
An evaluation for the design of asynchronous systems

SUN-YEN TAN
1
, WEN-TZENG HUANG

2

1
 Department of Electronic Engineering

National Taipei University of Technology

No.

1, Sec. 3, Chung-hsiao E. Rd., Taipei,10608, Taiwan, R.O.C.

 sytan@ntut.edu.tw

2
 Department of Computer Science and Information Engineering

Mingsin University of Science and Technology

No.1, Xinxing Rd., Xinfeng Hsinchu 30401, Taiwan, R.O.C.

 wthuang@must.edu.tw

Abstract: - The asynchronous circuit style is based on micropipelines, a style used to develop asynchronous

microprocessors at Manchester University. This paper has presented some engineering work on developing a

technique of sharing resources for micropipeline circuits. The work presented in this paper shows a comparison

of 2-phase and 4-phase implementations in transistor count, speed, and energy. Though the nature of the work is

mainly engineering, there are some significant new insights gained in the course of the work.

In resource sharing the 2-phase implementations have better performance than the four-phase

implementations. There is no “return to zero” problem. Fork and join cost nothing to the two-phase

implementations. With some additional buffer stages the 4-phase implementations using the fully decoupled and

long hold latch control circuits can also implement resource sharing. However, the four-phase implementations

using the simple and semi-decoupled latch control circuits require more buffer stages to avoid deadlock.

Key-Words: - Asynchronous design, Micropipelines, Processor, Sharing resources, Synthesis

1 Introduction
Well structured asynchronous design styles, such as

micropipelines, reduce the difficulty. Event-driven

logic modules may be designed by electronic experts.

Then designers with less experience can easily build

micropipelined circuits using such modules. An

automatic synthesis tool is available [1][4]. It converts

the behavioural VHDL into structural VHDL and

Verilog based on micropipelines [1][7][11].

Two-phase and four-phase VHDL models of

event-drive logic modules and standard logic function

elements were created. In this paper we demonstrate

the technique of sharing resources for micropipeline

circuits.

Section 2 introduces some asynchronous design

techniques. Section 3 briefly describes nicropipelines

and introduces 2-phase and 4-phase event-driven

Logic modules. The sharing resource design will be

presented in Section 4. Section 5 will present

experimental results. Section 6 gives an analysis for

the synthesized circuits. Finally, Section 7 will give a

short conclusion.

2 Asynchronous design
Asynchronous design has potential advantages over

synchronous design [8][9][10], such as no clock skew

problem, low power, average case performance and

good Electro-Magnetic Compatibility (EMC). The

benefits may be most apparent in mobile

communication applications and other portable

systems which use advanced VLSI technologies.

Asynchronous logic circuits have several

important advantages over their counterparts in

clocked logic. An asynchronous logic function is

potentially faster because it works at the average-case

delay rather than the worst-case delay. There is no

global clock on asynchronous circuits so they will not

unnecessarily dissipate power when there is no useful

work to do. Asynchronous logic has the potential for

low power [5]. Asynchronous logic may be used to

implement systems with lower power dissipation.

3 Micropipelines
The design of asynchronous circuits generally follows

a modular approach, where a system is designed as an

interconnection of modules. In the 1988 Turing

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Sun-Yen Tan, Wen-Tzeng Huang

ISSN: 1109-2734 26 Issue 1, Volume 10, January 2011

Award Lecture, Sutherland expounded a modular

approach to building hardware systems based on

data-driven asynchronous self-timed logic elements

called micropipelines [6]. In the 4-phase handshaking

protocol, only rising transitions or only falling

transitions of either control wire have the meaning;

they represent request events or acknowledge events.

In this signalling scheme, the operating cycle is (1)

data available, (2) change request to active state, (3)

change acknowledge to active state, (4) return request

to inactive state, and (5) return acknowledge to

inactive state. If the active state is logic ‘1’ the the

operating cycle is (1) data available, (2) request+, (3)

acknowledge+, (4) request-, and (5) acknowledge-.

Figure 1 illustrates two kinds of four phase signalling,

the ‘early’ mode and the ‘broad’ mode [2]. The

‘early’ mode (Figure 1(a)) uses the rising edge of the

Request line to indicate ‘data available’ and the

rising edge of the Acknowledge line to indicate ‘data

latched’. The falling edges are return to zero actions

that carry no meaning. The ‘broad’ mode (Figure

1(b)) uses the rising edge of the Request line to

indicate ‘data available’ and the falling edge of the

Acknowledge line to indicate ‘data latched’.

Another possible protocol is ‘late’ mode which uses

the falling edges as active.

Fig. 1. 4-phase bundled data convention

Various event-driven logic modules for

controlling transition signals are shown in Figure 2.

They were devised for composing to 2-phase control

circuits. Muller C-elements and XOR gates are the

same whether they are used in 2- or 4-phase designs.

However, 4-phase Toggle, Select, Call and Arbiter

modules are different from their 2-phase counterparts.
A Toggle is used to alternately deliver events on its

input to one of two outputs. In the 2-phase protocol

each transition denotes an event. Therefore, the odd

number transitions on the input of a Toggle will be

sent to the dotted output and the even number

transitions on the input of a Toggle will be sent to the

non-dotted output. In the 4-phase protocol each event

consists of a rising transition and a falling transition.

A rising transition and the following falling transition

must be sent to the same output. Therefore, the odd

number rising and falling transitions on the input of a

Toggle will be sent to the dotted output and the even

number rising and falling transitions on the input of a

Toggle will be sent to the non-dotted output.

Fig. 2. Various event-driven logic modules.

Furber and Day developed four kinds of 4-phase

latch control circuits. They are the simple,

semi-decoupled, fully decoupled and long hold

4-phase latch control circuits [3][11]. They use the

4-phase bundled data convention.

4 Sharing resources
Figure 3 shows that the stg4 stage contains two

computations, a 16-bit adder and a 17-bit adder. A

resource sharing implementation may be applied to

save cost. A 17-bit adder stage can be created and

calling this adder stage twice may get the same result.

To implement resource sharing a re-partitioning of the

stages is required. Latches are put at the input and

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Sun-Yen Tan, Wen-Tzeng Huang

ISSN: 1109-2734 27 Issue 1, Volume 10, January 2011

output ends of the computations. After putting latches

at the input and output ends of the computations

inside the stg4 stage and adding control circuits for

the latches some new stages are created as shown in

Figure 4. The stg3 stage forks into the stg4, stg31 and

stg35 stages and the stg3, stg32 and stg36 stages join

into the stg4 stage.

Some Arbiter and Call modules are required to

build the circuit for connecting different source stages

to the resource stage. For example, if there are five

source stages Figure 5 shows the Arbiter and Call

circuits which can be used to connect the five source

stages to the resource stage. The source stage which is

identified as ‘1’ has to connect its Rout and Aout to

the r1 and d1 inputs which are labelled 1. The source

stage which is identified as ‘2’ has to connect its Rout

and Aout to the r2 and d2 inputs which are labelled 2,

and so on.

Fig. 3. A stage(stg4) contains a 16-bit adder and

a 17-bit adder

Two sets of multiplexer circuits as shown in

Figure 5 are required to connect the data from

different source stages to the computation device

inside the resource stage. The source stage which is

identified as ‘1’ has to connect two data outputs to the

two multiplexers which are labelled 1. The source

stage which is identified as „4’ has to connect two data

outputs to the two multiplexers which are labelled 4.

The signals labelled s3 are connected together. They

are used to control the multiplexers. These

connections of the multiplexer controls are for the

4-phase protocol. Select and XOR circuits are also

required to connect the Rout and Aout of the resource

stage to different output stages.

Fig. 4. Some latches are connected at the inputs and

outputs of adders.

Fig. 5. The Arbiters, Calls and Muxs are connected

to control the resource stage receiving requests from

different stages.

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Sun-Yen Tan, Wen-Tzeng Huang

ISSN: 1109-2734 28 Issue 1, Volume 10, January 2011

Figure 6 shows Select and XOR circuits which

can be used to connect a resource stage to five output

stages. The output stage which is identified as ‘3’ has

to connect its Rin and Ain to the Select and XOR

circuits which are labelled 3. The inputs labelled s1,

s2, s3 and s4 of the latch shown in Figure 6 are

generated from the circuits shown in Figure 5. The

outputs labelled b1, b2, b3 and b4 of the latch shown

in Figure 6 are used to decide where the events should

be sent to. They are connected to the inputs labelled

b1, b2, b3 and b4 of the Select circuits.

Using the above techniques a 17-bit adder

resource stage can be created and called by two source

stages, stg31 and stg35. The circuit is shown in Figure

7. The resource stage is connected to two output

stages, stg32 and stg36. The 2-phase protocol is used

in this circuit. The stg31 stage is connected to the

Arbiter, Call and Mux circuits at the position

labelled 1. The stg35 stage is connected to the

Arbiter, Call and Mux circuits at the position

labelled 2. The stg32 stage is connected to the Select

and XOR circuits at the position labelled 1. The stg36

stage is connected to the Select and XOR circuits at

the position labelled 2.

Fig. 6. The selects and XORs are used to deliver the

request from the resource stage to the corresponding

stage.

Those non-connected inputs of the MUXs may

need to be connected to logic ‘0’ or ‘1’ depending on

what the computations are. The circuit in Figure 4

may be denoted by Figure 8(a) or 8(b) depending on

whether one resource is used or two resources are

used. Both circuits which are implemented using a

2-phase protocol run correctly.

Fig. 7. The stages (stg31 and stg35) use a resource

stage (a 17-bit adder) to generate two computations

in different time.

However, Figure 8(a) has deadlock if a 4-phase

protocol is used to implement the circuit. The 4-phase

circuit of Figure 8(b) can run correctly without

deadlock. The reason is that the rising transition of the

3 stage is sent to the 4 stage, the 31 stage and the 35

stage at the same time. The acknowledge rising

transitions of the 31 stage and the 35 stage are sent out

when these two stages hold data. However, the 4 stage

is waiting for the rising transitions from the 32 stage

and the 36 stage. If the 31 stage first calls the resource

stage, the Rin of the 38 stage will not return to zero

due to the 31 stage can not get the falling transition on

its Rin. To avoid the deadlock the method shown in

Figures 9, 10 and 11 can be applied.

The example shown in Figure 9 illustrates how

the steps work. The first step is to create some new

latches for those data from the stg5 stage but not

connected to the stg41 stage. These latches form a

new stage called stg45. Make the connections

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Sun-Yen Tan, Wen-Tzeng Huang

ISSN: 1109-2734 29 Issue 1, Volume 10, January 2011

between the stg5 and the new stage. Remember the

destination stage from the stg5 is the stg6 stage. After

processing the circuit of Figure 9 is changed as shown

in Figure 10.

The circuit of Figure 8(a) can use the above

method to avoid deadlock. However, the circuit of

Figure 10 still contains deadlock. A second step can

be followed. The second step is to create some new

latches for those data from the stg45 stage but not

connected to the stg6 stage. These latches form a new

stage called stg46. Make the connections between

stg45 and the new stage. The final circuit is shown in

Figure 11. Now the circuit shown in Figure 11 can run

correctly without deadlock. A synthesized processors

may contain some 16-bit and 17-bit adders as well as

some 16-bit and 17-bit subtractors. One choice is that

a 17-bit adder and a 17-bit subtractor process all

addition and subtraction operations within different

stages. The other is that a 16-bit and a 17-bit adders as

well as a 16-bit and a 17-bit subtractors process all

addition and subtraction operations within different

stages.

The synthesized 2-phase processor circuit can be

converted into resource shared circuits with the exact

same size or with a different size. These circuits were

simulated correctly using the leapfrog simulator.

The resource shared circuits for the above two

cases using 4-phase control circuits have to use the

above process to avoid deadlock. An example of the

resource shared circuits with common sizes of the

synthesized circuits is shown in Figure 12. The 47

stage and the 48 stage are resource stages. They are a

17-bit adder and a 17-bit subtractor. The circuit

shown in Figure 12 is after processing. Only

synthesized circuits using the fully decoupled and the

long hold control circuits were simulated correctly

using the leapfrog simulator and PowerMill.

The reason is that the falling transitions of Rout

in the fully decoupled and the long hold control

circuits can be sent out before the falling transition

arrives on Rin. Therefore, the falling transitions of

Aout in the fully decoupled and the long hold control

circuits can arrive before the falling transition arrives

on Rin. However, it is necessary to ensure that the

falling transitions of Rout in the simple and

semi-decoupled control circuits are sent out after the

falling transition arrives on Rin. Deadlocks may

happen. For example, as shown in Figure 12, the 11

stage sends rising transitions to the 26 stage, the 28

stage, the 30 stage, the 32 stage, the 34 stage, the 36

stage, the 38 stage and the 40 stage. Then the 26 stage

sents the request transition to the 47 stage. After the

47 stage holds data it sends a rising transition to the 27

stage. The 27 stage is one of eight stages which

connect to the 12 stage.

Fig. 8. The stages (the 31 stage and the 35 stage)

use a resource stage (a 17-bit adder) to generate two

computations in different time.

Fig. 9. To avoid deadlock in 4-phase circuits some

additional stages are required in the path(1).

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Sun-Yen Tan, Wen-Tzeng Huang

ISSN: 1109-2734 30 Issue 1, Volume 10, January 2011

Fig. 10. To avoid deadlock in 4-phase circuits some

additional stages are required in the path(2).

Fig. 11. To avoid deadlock in 4-phase circuits some

additional stages are required in the path(3).

It is necessary to wait for these eight stages to

send requests to the 12 stage. Then the 12 stage will

send the acknowledge to these eight stages. However,

four stages will still wait to send requests to the 47

stage. On the other hand, the 29 stage, the 35 stage,

the 37 stage, the 39 stage are still waiting for data

from the 47 stage. It is then impossible to get the

rising transition from the the 12 stage. As shown in

Figure 13, the Rout of the 27 stage stays at logical ‘1’

and the logical ‘0’ on the Rin of the 27 stage cannot

pass the C-gate without a rising transition on the Aout

of the 27 stage.

Eight extra buffer stages are required to connect

from the 27 stage, the 29 stage, the 31 stage, the 33

stage, the 35 stage, the 37 stage, the 39 stage and the

41 stage to the 12 stage individually. In total twelve

extra buffer stages are required to ensure that the

resource shared 4-phase simple and semi-decoupled

Stump processors can operate properly.

Fig. 12. Resource stages (47 and 48) are called

from different stages without deadlock.

Fig. 13. Four stages of the simple control circuits

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Sun-Yen Tan, Wen-Tzeng Huang

ISSN: 1109-2734 31 Issue 1, Volume 10, January 2011

5 Experimental results

Table 1 The performance of the resource shared

Stump processors

Circuit

Name

Transistors

(piece)

Run

Time

(μs)

Through
put

(KIPS)

Latency

(ns)
Energy

(fj)

2-phase
4 resources

184934 415.9 577.1 1299.4 1760.59

2-phase
2 resources

183412 536.8 447.1 1678.0 1834.65

4-p Fully

4 resources
193396 467.4 513.5 1460.5 1547.82

4-p Fully

2 resources
191374 617.9 388.4 1931.3 1686.65

4-p Long

4 resources
194586 461.3 520.3 1441.2 1487.89

4-p Long

2 resources
192512 611.1 392.8 1910.2 1626.53

Table 1 shows the performance of the resource

shared four-phase fully decoupled and long hold

Stump processors.

Circuit Energy

2-phase

4-resource 1760.59

4-p fully

4-resource 1547.82

4-p long

4-resource
1487.89

2-phase

2-resource 1834.65

4-p fully

2-resource 1686.65

4-p long
2-resource 1626.53

Fig. 14. The performance of the shared resource

Stump processors

Resource sharing was described in Section 4.

The two-phase, four-phase fully-decoupled and

four-phase long-hold Stumps [13] were used to test

this technique. The performance of the resource

shared circuits are shown in Table 1.

As shown in Figures 14 and 15 the power

consumption is high and the run time is increased by

50 percent compared to the original designs. This is

just a demonstration of how the method works. If man

expensive components are required in a circuit this

method can be applied to reduce costs. It is clear that

the two-phase control circuit is still fast.

Fig. 15. The performance of the shared resource

Stump processors

Asymmetric delay
Figure 16 shows an asymmetric delay. The

asymmetric delay was also applied to improved the

performance of the circuits. The performance of the

synthesized Stump [13] using the asymmetric delay is

shown in Table 2.

Fig. 16. Delay models

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Sun-Yen Tan, Wen-Tzeng Huang

ISSN: 1109-2734 32 Issue 1, Volume 10, January 2011

Circuit
4-p

simple

4-p

semi

4-p

fully

4-p

long

Energy 1332.53 1520.86 1109.53 1059.34

Fig. 17. The performance of the Stump processors

using asymmetric delay

Table 2 The performance of the Stump processors

with asymmetric delay

Circuit

Name

Transistors

(piece)

Run
Time

(μs)

Throughput

(KIPS)
Latency

(ns)

Energy

(fj)

4-p
Simple

170448 213.0 1127.0 662.4 1332.53

4-p

Semi
170928 238.5 1006.4 740.8 1520.86

4-p

Fully
171040 226.5 1059.6 670.2 1109.53

4-p

Long
171350 223.3 1074.7 658.4 1059.34

As shown in Figures 17 and 18 the Stump

processor using the four-phase simple control circuit

is 40 percent faster than the original synthesized

circuit. However, it is necessary to deal with

asymmetric delays very carefully. If the asymmetric

delay is applied it is necessary that no transition can

arrive on the input within double the delay time.

The reason is that some unwanted transitions

appear on the control signal after the AND operation.

The four-phase fully decoupled and long hold control

circuits can easily meet such problems. The time

between the rising transition and the falling transition

of the control signal is about 70 ns. If the data path

delay is bigger and the asymmetric delay is used the

circuit may go wrong.

Fig. 18. The performance of the Stump processors

using asymmetric delay

6 Analysis
Relative to the original synthesized Stump processors,

optimization reduces the transistor counts by 19.5 % ~

21.6 %. The power saved is about 66.1 % ~ 69.8 %.

The run time of the two-phase and the simple control

Stump processors have an improvement of 29.5 %

and 36.6 %. The throughput of the two-phase and the

simple control Stump processors have an

improvement of 41.9 % and 57.6 %. The latency of

the two-phase and the simple control Stump

processors is reduced by 29.5 % and 34.6 %.

Figures 19, 20, 21, 22, and 23 show the

performance of different synthesized circuits

[7][11][13]. They show that the two-phase circuits

have good performance.

Figures 24, 25, 26, 27, and 28 show the

comparison of the performance of two-phase circuits

and the best performance of the four-phase circuits. It

is very clear that the two-phase micropipeline circuits

offer better performance than the four-phase designs.

The author would like to further study techniques for

the optimization of the four-phase control circuits.

The experimental results show that the

two-phase circuits have good speed performance.

This is due to the rising and falling transitions of the

4-phase circuits following the same routes. To

improve performance asymmetric delays can be built

using the circuit shown in Figure 29.

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Sun-Yen Tan, Wen-Tzeng Huang

ISSN: 1109-2734 33 Issue 1, Volume 10, January 2011

Fig. 19. The latencies of different control circuits

Fig. 20. The throughputs of different control circuits

Fig. 21. The run times of different control circuits

Fig. 22. The transistors of different control circuits

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Sun-Yen Tan, Wen-Tzeng Huang

ISSN: 1109-2734 34 Issue 1, Volume 10, January 2011

Fig. 23. The energy of different control circuits

Fig. 24. The latencies of different control circuits

Fig. 25. The throughputs of different control circuits

Fig. 26. The run times of different control circuits

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Sun-Yen Tan, Wen-Tzeng Huang

ISSN: 1109-2734 35 Issue 1, Volume 10, January 2011

Fig. 27. The transistors of different control circuits

Fig. 28. The energy of different control circuits

Only one instruction flows through the pipeline

of the Stump processors [13]. This is why the

performance of the experimental results was only 1.55

MIPS. However, this meets the requirement of the

behavioural description. Further investigation is

required to ensure that multiple instructions are able

to flow through the synthesized Stump pipelines.

Fig. 29. The asymmetric delay with faster reset

The 4-stage circuit using the four-phase simple

and semi-decoupled latch control shown in Figure 30

required an Arbiter at the input to the top Call

module if the Rout+ of ss16 is sent out before d1

becomes logical ‘0’ and the Call module shown in

Figure 31 is applied. Alternatively, deadlock is

avoided if the Call module [12] shown in Figure 32 is

applied.

Fig. 30. A four-phase Stump processor

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Sun-Yen Tan, Wen-Tzeng Huang

ISSN: 1109-2734 36 Issue 1, Volume 10, January 2011

Fig. 31. A four-phase call circuit

Fig. 32. Another four-phase Call module [12]

7 Conclusion
A comparison of two-phase and four-phase

micropipeline circuits in VHDL was presented. From

the simulations of the various configurations some

insight is obtained. It is summarized as follows:

● Two-phase circuits have good performance on

speed. When a concurrent reset is not applied

on the four-phase circuits and the rising and

falling transitions follow the same routes as the

two-phase circuits, it is more complex to build

the circuits to ensure both the rising and falling

transitions can flow through the control path

correctly. On the other hand, asymmetric

C-gates are useful for building circuits for the

selection signals of the multiplexers.

● Four-phase circuits have better performance on

power consumption. Four-phase circuits using

the long-hold latch control circuit are best.

● When the stages are connected in a feed back

loop the number of stages can be 2 for the

two-phase circuits and the four-phase circuits

using the fully decoupled and long hold latch

control circuits. However, the minimum

number of stages is 3 for the four-phase circuits

using the simple and semi-decoupled latch

control circuits.

This paper has presented some engineering work

on developing a technique for the construction of

micropipeline circuits with sharing resources. The

experimental results show that the fastest speed is the

synthesized circuit with 2-phase control circuits. The

lowest power consumption is the synthesized circuit

with the long hold 4-phase latch control circuits. The

synthesized circuit with 2-phase control circuits has

the lowest the transistor count. The synthesized circuit

using the 2-phase control circuit has high throughput

as well as low latency.

In resource sharing the 2-phase implementations

have better performance than the four-phase

implementations. There is no return to zero problem.

fork and join cost nothing to the two-phase

implementations. Add some addition buffer stages the

four-phase implementations using the fully decoupled

and long hold latch control circuits can also

implement resource sharing. However, the four-phase

implementations using the simple and

semi-decoupled latch control circuits require more

buffer stages to avoid deadlock.

References:
[1] Tan, S.-Y., Furber, S.B., Yen, W.-F., “The Design

of an Asynchronous VHDL Synthesizer”,

Proceedings of the Design, Automation and Test

in Europe Conference 1998 (DATE98), Paris, Feb.

1998, pp. 44-51.

[2] Furber, S.B., and and Liu, J., “Dynamic Logic in

Four-Phase Micropipelines”, Async'96,

Aizu-Wakamatsu, Japan, Mar 18-21 1996.

[3] Furber, S.B., Day, P., “Four-Phase Micropipeline

Latch Control Circuits”, IEEE Trans. on VLSI

Systems, vol. 4 no. 2, Jun. 1996 pp. 247-253.

[4] Sacker, M., Brown, A.D., Rushton, A.J., Wilson,

P.R., “A Behavioral Synthesis System for

Asynchronous Circuits”, IEEE Trans. on VLSI

Systems, vol. 12 no. 9, Sep. 2004, pp. 978-994.

[5] Furber, S.B., “Computing without Clocks:

Micropipelining the ARM Processor”, in

“Asynchronous Digital Circuit Design” edited by

G. Birtwistle and A. Davis, Springer Verlag,

pp.211-262.

[6] Sutherland, I. E., “Micropipelines", The 1988

Turing Award Lecture, Communications of the

ACM, Vol. 32, No. 6, January 1989, pp. 720-738.

[7] S.-Y. Tan, W.-T. Huang, “The Design of an

Asynchronous Blocksorter”, Proceedings of the

12th International Conference on Networking, VLSI

and Signal Processing (ICNVS '10) (WSEAS

Cooperating Conference), University of Cambridge,

UK, 20-22 February 2010, pp. 73-78.

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Sun-Yen Tan, Wen-Tzeng Huang

ISSN: 1109-2734 37 Issue 1, Volume 10, January 2011

[8] J. Carlsson, K. Palmkvist, and L. Wanhammar,

“Synchronous Design Flow for Globally

Asynchronous Locally Synchronous Systems”,

Proceedings of the 10th WSEAS International

Conference on CIRCUITS, Vouliagmeni, Athens,

Greece, July 10-12, 2006, pp. 64-69.

[9]A. N. Ismailoglu, M. Askar, “Verification of Delay

Insensitivity in Bit-Level Pipelined Dual-Rail

Threshold Logic Adders”, 7th WSEAS Int. Conf.

on Electronics, Hardware, Wireless and Optical

Communications, Cambridge, UK, February

20-22, 2008

[10]A.Vasilescu, “Algebraic model for the

intercommunicating hardware components

behaviour”, 12th WSEAS International

Conference on COMPUTERS, Heraklion, Greece,

July 23-25, 2008, pp. 241-246.

[11] S.-Y. Tan, W.-T. Huang, “A VHDL-based

design methodology for asynchronous circuits”,
WSEAS TRANSACTIONS on CIRCUITS and

SYSTEMS, Vol. 9, Issue 5, May 2010, pp. 315-324.

[12] J. Liu, “Arithmetic and Control Components for

an Asynchronous System”, PhD Thesis, Dept. of

Computer Science, Univ. of Manchester, 1997.

[13] S.-Y. Tan and W.-T. Huang, The Design of a

simple asynchronous processor, Proceedings of

the 12th WSEAS International Conference on

MATHEMATICAL METHODS AND

COMPUTATIONAL TECHNIQUES IN

ELECTRICAL ENGINEERING (MMACTEE '10),

Timisoara, Romania, October 21-23, 2010, pp.

165-170.

[14] S.-Y. Tan and W.-T. Huang, The Design of

sharing resources for asynchronous systems,

Proceedings of the 12th WSEAS International

Conference on MATHEMATICAL METHODS

AND COMPUTATIONAL TECHNIQUES IN

ELECTRICAL ENGINEERING (MMACTEE '10),

Timisoara, Romania, October 21-23, 2010, pp.

171-176.

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Sun-Yen Tan, Wen-Tzeng Huang

ISSN: 1109-2734 38 Issue 1, Volume 10, January 2011

