
Application of Neural Networks for Control of Inverted 

Pendulum 
 

VALERI MLADENOV 

 

Department of Theoretical Electrical Engineering 

Technical University of Sofia 

Sofia 1000, “Kliment Ohridski” blvd. 8; BULGARIA 

valerim@tu-sofia.bg 
 

 

Abstract: - The balancing of an inverted pendulum by moving a cart along a horizontal track is a classic problem in the 

area of automatic control. In this paper two Neural Network controllers to swing a pendulum attached to a cart from an 

initial downwards position to an upright position and maintain that state are described. Both controllers are able to 

learn the demonstrated behavior which was swinging up and balancing the inverted pendulum in the upright position 

starting from different initial angles. 
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1   Introduction 
Inverted pendulum control is an old and challenging 

problem which quite often serves as a test-bed for a 

broad range of engineering applications. It is a classic 

problem in dynamics and control theory and widely used 

as benchmark for testing control algorithms (PID 

controllers, neural networks, fuzzy control, genetic 

algorithms, etc). 

There are many methods in the literature (see [1], [2], [3] 

and the references there) that are used to control an 

inverted pendulum on a cart, such as classical control 

and machine learning based techniques. Rocket guidance 

systems, robotics, and crane control are common areas 

where these methods are applicable. The largest 

implemented uses are on huge lifting cranes on 

shipyards. When moving the shipping containers back 

and forth, the cranes move the box accordingly so that it 

never swings or sways. It always stays perfectly 

positioned under the operator even when moving or 

stopping quickly. 

The inverted pendulum system inherently has two 

equilibria, one of which is stable while the other is 

unstable. The stable equilibrium corresponds to a state in 

which the pendulum is pointing downwards. In the 

absence of any control force, the system will naturally 

return to this state. The stable equilibrium requires no 

control input to be achieved and, thus, is uninteresting 

from a control perspective. The unstable equilibrium 

corresponds to a state in which the pendulum points 

strictly upwards and, thus, requires a control force to 

maintain this position. The basic control objective of the 

inverted pendulum problem is to maintain the unstable 

equilibrium position when the pendulum initially starts 

in an upright position. 

In this paper we utilize two neural network controllers 

based on Multilayer Feedforward Neural Network 

(MLFF NN) and Radial Basis Function Network 

(RBFN) to solve the control problem. The objective 

would be achieved by means of supervised learning. In 

practice, the teacher (or supervisor) would be a human 

performing the task. Since a human teacher is not 

available in simulation, a nonlinear controller has been 

selected as a teacher. 

The paper is organized as follows. In the next chapter a 

brief description of the mathematical model of the 

system and the teacher controller is given. Then the 

control problem is explained in chapter 3 and in chapter 

4 the neural networks that control the pendulum are 

described. Simulation results are presented in chapter 5 

and the conclusions are given in the last chapter. 

 

 

2   Mathematical model 
The inverted pendulum considered in this paper is given 

in Figure 1. A cart equipped with a motor provides 

horizontal motion, while cart position x, and joint angle 

θ, measurements can be taken via a quadrature encoder. 

 
Figure 1: Inverted pendulum system 
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The pendulum’s mass “m” is assumed to be equally 

distributed on its body, so its center of gravity is at its 

middle of its length at “ 2l L= ”. 

No damping or other kind of friction has been 

considered when deriving the model. The parameters of 

the model that are used in the simulations are below in 

Table 1. 

 

Table 1:  Table of parameters 
Parameters Values 

Mass of pendulum, m 0.1 [kg] 

Mass of cart, M 1   [kg] 

Length of bar, L 1   [m] 

Standard gravity, g 9.81 [m/s
2
]
 

Moment of inertia of bar  

w.r.t its COG 

2 12 0.0083I mL= ≈  

[kg*m
2
] 

 

The system is underactuated since there are two degrees 

of freedom which are the pendulum angle and the cart 

position but only the cart is actuated by horizontal force 

acting on it. 

The equations of motion can either be derived by the 

Lagrangian method or by the free-body diagram method.  

Using the second one we consider the system can be 

divided into two separate free-body diagrams as shown 

in Figure 2. 

The coordinates of the center of gravity of the pendulum 

can be written as 

 

  θsinlxxG +=  

and 

  θcoslyG =  

 

The velocities and accelerations in these directions can 

be calculated from 

 

  θθ cosɺɺɺ lxxG +=  

  θθθθ sincos 2ɺɺɺɺɺɺɺ llxxG −+=  

  θθθθ sincos 2ɺɺɺɺɺɺɺ llxxG −+=  

  θθ sinɺɺ lyG −=  

  θθθθ cossin 2ɺɺɺɺɺ llyG −−=  

 

The force equilibrium for the pendulum in x and y 

directions can be given as 

 

  0=+− Hxm G
ɺɺ  

  0=−− GymmgV ɺɺ  

 

The torque and force equilibrium for the pendulum are 

  0cossin =−+− θθθ lHlVI ɺɺ  

  0=−− HxMF ɺɺ  

 

Combining the above equations we obtain 
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  ( ) 0cossin2 =+−+ θθθ xmlmglmlI ɺɺɺɺ  

  ( ) 0sincos 2 =−+−− θθθθ ɺɺɺɺɺɺɺ mlmlxmxMF  

  ( ) FmlmlxmM =−++ θθθθ sincos 2ɺɺɺɺɺ  

 

 
Figure 2: Free body diagrams of cart and pendulum 

 

 

By solving for xɺɺ , and θɺɺ  and introducing the state 
variables 1x θ= , 2x θ= ɺ , 3x x= , 4x x= ɺ  and u F= , the 

inverted pendulum system can be described in state 

space form 
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where 

( ) ( )( ) θθ 2222
coslmmMmlI −++=∆  
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The equilibrium points of the inverted pendulum are 

when the pendulum is at its pending position (stable 

equilibrium point, i.e. [ ]0 0 0
T

eq x=x , where x  is 

any point on the track where the cart moves) and when 

the pendulum is at its upright position (unstable 

equilibrium point, i.e. [ ]0 0
T

eq xπ=x ).  

The state space equations linearized around 

[ ]0 0 0 0
T T

x xθ θ  = 
ɺ ɺ  are 

 

( )
( )( )
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ɺ

ɺ

ɺ

ɺ

                (2) 

 

The eigenvalues of this linearized system with the 

parameter values given in Table 1, are 1 3.9739λ ≈ − , 

2 3.9739λ ≈ , 3 0λ = , 4 0λ = . Since one of the 

eigenvalues 2 3.9739λ ≈  is positive (i.e. in the right half 

plane), the upright equilibrium point is unstable. The 

objective of the control problem is to swing up the 

pendulum from its pending position or from another 

state to the upright position and balance it in that 

condition by using supervised learning. The control 

problem has two parts mainly, swinging up and 

balancing the inverted pendulum. For swing up control 

energy based methods (i.e. regulating the mechanical 

energy of the pendulum) [1], [2] and for balancing 

control linear control methods (i.e. PD, PID, state 

feedback, LQR, etc.) are common among classical 

techniques. Artificial neural networks, fuzzy logic 

algorithms and reinforcement learning [3], [4], [5] are 

used widespreadly in machine learning based approaches 

both for swing up and balancing control phases. 

 

 

3   The control problem 
A simple controller in order to swing up the pendulum 

from its pendant position can be developed by means of 

physical reasoning. A constant force can be applied to 

the cart according to the direction of the angular velocity 

of the pendulum so that the pendulum would swing till 

the vicinity of the upright position. The balancing 

controller is a stabilizing linear controller which can 

either be a PD, PID or be designed by pole placement 

techniques (e.g. Ackermann) or by LQR. Here a PD 

controller is selected. The switching from the swinging 

controller to the linear controller is done when the 

pendulum angle is between [ ]0 , 20θ = ° ° , or when 
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[ ]340 , 360θ = ° ° . This controller can formally be 

presented as below 
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where 0 2F =  N, 1 40K = − , 1 10K = − . The closed loop 

poles obtained with these gains are -10.6026,           -

4.0315, 0, and 0. The results of the simulations 

performed with this controller with the initial conditions 

[ ]0 0 0 0
T

x π= , without any kind of sensor noise or 

actuator disturbance are given in Figure 3. 
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Simulation results with controller for infinite track length for x0 = [π  0 0 0]
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Figure 3: Simulation results with controller for infinite track length for x0 = [π 0 0 0]

T
 

 

It can be observed from the Figure 3 that the pendulum 

has been stabilized in the upright position, whereas the 

cart continues its travel with a constant velocity. 

 

 

4   Neural network controllers 
The swing-up controller is developed by means of 

physical reasoning, which is related to applying a 

constant force according to the direction of the angular 

velocity of the pendulum. The teacher controller that is 

used here has only two inputs (i.e. pendulum angle and 

angular velocity), so it won’t be possible to keep the 

cart’s travel limited since no cart position (or velocity) 

feedback is used. However with this teacher controller 

selection, it would be easier to visualize and thus to 

compare the input/output mappings of the teacher and 

the neural network. The input-output map (also called 

policy) of this nonlinear controller is given in Figure 4. 

Here the horizontal axis represents the pendulum angles 

and vertical axis represents the pendulum angular 

velocities, and colours represents the actuator forces 

corresponding to the pendulum angles and angular 

velocities. From the teacher, sensor values (i.e. 

pendulum angle and angular velocity) and actuator 

values (i.e. input force acting on the cart) can be 
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recorded. The simulations are performed by using 

Matlab/Simulink and Neural Networks Toolbox. 

 
 

Figure 4: Input-output map of the teacher controller 

 

The simulations contain two phases, the demonstration 

and the execution phases. In both phases the simulations 

are performed by using a fixed step solver (ode5, 

Dormand-Prince) with a fixed step size of 0.1 sec. 

 

 
Figure 5a: Teaching phase for supervised learning 

 

The design can be separated into two phases; the 

teaching and the execution phases. The teaching phase 

for each demonstration can be presented graphically as it 

is shown in Figure 5a. 

There is sensor noise present in the simulations which is 

selected as normally distributed random numbers with 

different initial seeds for each demonstration. Also band-

limited white noise is added at the output of the 

controller to represent the different choices that a human 

demonstrator can make in the teaching phase, in order to 

make the demonstrations less consistent, and therefore a 

more realistic representation of human behavior. 

 

 
Figure 5b: Execution phase for supervised learning 

 

When the teaching phase is finished, the neural network 

is generated in order to be added to the model using 

Matlab’s gensim command. After that the execution 

phase shown in Figure 5b, starts with the nonlinear 

controller replaced with the neural network, and the 

actuator disturbance is removed. The Simulink model is 

shown in Figure 5c. 

 

 

 
Figure 5c: Simulation scheme for execution phase 

 
During the teaching phase, five examples (or 

demonstrations) are used, the variance of the normally 

distributed random numbers for sensor noise in each 

demonstration is selected as ( )22 2180 radσ π= , which 

corresponds to a standard deviation of °1 . The actuator 

disturbance, representing the different actions of the 

demonstrator has a noise power level of 2 20.1 Nσ =  and 

a sampling time of 1 sec, which is close to the free 

swinging period of the pendulum. This means that the 

demonstrator can make an inconsistent action every 

second with a standard deviation of 0.1 0.316Nσ = ≈ . 

Each demonstration starts from the pending initial 

position, [ ]0 0 0 0x π= , and lasts 15 seconds. The 

pendulum angles for these 5 demonstrations are given in 
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Figure 6. 

 

 
Figure 6: Pendulum angles obtained from demonstrations 

 

It can be observed from Figure 6 that in all 

demonstrations the pendulum is stabilized in the upright 

position. The input output (I/O) map of the teacher 

controller with the demonstrated trajectories in the θ , θɺ  
portion of the state space on top of it, is given in Figure 

7. This figure can give a rough idea about which parts of 

the input-output space was visited during 

demonstrations. 

 

 

5   Simulation results 
In this chapter we present the results obtained by using 

the training data given in the last chapter. 

 

5.1 Training of the Neural Networks 
 

5.1.1 Multilayer Feedforward Neural Network 

The MLFF NN which was selected in order to 

approximate the behaviour of the teacher (controller) has 

two inputs (pendulum angle and angular velocity) and a 

single hidden layer with 25 hidden neurons in it. 

 

 
Figure 7: θ , θɺ  trajectories on top of I/O map 

 

The number of hidden layer neurons are selected by 

trial-and-error according to the success of the network in 

the testing phase. The activation function that is used in 

the hidden layer is tan-sigmoid, whereas a linear 

activation function is used in the output layer. The 

network has been trained using a Levenberg-Marquardt 

backpropagation (i.e. trainlm training algorithm from 

Matlab) with a constant learning rate of 0.001. The 

weights are updated for 500 epochs. The desired m.s.e. 

levels are selected as the variance of the actuator 

disturbances, since the neural network would start fitting 

the noise after that value. The performance (mean square 

error) obtained with this network is given in Figure 8. It 

can be observed that the m.s.e. has converged but the 

desired mse level has not been reached although the 

m.s.e. level at 500th epoch is close (approx. 0.165) to the 

desired one (0.1). 

The plant input data (i.e. the target for the neural 

network), and its approximation obtained by the neural 

network at the end of the training session which is 

related to these examples are presented in Figure 9.  

 

 
Figure 8: Training results with MLFF NN 

 

The green plot is obtained by using Matlab’s sim 

command in order to observe how well the neural 

network will fit the desired output with the pendulum 

angles and angular velocities from the demonstrations. 

 

 
Figure 9: Actuator forces from demonstrations and MLFF NN 

approximation 

 

A closer look might be taken to the approximation of the 

3rd demonstration in Figure 9 and it can be observed 
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from Figure 10 that the neural network has made a good 

approximation. 

 

 
Figure 10: Actuator forces from 3

rd
 demonstration and MLFF 

NN approximation 

 

5.1.2 Radial Basis Function Network 
The RBFN which was selected in order to approximate 

the behavior of the teacher (controller) has two inputs 

(pendulum angle and angular velocity). The centers of 

the gaussian functions are selected in a supervised 

manner. The training starts initially with no gaussian 

functions in the hidden layer, then gaussian functions are 

added incrementally such that the error between the 

target and network’s output becomes smaller. The spread 

(width of the gaussian functions) parameter is selected 

equal to 1, by trial-and-error according to the success of 

the network in the testing phase. The number of gaussian 

functions that are used in the hidden layer are 103. The 

desired m.s.e. levels are selected as the variance of the 

actuator disturbances, since the neural network would 

start fitting the noise after that value. The performance 

(mean square error) obtained with this network is given 

in Figure 11. It can be observed that the mse has 

converged but the desired mse level has not been 

reached although the m.s.e. level at the end of training is 

close (approx. 0.272) to the desired one. The training has 

stopped automatically after the radial basis neurons 

started overlapping. 

 

 
Figure 11: Training results with RBFN 

 

The plant input data (i.e. the target for the neural 

network), and its approximation obtained by the neural 

network at the end of the training session which is 

related to these examples can be presented below in 

Figure 12. The green plot is obtained by using Matlab’s 

sim command in order to observe how well the neural 

network will fit the desired output with the pendulum 

angles and angular velocities from the demonstrations. 

 

 
Figure 12: Actuator forces from demonstrations and RBFN 

approximation 

 

A closer look might be taken to the approximation of the 

3rd demonstration in Figure 12 and it can be observed 

from Figure 13 that the neural network has made a fair 

approximation. 

 

5.2 Testing of the Neural Networks 
The neural networks that are trained from the 

demonstration data are tested in two ways. First a data 

set that was not encountered during the training phase 

will be used. 

 

 
Figure 13: Actuator forces from 3rd demonstration and RBFN 

approximation 

 

This will be performed by simulating the inverted 

pendulum with initial pendulum angles incremented by 

180π (i.e. 1° ) between [ ]0 0, 2θ π= .  

The duration of the simulations in the execution phase is 
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taken as 30 seconds. Secondly, the input-output maps of 

the neural networks will be compared in order to be able 

to determine how well the network has learned and 

generalized the control policy of the teacher. This will 

also help assessing the extrapolation capabilities of the 

designed networks. 

 

5.2.1 Multilayer Feedforward Neural Network 

The pendulum angles for several initial pendulum angles 

from simulations in the execution phase are below in 

Figure 14. The MLFF NN managed to swing up and 

stabilize the pendulum in 361 out of 361 initial angles 

which corresponds to a success rate of 100 %. 

 

 
Figure 15: Input-output map of MLFF NN 
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Figure 14: Several pendulum angle plots from execution phase 

 

 

 

The input output map of the neural controller can be 

given as follows in Figure 15. It can be observed from 

Figure 15 that the controller has learned most of the 

swinging region that is demonstrated to it, and it has 

made generalization errors in some regions marked with 

circles. The linear control region on the right and the 

angle to switch from swinging control to linear control 

has been learned better compared to the one on the left. 

This might be due to insufficiency of demonstrated data 

in those regions.  

 

5.2.2 Radial Basis Function Network 

The pendulum angles for several initial pendulum angles 

from simulations in the execution phase are below in 

Figure 16. The RBFN managed to swing up and stabilize 

the pendulum in 360 out of 361 initial angles which 

corresponds to a success rate of 99.7 %. 

The input output map of the neural controller can be 

given as follows in Figure 17. The circles at the corners 

of the plot have nearly zero output, this would most 

probably be related to the fact that radial basis functions 

give nearly zero output outside their input range. The 

network has learned to separate the swing up region into 

two, even though there are some generalization errors. 
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Figure 16: Several pendulum angle plots from execution phase 

 

 

 

 
Figure 17: Input-output map of RBFN 

 

5.3 Comparison of the Results 
The first thing that can be noticed from the results is that 

the interpolation capabilities the networks are quite close 

to each other. This can be observed from the fact that all 

networks can swing up and balance the inverted 

pendulum starting from any initial pendulum angle 

between [ ]0 0, 2θ π= . It can further be examined from 

the input-output maps, since the parts of the input-output 

space which were related to the demonstrated data was 

learned quite well by all networks. The least training 

error was obtained by using a MLFF NN. The 

extrapolation capabilities of MLFF NN are better 

compared to RBFN. The RBFN also contains more 

hidden neurons (gaussian functions) compared MLFF 

NN. A better generalization is also possible for MLFF 

NN by taking more and different training data. 

 

6   Conclusion 
The supervised learning method of the Neural Networks 

controllers consists of two phases, demonstration and 

execution. In the demonstration phase necessary data is 

collected from the supervisor in order to design a neural 

network. The objective of the neural network is to 

imitate the control law of the teacher. In the execution 

phase the neural controller is tested by replacing the 

teacher. The Neural Network control strategy is tested by 

using a supervisor, with a control policy that ignores the 

finite track length of the cart. By this way, it is easier to 

understand what the neural controller that is used to 

imitate the teacher does, by comparing the input/output 

(state-action) mappings using 2D colour plots. The 

policy of a demonstrator (i.e. designed controller in this 

case) is not a function that can be directly measured by 

giving inputs and measuring outputs, so learning the 

complete I/O map and making a perfect generalization 

would not be possible. The complexity of the function 

that would be approximated is also important since the 

function may include both continuous and discontinuous 

components (such as switches between different control 

laws). All of the designed neural networks controllers 

(MLFF NN and RBFN) are able to learn the 

demonstrated behaviour which was swinging up and 

balancing the inverted pendulum in the upright position 

starting from different initial angles. The MLFF NN did 

a better job by means of generalization and obtaining 

lowest training error compared to the RBFN. 
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