ε =2, we have 
16 16

1

1
y

ε
=

+ Ω
 

Now the transformation 8 81 2sin ( ) sin ( )
2 2

ω ω
Ω = +  

16 8 8 161 2

1
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2 2

y
ω ω
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+ +
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Fig.4.   

Plot
1 2
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with  cut-off frequencies to be given by 

 

16 8 8 161 2(sin ( ) sin ( )) 1
2 2

ω ω
ε + =  

 

or equivalently 
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sin ( ) sin ( )

2 2 2
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or 0.81 2

8

(sin( ),sin( )) .5 0.917
2 2

ω ω
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On the other hand 

 

1 2 1 2

8
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2 2 2 2
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i.e. the cut-off frequencies can be defined by 

 

1 2
, 2 arcsin(0.917) 2.3209ω ω = ⋅ =  

 

 

 

 

 

The previous filters are symmetrical in 
1 2
,ω ω  thanks 

to  2 21 2sin ( ) sin ( )
2 2

p pω ω
Ω = + . Introducing now the 

real parameters a, b, one takes the transformation 

 

2 2 2 21 2sin ( ) sin ( )
2 2

p p p p
a b

ω ω
Ω = +  that provide the 

(non-causal) filter 
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Example III.3 

Starting from 
16 16

1

1
y

ε
=

+ Ω
     (n = 8)  and using 

2 2 2 21 2sin ( ) sin ( )
2 2

p p p p
a b

ω ω
Ω = + , with p =4,  

compute the parameters ε , a, and b , in (5), such 

that cut-off frequencies to be
10

/ 2,ω π= ±  

20
/ 3ω π= ± . 

 

Solution: Our filter must be 

16

16 8 8 8 81 2
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y
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=
 + + 
 

 

 

 

Without loss of generality the constant ε  is 

incorporated to a and b. So, one can set ε =1.  The 

cut-off frequencies are found  from the equation 

 

16
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Since, 
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Using 
10

/ 2,ω π= ±  
20

/ 3ω π= ±  from 
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= 
 

 we take 

2a = , 2b =  

 

Hence, our filter is  
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and can be depicted easily in Fig.5 taking 
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Fig.5: Magnitude response of the filter of Example 

III.3 

 

In Fig.5, the magnitude response is illustrated if 

2
0ω =  

 
Fig.6: Magnitude response of the filter of Example 

III.3 if 
2

0ω =  

 

4 Conclusion 

In this brief, new transformations for designing 2-

D (Two-Dimensional) IIR filters are introduced. 

The resulting non-causal IIR filter is proven to be 

BIBO stable. Some numerical examples illustrate 

the validity and usefulness of the proposed 

transformation. Analogous transformations can be 

derived for highpass, bandstop and bandpass non-

causal 2-D IIR filters.  
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