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Abstract: - The asynchronous circuit style is based on micropipelines, a style used to develop asynchronous 

microprocessors at Manchester University. This paper has presented some engineering work on developing a 

technique of sharing resources for micropipeline circuits. The work presented in this paper shows a comparison 

of 2-phase and 4-phase implementations in transistor count, speed, and energy. Though the nature of the work is 

mainly engineering, there are some significant new insights gained in the course of the work. 

In resource sharing the 2-phase implementations have better performance than the four-phase 

implementations. There is no “return to zero” problem. Fork and join cost nothing to the two-phase 

implementations. With some additional buffer stages the 4-phase implementations using the fully decoupled and 

long hold latch control circuits can also implement resource sharing. However, the four-phase implementations 

using the simple and semi-decoupled latch control circuits require more buffer stages to avoid deadlock. 
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1 Introduction 
Well structured asynchronous design styles, such as 

micropipelines, reduce the difficulty. Event-driven 

logic modules may be designed by electronic experts. 

Then designers with less experience can easily build 

micropipelined circuits using such modules. An 

automatic synthesis tool is available [1][4]. It converts 

the behavioural VHDL into structural VHDL and 

Verilog based on micropipelines [1][7][11]. 

Two-phase and four-phase VHDL models of 

event-drive logic modules and standard logic function 

elements were created. In this paper we demonstrate 

the technique of sharing resources for micropipeline 

circuits. 

Section 2 introduces some asynchronous design 

techniques. Section 3 briefly describes nicropipelines 

and  introduces 2-phase and 4-phase event-driven 

Logic modules. The sharing resource design will be 

presented in Section 4. Section 5 will present 

experimental results. Section 6 gives an analysis for 

the synthesized circuits. Finally, Section 7 will give a 

short conclusion. 

 

2 Asynchronous design 
Asynchronous design has potential advantages over 

synchronous design [8][9][10], such as no clock skew 

problem, low power, average case performance and 

good Electro-Magnetic Compatibility (EMC). The 

benefits may be most apparent in mobile 

communication applications and other portable 

systems which use advanced VLSI technologies.  

Asynchronous logic circuits have several 

important advantages over their counterparts in 

clocked logic. An asynchronous logic function is 

potentially faster because it works at the average-case 

delay rather than the worst-case delay. There is no 

global clock on asynchronous circuits so they will not 

unnecessarily dissipate power when there is no useful 

work to do. Asynchronous logic has the potential for 

low power [5]. Asynchronous logic may be used to 

implement systems with lower power dissipation. 

 

3  Micropipelines 
The design of asynchronous circuits generally follows 

a modular approach, where a system is designed as an 

interconnection of modules. In the 1988 Turing 
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Award Lecture, Sutherland expounded a modular 

approach to building hardware systems based on 

data-driven asynchronous self-timed logic elements 

called micropipelines [6].  In the 4-phase handshaking 

protocol, only rising transitions or only falling 

transitions of either control wire have the meaning; 

they represent request events or acknowledge events. 

In this signalling scheme, the operating cycle is (1) 

data available, (2) change request to active state, (3) 

change acknowledge to active state, (4) return request 

to inactive state, and (5) return acknowledge to 

inactive state. If the active state is logic ‘1’ the the 

operating cycle is (1) data available, (2) request+, (3) 

acknowledge+, (4) request-, and (5)  acknowledge-. 

Figure 1 illustrates two kinds of four phase signalling, 

the ‘early’ mode and the ‘broad’ mode [2]. The 

‘early’ mode (Figure 1(a)) uses the rising edge of the 

Request line to indicate ‘data available’ and the 

rising edge of the Acknowledge line to indicate ‘data 

latched’. The falling edges are return to zero actions 

that carry no meaning. The ‘broad’ mode (Figure 

1(b)) uses the rising edge of the Request line to 

indicate ‘data available’ and the falling edge of the 

Acknowledge line to indicate ‘data latched’. 

Another possible protocol is ‘late’ mode which uses 

the falling edges as active. 

 

 

 
 

Fig. 1. 4-phase bundled data convention 

 

 

Various event-driven logic modules for 

controlling transition signals are shown in Figure 2. 

They were devised for composing to 2-phase control 

circuits. Muller C-elements and XOR gates are the 

same whether they are used in 2- or 4-phase designs. 

However, 4-phase Toggle, Select, Call and Arbiter 

modules are different from their 2-phase counterparts. 
A Toggle is used to alternately deliver events on its 

input to one of two outputs. In the 2-phase protocol 

each transition denotes an event. Therefore, the odd 

number transitions on the input of a Toggle will be 

sent to the dotted output and the even number 

transitions on the input of a Toggle will be sent to the 

non-dotted output. In the 4-phase protocol each event 

consists of a rising transition and a falling transition. 

A rising transition and the following falling transition 

must be sent to the same output. Therefore, the odd 

number rising and falling transitions on the input of a 

Toggle will be sent to the dotted output and the even 

number rising and falling transitions on the input of a 

Toggle will be sent to the non-dotted output. 

 

 

 
 

Fig. 2. Various event-driven logic modules. 

 

 

Furber and Day developed four kinds of 4-phase 

latch control circuits. They are the simple, 

semi-decoupled, fully decoupled and long hold 

4-phase latch control circuits [3][11]. They use the 

4-phase bundled data convention. 

 

 

4  Sharing resources 
Figure 3 shows that the stg4 stage contains two 

computations, a 16-bit adder and a 17-bit adder. A 

resource sharing implementation may be applied to 

save cost. A 17-bit adder stage can be created and 

calling this adder stage twice may get the same result. 

To implement resource sharing a re-partitioning of the 

stages is required. Latches are put at the input and 
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output ends of the computations. After putting latches 

at the input and output ends of the computations 

inside the stg4 stage and adding control circuits for 

the latches some new stages are created as shown in 

Figure 4. The stg3 stage forks into the stg4, stg31 and 

stg35 stages and the stg3, stg32 and stg36 stages join 

into the stg4 stage. 

Some Arbiter and Call modules are required to 

build the circuit for connecting different source stages 

to the resource stage. For example, if there are five 

source stages Figure 5 shows the Arbiter and Call 

circuits which can be used to connect the five source 

stages to the resource stage. The source stage which is 

identified as ‘1’ has to connect its Rout and Aout to 

the r1 and d1 inputs which are labelled 1. The source 

stage which is identified as ‘2’ has to connect its Rout 

and Aout to the r2 and d2 inputs which are labelled 2, 

and so on. 

 

 
 

Fig. 3. A stage(stg4) contains a 16-bit adder and       

a 17-bit adder 

 

 

Two sets of multiplexer circuits as shown in 

Figure 5 are required to connect the data from 

different source stages to the computation device 

inside the resource stage. The source stage which is 

identified as ‘1’ has to connect two data outputs to the 

two multiplexers which are labelled 1. The source 

stage which is identified as „4’ has to connect two data 

outputs to the two multiplexers which are labelled 4. 

The signals labelled s3 are connected together. They 

are used to control the multiplexers. These 

connections of the multiplexer controls are for the 

4-phase protocol. Select and XOR circuits are also 

required to connect the Rout and Aout of the resource 

stage to different output stages. 

 

 
 

Fig. 4. Some latches are connected at the inputs and 

outputs of adders. 

 

 

 
 

Fig. 5. The Arbiters, Calls and Muxs are connected 

to control the resource stage receiving requests from 

different stages. 
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Figure 6 shows Select and XOR circuits which 

can be used to connect a resource stage to five output 

stages. The output stage which is identified as ‘3’ has 

to connect its Rin and Ain to the Select and XOR 

circuits which are labelled 3. The inputs labelled s1, 

s2, s3 and s4 of the latch shown in Figure 6 are 

generated from the circuits shown in Figure 5. The 

outputs labelled b1, b2, b3 and b4 of the latch shown 

in Figure 6 are used to decide where the events should 

be sent to. They are connected to the inputs labelled 

b1, b2, b3 and b4 of the Select circuits. 

Using the above techniques a 17-bit adder 

resource stage can be created and called by two source 

stages, stg31 and stg35. The circuit is shown in Figure 

7. The resource stage is connected to two output 

stages, stg32 and stg36. The 2-phase protocol is used 

in this circuit. The stg31 stage is connected to the 

Arbiter, Call and Mux circuits at the position 

labelled 1. The stg35 stage is connected to the 

Arbiter, Call and Mux circuits at the position 

labelled 2. The stg32 stage is connected to the Select 

and XOR circuits at the position labelled 1. The stg36 

stage is connected to the Select and XOR circuits at 

the position labelled 2. 

 

 

 
 

Fig. 6. The selects and XORs are used to deliver the 

request from the resource stage to the corresponding 

stage. 

 

 

Those non-connected inputs of the MUXs may 

need to be connected to logic ‘0’ or ‘1’ depending on 

what the computations are. The circuit in Figure 4 

may be denoted by Figure 8(a) or 8(b) depending on 

whether one resource is used or two resources are 

used. Both circuits which are implemented using a 

2-phase protocol run correctly. 

 

 

 
 

Fig. 7. The stages (stg31 and stg35) use a resource 

stage (a 17-bit adder) to generate two computations 

in different time. 

 

 

However, Figure 8(a) has deadlock if a 4-phase 

protocol is used to implement the circuit. The 4-phase 

circuit of Figure 8(b) can run correctly without 

deadlock. The reason is that the rising transition of the 

3 stage is sent to the 4 stage, the 31 stage and the 35 

stage at the same time. The acknowledge rising 

transitions of the 31 stage and the 35 stage are sent out 

when these two stages hold data. However, the 4 stage 

is waiting for the rising transitions from the 32 stage 

and the 36 stage. If the 31 stage first calls the resource 

stage, the Rin of the 38 stage will not return to zero 

due to the 31 stage can not get the falling transition on 

its Rin. To avoid the deadlock the method shown in 

Figures 9, 10 and 11 can be applied. 

The example shown in Figure 9 illustrates how 

the steps work. The first step is to create some new 

latches for those data from the stg5 stage but not 

connected to the stg41 stage. These latches form a 

new stage called stg45. Make the connections 
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between the stg5 and the new stage. Remember the 

destination stage from the stg5 is the stg6 stage. After 

processing the circuit of Figure 9 is changed as shown 

in Figure 10. 

The circuit of Figure 8(a) can use the above 

method to avoid deadlock. However, the circuit of 

Figure 10 still contains deadlock. A second step can 

be followed. The second step is to create some new 

latches for those data from the stg45 stage but not 

connected to the stg6 stage. These latches form a new 

stage called stg46. Make the connections between 

stg45 and the new stage. The final circuit is shown in 

Figure 11. Now the circuit shown in Figure 11 can run 

correctly without deadlock. A synthesized processors 

may contain some 16-bit and 17-bit adders as well as 

some 16-bit and 17-bit subtractors. One choice is that 

a 17-bit adder and a 17-bit subtractor process all 

addition and subtraction operations within different 

stages. The other is that a 16-bit and a 17-bit adders as 

well as a 16-bit and a 17-bit subtractors process all 

addition and subtraction operations within different 

stages.  

The synthesized 2-phase processor circuit can be 

converted into resource shared circuits with the exact 

same size or with a different size. These circuits were 

simulated correctly using the leapfrog simulator.  

The resource shared circuits for the above two 

cases using 4-phase control circuits have to use the 

above process to avoid deadlock. An example of the 

resource shared circuits with common sizes of the 

synthesized circuits is shown in Figure 12. The 47 

stage and the 48 stage are resource stages. They are a 

17-bit adder and a 17-bit subtractor. The circuit 

shown in Figure 12 is after processing. Only 

synthesized circuits using the fully decoupled and the 

long hold control circuits were simulated correctly 

using the leapfrog simulator and PowerMill. 

The reason is that the falling transitions of Rout 

in the fully decoupled and the long hold control 

circuits can be sent out before the falling transition 

arrives on Rin. Therefore, the falling transitions of 

Aout in the fully decoupled and the long hold control 

circuits can arrive before the falling transition arrives 

on Rin. However, it is necessary to ensure that the 

falling transitions of Rout in the simple and 

semi-decoupled control circuits are sent out after the 

falling transition arrives on Rin. Deadlocks may 

happen. For example, as shown in Figure 12, the 11 

stage sends rising transitions to the 26 stage, the 28 

stage, the 30 stage, the 32 stage, the 34 stage, the 36 

stage, the 38 stage and the 40 stage. Then the 26 stage 

sents the request transition to the 47 stage. After the 

47 stage holds data it sends a rising transition to the 27 

stage. The 27 stage is one of eight stages which 

connect to the 12 stage. 

 

 
 

 
 

Fig. 8. The stages (the 31 stage and the 35 stage) 

use a resource stage (a 17-bit adder) to generate two 

computations in different time. 

 

 

 
 

Fig. 9. To avoid deadlock in 4-phase circuits some 

additional stages are required in the path(1). 
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Fig. 10. To avoid deadlock in 4-phase circuits some 

additional stages are required in the path(2). 

 

 

 

 
 

Fig. 11. To avoid deadlock in 4-phase circuits some 

additional stages are required in the path(3). 

 

 

It is necessary to wait for these eight stages to 

send requests to the 12 stage. Then the 12 stage will 

send the acknowledge to these eight stages. However, 

four stages will still wait to send requests to the 47 

stage. On the other hand, the 29 stage, the 35 stage, 

the 37 stage, the 39 stage are still waiting for data 

from the 47 stage. It is then impossible to get the 

rising transition from the the 12 stage. As shown in 

Figure 13, the Rout of the 27 stage stays at logical ‘1’ 

and the logical ‘0’ on the Rin of the 27 stage cannot 

pass the C-gate without a rising transition on the Aout 

of the 27 stage. 

 

Eight extra buffer stages are required to connect 

from the 27 stage, the 29 stage, the 31 stage, the 33 

stage, the 35 stage, the 37 stage, the 39 stage and the 

41 stage to the 12 stage individually. In total twelve 

extra buffer stages are required to ensure that the 

resource shared 4-phase simple and semi-decoupled 

Stump processors can operate properly. 

 

 

 
 

 

Fig. 12. Resource stages (47 and 48) are called 

from different stages without deadlock. 

 

 

 

 
 
 

Fig. 13. Four stages of the simple control circuits 
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5 Experimental results 
 

Table 1 The performance of the resource shared 

Stump processors 

Circuit 

Name 

Transistors 

(piece) 

Run 

Time 

(μs) 

Through
put 

(KIPS) 

Latency 

(ns) 
Energy 

(fj) 

2-phase  
4 resources 

184934 415.9 577.1 1299.4 1760.59 

2-phase  
2 resources 

183412 536.8 447.1 1678.0 1834.65 

4-p Fully  

4 resources 
193396 467.4 513.5 1460.5 1547.82 

4-p Fully  

2 resources 
191374 617.9 388.4 1931.3 1686.65 

4-p Long 

4 resources 
194586 461.3 520.3 1441.2 1487.89 

4-p Long  

2 resources 
192512 611.1 392.8 1910.2 1626.53 

 

Table 1 shows the performance of the resource 

shared four-phase fully decoupled and long hold 

Stump processors. 

 

 

Circuit Energy 

2-phase 

4-resource 1760.59 

4-p fully 

4-resource 1547.82 

4-p long 

4-resource 
1487.89 

2-phase 

2-resource 1834.65 

4-p fully 

2-resource 1686.65 

4-p long 
2-resource 1626.53 

 
 

Fig. 14. The performance of the shared resource 

Stump processors 

Resource sharing was described in Section 4. 

The two-phase, four-phase fully-decoupled and 

four-phase long-hold Stumps [13] were used to test 

this technique. The performance of the resource 

shared circuits are shown in Table 1.  

As shown in Figures 14 and 15 the power 

consumption is high and the run time is increased by 

50 percent compared to the original designs. This is 

just a demonstration of how the method works. If man 

expensive components are required in a circuit this 

method can be applied to reduce costs. It is clear that 

the two-phase control circuit is still fast. 

 

 
 

Fig. 15. The performance of the shared resource 

Stump processors 

 

 

Asymmetric delay 
Figure 16 shows an asymmetric delay. The 

asymmetric delay was also applied to improved the 

performance of the circuits. The performance of the 

synthesized Stump [13] using the asymmetric delay is 

shown in Table 2.  

 

 
 

Fig. 16. Delay models 
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Circuit 
4-p 

simple 

4-p 

semi 

4-p 

fully 

4-p 

long 

Energy 1332.53 1520.86 1109.53 1059.34 

 

 
 

Fig. 17. The performance of the Stump processors 

using asymmetric delay 

 

 

Table 2 The performance of the Stump processors 

with asymmetric delay 

Circuit 

Name 

Transistors 

(piece) 

Run 
Time 

(μs) 

Throughput  

(KIPS) 
Latency 

(ns) 

Energy 

(fj) 

4-p 
Simple 

170448 213.0 1127.0 662.4 1332.53 

4-p 

Semi 
170928 238.5 1006.4 740.8 1520.86 

4-p 

Fully 
171040 226.5 1059.6 670.2 1109.53 

4-p 

Long 
171350 223.3 1074.7 658.4 1059.34 

 

As shown in Figures 17 and 18 the Stump 

processor using the four-phase simple control circuit 

is 40 percent faster than the original synthesized 

circuit. However, it is necessary to deal with 

asymmetric delays very carefully. If the asymmetric 

delay is applied it is necessary that no transition can 

arrive on the input within double the delay time. 

The reason is that some unwanted transitions 

appear on the control signal after the AND operation. 

The four-phase fully decoupled and long hold control 

circuits can easily meet such problems. The time 

between the rising transition and the falling transition 

of the control signal is about 70 ns. If the data path 

delay is bigger and the asymmetric delay is used the 

circuit may go wrong. 

 
 

Fig. 18. The performance of the Stump processors 

using asymmetric delay 

 

 

6 Analysis 
Relative to the original synthesized Stump processors, 

optimization reduces the transistor counts by 19.5 % ~ 

21.6 %. The power saved is about 66.1 % ~ 69.8 %. 

The run time of the two-phase and the simple control 

Stump processors have an improvement of 29.5 % 

and 36.6 %. The throughput of the two-phase and the 

simple control Stump processors have an 

improvement of 41.9 % and 57.6 %.  The latency of 

the two-phase and the simple control Stump 

processors is reduced by 29.5 % and 34.6 %.  

Figures 19, 20, 21, 22, and 23 show the 

performance of different synthesized circuits 

[7][11][13]. They show that the two-phase circuits 

have good performance.  

Figures 24, 25, 26, 27, and 28 show the 

comparison of the performance of two-phase circuits 

and the best performance of the four-phase circuits. It 

is very clear that the two-phase micropipeline circuits 

offer better performance than the four-phase designs. 

The author would like to further study techniques for 

the optimization of the four-phase control circuits. 

The experimental results show that the 

two-phase circuits have good speed performance. 

This is due to the rising and falling transitions of the 

4-phase circuits following the same routes. To 

improve performance asymmetric delays can be built 

using the circuit shown in Figure 29. 
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Fig. 19. The latencies of different control circuits 

 

 

 
 

Fig. 20. The throughputs of different control circuits 

 

 
 

Fig. 21. The run times of different control circuits 

 

 

 

 
 

Fig. 22. The transistors of different control circuits 
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Fig. 23. The energy of different control circuits 

 

 

 
 

Fig. 24. The latencies of different control circuits 

 

 

 

 

 

 

 
 

Fig. 25. The throughputs of different control circuits 

 

 

 
 

Fig. 26. The run times of different control circuits 
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Fig. 27. The transistors of different control circuits 

 

 

 

 
 

Fig. 28. The energy of different control circuits 

 

 

 

 

Only one instruction flows through the pipeline 

of the Stump processors [13]. This is why the 

performance of the experimental results was only 1.55 

MIPS. However, this meets the requirement of the 

behavioural description. Further investigation is 

required to ensure that multiple instructions are able 

to flow through the synthesized Stump pipelines. 

 

 

 
 

Fig. 29. The asymmetric delay with faster reset 

 

 

The 4-stage circuit using the four-phase simple 

and semi-decoupled latch control shown in Figure 30 

required an Arbiter at the input to the top Call 

module if the Rout+ of ss16 is sent out before d1 

becomes logical ‘0’ and the Call module shown in 

Figure 31 is applied. Alternatively, deadlock is 

avoided if the Call module [12] shown in Figure 32 is 

applied. 

 

 

 
 

Fig. 30. A four-phase Stump processor 
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Fig. 31. A four-phase call circuit 

 

 

 
 

Fig. 32. Another four-phase Call module [12] 

 

 

7 Conclusion 
A comparison of two-phase and four-phase 

micropipeline circuits in VHDL was presented. From 

the simulations of the various configurations some 

insight is obtained. It is summarized as follows: 

● Two-phase circuits have good performance on 

speed. When a concurrent reset is not applied 

on the four-phase circuits and the rising and 

falling transitions follow the same routes as the 

two-phase circuits, it is more complex to build 

the circuits to ensure both the rising and falling 

transitions can flow through the control path 

correctly. On the other hand, asymmetric 

C-gates are useful for building circuits for the 

selection signals of the multiplexers.  

● Four-phase circuits have better performance on 

power consumption. Four-phase circuits using 

the long-hold latch control circuit are best. 

● When the stages are connected in a feed back 

loop the number of stages can be 2 for the 

two-phase circuits and the four-phase circuits 

using the fully decoupled and long hold latch 

control circuits. However, the minimum 

number of stages is 3 for the four-phase circuits 

using the simple and semi-decoupled latch 

control circuits. 

 

This paper has presented some engineering work 

on developing a technique for the construction of 

micropipeline circuits with sharing resources. The 

experimental results show that the fastest speed is the 

synthesized circuit with 2-phase control circuits. The 

lowest power consumption is the synthesized circuit 

with the long hold 4-phase latch control circuits. The 

synthesized circuit with 2-phase control circuits has 

the lowest the transistor count. The synthesized circuit 

using the 2-phase control circuit has high throughput 

as well as low latency. 

In resource sharing the 2-phase implementations 

have better performance than the four-phase 

implementations. There is no return to zero problem. 

fork and join cost nothing to the two-phase 

implementations. Add some addition buffer stages the 

four-phase implementations using the fully decoupled 

and long hold latch control circuits can also 

implement resource sharing. However, the four-phase 

implementations using the simple and 

semi-decoupled latch control circuits require more 

buffer stages to avoid deadlock. 
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