
Application of Neural Networks for Control of Inverted

Pendulum

VALERI MLADENOV

Department of Theoretical Electrical Engineering

Technical University of Sofia

Sofia 1000, “Kliment Ohridski” blvd. 8; BULGARIA

valerim@tu-sofia.bg

Abstract: - The balancing of an inverted pendulum by moving a cart along a horizontal track is a classic problem in the

area of automatic control. In this paper two Neural Network controllers to swing a pendulum attached to a cart from an

initial downwards position to an upright position and maintain that state are described. Both controllers are able to

learn the demonstrated behavior which was swinging up and balancing the inverted pendulum in the upright position

starting from different initial angles.

Key-Words: - neural networks, inverted pendulum, nonlinear control, neural network controller

1 Introduction
Inverted pendulum control is an old and challenging

problem which quite often serves as a test-bed for a

broad range of engineering applications. It is a classic

problem in dynamics and control theory and widely used

as benchmark for testing control algorithms (PID

controllers, neural networks, fuzzy control, genetic

algorithms, etc).

There are many methods in the literature (see [1], [2], [3]

and the references there) that are used to control an

inverted pendulum on a cart, such as classical control

and machine learning based techniques. Rocket guidance

systems, robotics, and crane control are common areas

where these methods are applicable. The largest

implemented uses are on huge lifting cranes on

shipyards. When moving the shipping containers back

and forth, the cranes move the box accordingly so that it

never swings or sways. It always stays perfectly

positioned under the operator even when moving or

stopping quickly.

The inverted pendulum system inherently has two

equilibria, one of which is stable while the other is

unstable. The stable equilibrium corresponds to a state in

which the pendulum is pointing downwards. In the

absence of any control force, the system will naturally

return to this state. The stable equilibrium requires no

control input to be achieved and, thus, is uninteresting

from a control perspective. The unstable equilibrium

corresponds to a state in which the pendulum points

strictly upwards and, thus, requires a control force to

maintain this position. The basic control objective of the

inverted pendulum problem is to maintain the unstable

equilibrium position when the pendulum initially starts

in an upright position.

In this paper we utilize two neural network controllers

based on Multilayer Feedforward Neural Network

(MLFF NN) and Radial Basis Function Network

(RBFN) to solve the control problem. The objective

would be achieved by means of supervised learning. In

practice, the teacher (or supervisor) would be a human

performing the task. Since a human teacher is not

available in simulation, a nonlinear controller has been

selected as a teacher.

The paper is organized as follows. In the next chapter a

brief description of the mathematical model of the

system and the teacher controller is given. Then the

control problem is explained in chapter 3 and in chapter

4 the neural networks that control the pendulum are

described. Simulation results are presented in chapter 5

and the conclusions are given in the last chapter.

2 Mathematical model
The inverted pendulum considered in this paper is given

in Figure 1. A cart equipped with a motor provides

horizontal motion, while cart position x, and joint angle

θ, measurements can be taken via a quadrature encoder.

Figure 1: Inverted pendulum system

y

x

θ

M F

m

L

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Valeri Mladenov

ISSN: 1109-2734 49 Issue 2, Volume 10, February 2011

The pendulum’s mass “m” is assumed to be equally

distributed on its body, so its center of gravity is at its

middle of its length at “ 2l L= ”.

No damping or other kind of friction has been

considered when deriving the model. The parameters of

the model that are used in the simulations are below in

Table 1.

Table 1: Table of parameters
Parameters Values

Mass of pendulum, m 0.1 [kg]

Mass of cart, M 1 [kg]

Length of bar, L 1 [m]

Standard gravity, g 9.81 [m/s
2
]

Moment of inertia of bar

w.r.t its COG

2 12 0.0083I mL= ≈

[kg*m
2
]

The system is underactuated since there are two degrees

of freedom which are the pendulum angle and the cart

position but only the cart is actuated by horizontal force

acting on it.

The equations of motion can either be derived by the

Lagrangian method or by the free-body diagram method.

Using the second one we consider the system can be

divided into two separate free-body diagrams as shown

in Figure 2.

The coordinates of the center of gravity of the pendulum

can be written as

 θsinlxxG +=

and

 θcoslyG =

The velocities and accelerations in these directions can

be calculated from

 θθ cosɺɺɺ lxxG +=

 θθθθ sincos 2ɺɺɺɺɺɺɺ llxxG −+=

 θθθθ sincos 2ɺɺɺɺɺɺɺ llxxG −+=

 θθ sinɺɺ lyG −=

 θθθθ cossin 2ɺɺɺɺɺ llyG −−=

The force equilibrium for the pendulum in x and y

directions can be given as

 0=+− Hxm G
ɺɺ

 0=−− GymmgV ɺɺ

The torque and force equilibrium for the pendulum are

 0cossin =−+− θθθ lHlVI ɺɺ

 0=−− HxMF ɺɺ

Combining the above equations we obtain

()

()

2

2

sin cos sin

cos sin cos 0

I mg ml ml l

mx ml ml l

θ θ θ θ θ θ

θ θ θ θ θ

− + − − −

− + − =

ɺɺ ɺɺ ɺ

ɺɺ ɺɺɺ

 () 0cossin2 =+−+ θθθ xmlmglmlI ɺɺɺɺ

 () 0sincos 2 =−+−− θθθθ ɺɺɺɺɺɺɺ mlmlxmxMF

 () FmlmlxmM =−++ θθθθ sincos 2ɺɺɺɺɺ

Figure 2: Free body diagrams of cart and pendulum

By solving for xɺɺ , and θɺɺ and introducing the state
variables 1x θ= , 2x θ= ɺ , 3x x= , 4x x= ɺ and u F= , the

inverted pendulum system can be described in state

space form

+

=

+

+

θθ
θθ

θ
θ

sin

sin

cos

cos
2

2

ɺɺɺ

ɺɺ

mlF

mgl

xmMml

mlmlI

V

H

H

V

xM ɺɺ

F mg

θɺɺI

Gxm ɺɺ

Gym ɺɺ

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Valeri Mladenov

ISSN: 1109-2734 50 Issue 2, Volume 10, February 2011

()() 2 22 2 2 2

cos sin1

cos sincos

M m ml mgl

ml I ml F mlx I ml M m m l

θ θθ
θ θ θθ

+ −
= − + ++ + −

ɺɺ

ɺɺɺ

()
()

() ()

2 2 2

2 2 2 2 2

sin sin cos cos1

sin cos sin

M m mgl m l ml F

m l g I ml ml I ml Fx

θ θ θ θ θθ
θ θ θ θ θ

 + − − ⋅
= ∆ − + + + + ⋅

ɺɺɺ

ɺɺɺ

where

() ()() θθ 2222
coslmmMmlI −++=∆

1 2x x=ɺ

()
()()

2 2 2

1 2 1 1 1

2 2 2 2 2

1

sin sin cos cos

cos

M m mgl x m l x x x ml x u
x

I ml M m m l x

+ − − ⋅
=

+ + −
ɺ

3 4x x=ɺ (1)

() ()
()()

2 2 2 2 2

1 1 2 1

4 2 2 2 2

1

sin cos sin

cos

m l g x x I ml mlx x I ml u
x

I ml M m m l x

− + + + + ⋅
=

+ + −
ɺ

The equilibrium points of the inverted pendulum are

when the pendulum is at its pending position (stable

equilibrium point, i.e. []0 0 0
T

eq x=x , where x is

any point on the track where the cart moves) and when

the pendulum is at its upright position (unstable

equilibrium point, i.e. []0 0
T

eq xπ=x).

The state space equations linearized around

[]0 0 0 0
T T

x xθ θ =
ɺ ɺ are

()
()()

()()

()()

()()

1 1
2 2 22 2 2

2 2

3 3

22 2
4 4

2 2 22 2 2

0 1 0 0 0

0 0 0

00 0 0 1

0 0 0

M m mgl mlx x

I ml M m m lI ml M m m lx x
u

x x

x x I mlm l g

I ml M m m lI ml M m m l

δ δ
δ δ
δ δ
δ δ

 + −

 + + −+ + −
 = +

 +−

 + + −+ + −

ɺ

ɺ

ɺ

ɺ

 (2)

The eigenvalues of this linearized system with the

parameter values given in Table 1, are 1 3.9739λ ≈ − ,

2 3.9739λ ≈ , 3 0λ = , 4 0λ = . Since one of the

eigenvalues 2 3.9739λ ≈ is positive (i.e. in the right half

plane), the upright equilibrium point is unstable. The

objective of the control problem is to swing up the

pendulum from its pending position or from another

state to the upright position and balance it in that

condition by using supervised learning. The control

problem has two parts mainly, swinging up and

balancing the inverted pendulum. For swing up control

energy based methods (i.e. regulating the mechanical

energy of the pendulum) [1], [2] and for balancing

control linear control methods (i.e. PD, PID, state

feedback, LQR, etc.) are common among classical

techniques. Artificial neural networks, fuzzy logic

algorithms and reinforcement learning [3], [4], [5] are

used widespreadly in machine learning based approaches

both for swing up and balancing control phases.

3 The control problem
A simple controller in order to swing up the pendulum

from its pendant position can be developed by means of

physical reasoning. A constant force can be applied to

the cart according to the direction of the angular velocity

of the pendulum so that the pendulum would swing till

the vicinity of the upright position. The balancing

controller is a stabilizing linear controller which can

either be a PD, PID or be designed by pole placement

techniques (e.g. Ackermann) or by LQR. Here a PD

controller is selected. The switching from the swinging

controller to the linear controller is done when the

pendulum angle is between []0 , 20θ = ° ° , or when

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Valeri Mladenov

ISSN: 1109-2734 51 Issue 2, Volume 10, February 2011

[]340 , 360θ = ° ° . This controller can formally be

presented as below

()

() ()

() ()
()

≤≤−+−

≤≤−+−

==

elseF

ifKK

ifKK

uu

,sgn

2
9

17
,02

9
0,00

,

0

21

21

θ

πθ
π

θθπ

π
θθθ

θθ

ɺ

ɺ

ɺ

ɺ (3)

where 0 2F = N, 1 40K = − , 1 10K = − . The closed loop

poles obtained with these gains are -10.6026, -

4.0315, 0, and 0. The results of the simulations

performed with this controller with the initial conditions

[]0 0 0 0
T

x π= , without any kind of sensor noise or

actuator disturbance are given in Figure 3.

0 5 10 15 20
0

1

2

3

4

5

6

7

time [sec]

p
e
n
d
u
lu
m
 a
n
g
le
 [
ra
d
]

Simulation results with controller for infinite track length for x0 = [π 0 0 0]

0 5 10 15 20
-10

-5

0

5

10

time [sec]

p
e
n
d
u
lu
m
 a
n
g
u
la
r
v
e
lo
c
it
y
 [
ra
d
/s
]

0 5 10 15 20
-8

-6

-4

-2

0

2

4

time [sec]

c
a
rt
 p
o
s
it
io
n
 [
m
]

0 5 10 15 20
-2

-1.5

-1

-0.5

0

0.5

1

time [sec]

c
a
rt
 v
e
lo
c
it
y
 [
m
/s
]

0 2 4 6 8 10 12 14 16 18 20
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

time [sec]

F
o
rc
e
 a
c
ti
n
g
 o
n
 t
h
e
 c
a
rt
 [
N
]

Figure 3: Simulation results with controller for infinite track length for x0 = [π 0 0 0]

T

It can be observed from the Figure 3 that the pendulum

has been stabilized in the upright position, whereas the

cart continues its travel with a constant velocity.

4 Neural network controllers
The swing-up controller is developed by means of

physical reasoning, which is related to applying a

constant force according to the direction of the angular

velocity of the pendulum. The teacher controller that is

used here has only two inputs (i.e. pendulum angle and

angular velocity), so it won’t be possible to keep the

cart’s travel limited since no cart position (or velocity)

feedback is used. However with this teacher controller

selection, it would be easier to visualize and thus to

compare the input/output mappings of the teacher and

the neural network. The input-output map (also called

policy) of this nonlinear controller is given in Figure 4.

Here the horizontal axis represents the pendulum angles

and vertical axis represents the pendulum angular

velocities, and colours represents the actuator forces

corresponding to the pendulum angles and angular

velocities. From the teacher, sensor values (i.e.

pendulum angle and angular velocity) and actuator

values (i.e. input force acting on the cart) can be

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Valeri Mladenov

ISSN: 1109-2734 52 Issue 2, Volume 10, February 2011

recorded. The simulations are performed by using

Matlab/Simulink and Neural Networks Toolbox.

Figure 4: Input-output map of the teacher controller

The simulations contain two phases, the demonstration

and the execution phases. In both phases the simulations

are performed by using a fixed step solver (ode5,

Dormand-Prince) with a fixed step size of 0.1 sec.

Figure 5a: Teaching phase for supervised learning

The design can be separated into two phases; the

teaching and the execution phases. The teaching phase

for each demonstration can be presented graphically as it

is shown in Figure 5a.

There is sensor noise present in the simulations which is

selected as normally distributed random numbers with

different initial seeds for each demonstration. Also band-

limited white noise is added at the output of the

controller to represent the different choices that a human

demonstrator can make in the teaching phase, in order to

make the demonstrations less consistent, and therefore a

more realistic representation of human behavior.

Figure 5b: Execution phase for supervised learning

When the teaching phase is finished, the neural network

is generated in order to be added to the model using

Matlab’s gensim command. After that the execution

phase shown in Figure 5b, starts with the nonlinear

controller replaced with the neural network, and the

actuator disturbance is removed. The Simulink model is

shown in Figure 5c.

Figure 5c: Simulation scheme for execution phase

During the teaching phase, five examples (or

demonstrations) are used, the variance of the normally

distributed random numbers for sensor noise in each

demonstration is selected as ()22 2180 radσ π= , which

corresponds to a standard deviation of °1 . The actuator

disturbance, representing the different actions of the

demonstrator has a noise power level of 2 20.1 Nσ = and

a sampling time of 1 sec, which is close to the free

swinging period of the pendulum. This means that the

demonstrator can make an inconsistent action every

second with a standard deviation of 0.1 0.316Nσ = ≈ .

Each demonstration starts from the pending initial

position, []0 0 0 0x π= , and lasts 15 seconds. The

pendulum angles for these 5 demonstrations are given in

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Valeri Mladenov

ISSN: 1109-2734 53 Issue 2, Volume 10, February 2011

Figure 6.

Figure 6: Pendulum angles obtained from demonstrations

It can be observed from Figure 6 that in all

demonstrations the pendulum is stabilized in the upright

position. The input output (I/O) map of the teacher

controller with the demonstrated trajectories in the θ , θɺ
portion of the state space on top of it, is given in Figure

7. This figure can give a rough idea about which parts of

the input-output space was visited during

demonstrations.

5 Simulation results
In this chapter we present the results obtained by using

the training data given in the last chapter.

5.1 Training of the Neural Networks

5.1.1 Multilayer Feedforward Neural Network

The MLFF NN which was selected in order to

approximate the behaviour of the teacher (controller) has

two inputs (pendulum angle and angular velocity) and a

single hidden layer with 25 hidden neurons in it.

Figure 7: θ , θɺ trajectories on top of I/O map

The number of hidden layer neurons are selected by

trial-and-error according to the success of the network in

the testing phase. The activation function that is used in

the hidden layer is tan-sigmoid, whereas a linear

activation function is used in the output layer. The

network has been trained using a Levenberg-Marquardt

backpropagation (i.e. trainlm training algorithm from

Matlab) with a constant learning rate of 0.001. The

weights are updated for 500 epochs. The desired m.s.e.

levels are selected as the variance of the actuator

disturbances, since the neural network would start fitting

the noise after that value. The performance (mean square

error) obtained with this network is given in Figure 8. It

can be observed that the m.s.e. has converged but the

desired mse level has not been reached although the

m.s.e. level at 500th epoch is close (approx. 0.165) to the

desired one (0.1).

The plant input data (i.e. the target for the neural

network), and its approximation obtained by the neural

network at the end of the training session which is

related to these examples are presented in Figure 9.

Figure 8: Training results with MLFF NN

The green plot is obtained by using Matlab’s sim

command in order to observe how well the neural

network will fit the desired output with the pendulum

angles and angular velocities from the demonstrations.

Figure 9: Actuator forces from demonstrations and MLFF NN

approximation

A closer look might be taken to the approximation of the

3rd demonstration in Figure 9 and it can be observed

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Valeri Mladenov

ISSN: 1109-2734 54 Issue 2, Volume 10, February 2011

from Figure 10 that the neural network has made a good

approximation.

Figure 10: Actuator forces from 3

rd
 demonstration and MLFF

NN approximation

5.1.2 Radial Basis Function Network
The RBFN which was selected in order to approximate

the behavior of the teacher (controller) has two inputs

(pendulum angle and angular velocity). The centers of

the gaussian functions are selected in a supervised

manner. The training starts initially with no gaussian

functions in the hidden layer, then gaussian functions are

added incrementally such that the error between the

target and network’s output becomes smaller. The spread

(width of the gaussian functions) parameter is selected

equal to 1, by trial-and-error according to the success of

the network in the testing phase. The number of gaussian

functions that are used in the hidden layer are 103. The

desired m.s.e. levels are selected as the variance of the

actuator disturbances, since the neural network would

start fitting the noise after that value. The performance

(mean square error) obtained with this network is given

in Figure 11. It can be observed that the mse has

converged but the desired mse level has not been

reached although the m.s.e. level at the end of training is

close (approx. 0.272) to the desired one. The training has

stopped automatically after the radial basis neurons

started overlapping.

Figure 11: Training results with RBFN

The plant input data (i.e. the target for the neural

network), and its approximation obtained by the neural

network at the end of the training session which is

related to these examples can be presented below in

Figure 12. The green plot is obtained by using Matlab’s

sim command in order to observe how well the neural

network will fit the desired output with the pendulum

angles and angular velocities from the demonstrations.

Figure 12: Actuator forces from demonstrations and RBFN

approximation

A closer look might be taken to the approximation of the

3rd demonstration in Figure 12 and it can be observed

from Figure 13 that the neural network has made a fair

approximation.

5.2 Testing of the Neural Networks
The neural networks that are trained from the

demonstration data are tested in two ways. First a data

set that was not encountered during the training phase

will be used.

Figure 13: Actuator forces from 3rd demonstration and RBFN

approximation

This will be performed by simulating the inverted

pendulum with initial pendulum angles incremented by

180π (i.e. 1°) between []0 0, 2θ π= .

The duration of the simulations in the execution phase is

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Valeri Mladenov

ISSN: 1109-2734 55 Issue 2, Volume 10, February 2011

taken as 30 seconds. Secondly, the input-output maps of

the neural networks will be compared in order to be able

to determine how well the network has learned and

generalized the control policy of the teacher. This will

also help assessing the extrapolation capabilities of the

designed networks.

5.2.1 Multilayer Feedforward Neural Network

The pendulum angles for several initial pendulum angles

from simulations in the execution phase are below in

Figure 14. The MLFF NN managed to swing up and

stabilize the pendulum in 361 out of 361 initial angles

which corresponds to a success rate of 100 %.

Figure 15: Input-output map of MLFF NN

0 5 10 15 20 25 30
-0.2

-0.1

0

0.1

0.2

0.3

time [sec]

P
e
n
d
u
lu
m
 a
n
g
le
 [
ra
d
]

Initial pendulum angle, θ
0
 = 0.2536

0 5 10 15 20 25 30
-1

0

1

2

3

4

5

6

time [sec]

P
e
n
d
u
lu
m
 a
n
g
le
 [
ra
d
]

Initial pendulum angle, θ
0
 = 3.1643

0 5 10 15 20 25 30
0

1

2

3

4

5

6

7

time [sec]

P
e
n
d
u
lu
m
 a
n
g
le
 [
ra
d
]

Initial pendulum angle, θ
0
 = 4.0315

0 5 10 15 20 25 30
5.9

6

6.1

6.2

6.3

6.4

time [sec]

P
e
n
d
u
lu
m
 a
n
g
le
 [
ra
d
]

Initial pendulum angle, θ
0
 = 5.9828

Figure 14: Several pendulum angle plots from execution phase

The input output map of the neural controller can be

given as follows in Figure 15. It can be observed from

Figure 15 that the controller has learned most of the

swinging region that is demonstrated to it, and it has

made generalization errors in some regions marked with

circles. The linear control region on the right and the

angle to switch from swinging control to linear control

has been learned better compared to the one on the left.

This might be due to insufficiency of demonstrated data

in those regions.

5.2.2 Radial Basis Function Network

The pendulum angles for several initial pendulum angles

from simulations in the execution phase are below in

Figure 16. The RBFN managed to swing up and stabilize

the pendulum in 360 out of 361 initial angles which

corresponds to a success rate of 99.7 %.

The input output map of the neural controller can be

given as follows in Figure 17. The circles at the corners

of the plot have nearly zero output, this would most

probably be related to the fact that radial basis functions

give nearly zero output outside their input range. The

network has learned to separate the swing up region into

two, even though there are some generalization errors.

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Valeri Mladenov

ISSN: 1109-2734 56 Issue 2, Volume 10, February 2011

0 5 10 15 20
-0.1

-0.05

0

0.05

0.1

0.15

time [sec]

P
e
n
d
u
lu
m
 a
n
g
le
 [
ra
d
]

Initial pendulum angle, θ
0
 = 0.091414

0 5 10 15 20
-1

0

1

2

3

4

5

6

time [sec]

P
e
n
d
u
lu
m
 a
n
g
le
 [
ra
d
]

Initial pendulum angle, θ
0
 = 3.1475

0 5 10 15 20
-1

0

1

2

3

4

5

6

time [sec]

P
e
n
d
u
lu
m
 a
n
g
le
 [
ra
d
]

Initial pendulum angle, θ
0
 = 4.0613

0 5 10 15 20
6.15

6.2

6.25

6.3

6.35

6.4

time [sec]

P
e
n
d
u
lu
m
 a
n
g
le
 [
ra
d
]

Initial pendulum angle, θ
0
 = 6.1998

Figure 16: Several pendulum angle plots from execution phase

Figure 17: Input-output map of RBFN

5.3 Comparison of the Results
The first thing that can be noticed from the results is that

the interpolation capabilities the networks are quite close

to each other. This can be observed from the fact that all

networks can swing up and balance the inverted

pendulum starting from any initial pendulum angle

between []0 0, 2θ π= . It can further be examined from

the input-output maps, since the parts of the input-output

space which were related to the demonstrated data was

learned quite well by all networks. The least training

error was obtained by using a MLFF NN. The

extrapolation capabilities of MLFF NN are better

compared to RBFN. The RBFN also contains more

hidden neurons (gaussian functions) compared MLFF

NN. A better generalization is also possible for MLFF

NN by taking more and different training data.

6 Conclusion
The supervised learning method of the Neural Networks

controllers consists of two phases, demonstration and

execution. In the demonstration phase necessary data is

collected from the supervisor in order to design a neural

network. The objective of the neural network is to

imitate the control law of the teacher. In the execution

phase the neural controller is tested by replacing the

teacher. The Neural Network control strategy is tested by

using a supervisor, with a control policy that ignores the

finite track length of the cart. By this way, it is easier to

understand what the neural controller that is used to

imitate the teacher does, by comparing the input/output

(state-action) mappings using 2D colour plots. The

policy of a demonstrator (i.e. designed controller in this

case) is not a function that can be directly measured by

giving inputs and measuring outputs, so learning the

complete I/O map and making a perfect generalization

would not be possible. The complexity of the function

that would be approximated is also important since the

function may include both continuous and discontinuous

components (such as switches between different control

laws). All of the designed neural networks controllers

(MLFF NN and RBFN) are able to learn the

demonstrated behaviour which was swinging up and

balancing the inverted pendulum in the upright position

starting from different initial angles. The MLFF NN did

a better job by means of generalization and obtaining

lowest training error compared to the RBFN.

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Valeri Mladenov

ISSN: 1109-2734 57 Issue 2, Volume 10, February 2011

References:

[1] M. Bugeja, “Nonlinear Swing-Up and Stabilizing

Control of an Inverted Pendulum System”, Proc. of

EUROCON 2003 Computer as a Tool, Ljubljana,

Slovenia, vol.2, 437- 441, 2003.

[2] K. Yoshida, “Swing-up control of an inverted

pendulum by energy based methods”, Proceedings

of the American Control Conference, pp. 4045-

4047, 1999.

[3] Darío Maravall, Changjiu Zhou, Javier Alonso,

“Hybrid Fuzzy Control of the Inverted Pendulum

via Vertical Forces”, International Journal of

Intelligent Systems, vol. 20, pp. 195–211, 2005.

[4] The Reinforcement Learning Toolbox,

Reinforcement Learning for Optimal Control Tasks,

G. Neumann, May 2005.

http://www.igi.tugraz.at/ril-

toolbox/thesis/DiplomArbeit.pdf

[5] H. Miyamoto, J. Morimoto, K. Doya, M. Kawato,

“Reinforcement learning with via-point

representation”, Neural Networks, vol. 17, pp. 299–

305, 2004.

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Valeri Mladenov

ISSN: 1109-2734 58 Issue 2, Volume 10, February 2011

