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Abstract: Iterative learning control (ILC) is used to control systems that operate in a repetitive mode, improving 

tracking accuracy of the control by transferring data from one repetition of a task, to the next. In this paper an 

optimal iterative learning algorithm for discrete linear systems is designed and implemented. The design and 

implementation that have been done using Matlab® 7 and Simulink are described in detail. The algorithm is 

applied on several representative discrete systems cases in order to be evaluated and to reveal its capabilities 

and limitations. 
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1 Introduction 
Iterative Learning Control (ILC) is a relatively new 

concept in the control theory. It evolved from the 

need to control dynamical systems that are supposed 

to carry out a given task repetitively and more 

specifically for systems where the desired output 

values are a function of time and the task is carried 

out repeatedly. A classical example is the robot in 

the car industry that follows a given trajectory and 

welds at specific points along the trajectory. 

Normally the robot would be tuned once through 

feedback or feedforward control or even a 

combination of both. After the tuning, it would carry 

out the repetitions performing in the same way. The 

obvious drawback of this approach is the fact that if 

there is an error between the measured trajectory 

and the reference trajectory due to a wrong selection 

of the control input trajectory, the robot will repeat 

this error at each trial, i.e., if there is an error in the 

performance it will repeat the same error at each 

iteration. 

To overcome this problem, Arimoto, one of the 

inventors of ILC [1, 2], suggested that both the 

information from the previous tasks or “trials” and 

the current task should be used to improve the 

control action during the current trial. In other 

words, the controller should learn iteratively the 

correct control actions in order to minimize the 

difference between the output of the system and the 

given reference signal. He called this method 

“betterment process” [3]. This approach is more or 

less an imitation of the learning process of every 

intelligent being. Intelligent beings tend to learn by 

performing a trial (i.e. selecting a control input) and 

observing what was the end result of this control 

input selection. After that they try to change their 

behaviour (i.e. to pick up a new control input) in 

order to get an improved performance during the 

next trial. Based on the overall idea of ILC, the 

procedure which results in a controller that learns 

the correct control input and that learning is done 

through iteration, the term Iterative Learning 

Control is nowadays used to describe control 

algorithms that result in the “betterment process” as 

suggested by Arimoto [3]. In this work an optimal 

iterative learning algorithm for discrete linear 

systems is designed and implemented. The 

algorithm is applied on several representative 

discrete systems cases in order to be evaluated and 

tested, producing very good and useful results. 

 

 

2 Norm-optimal iterative learning 

control algorithm 
The aim of the ILC algorithm [1, 5], is to find 

iteratively an optimal input ∗
u  for the plant under 

investigation. This input, when applied to the plant, 

should generate an output ∗y  that tracks the desired 

output 
dy  “as accurately as possible”. The use of 

the phrase “as accurately as possible” states the 

significance of obtaining the smallest possible 

difference between the actual ∗y  and desired 
dy  

output. This difference is actually the error e and the 
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above lead to the conclusion that the error e is 

desired to be minimal. The ultimate aim of the ILC 

is to push the error e to zero. Thus it is clear that 

applying an ILC algorithm will result in a two-

dimensional system because the information 

propagates both along the time axis t and the 

iteration axis k. 

The two-dimensionality of the iterative learning 

control introduces problems in the analysis as well 

as the design of the system and hence the two-

dimensions are an expression of the systems 

dependent dynamics: a) the trial index k and b) the 

elapsed time t during each trial. In order to 

overcome such difficulties an algorithm for Iterative 

Learning Control is introduced, which has the 

property of solving the two-dimensionality problem. 

For the solution of this problem the cost function for 

the system under investigation is introduced. The 

minimization of the cost function will provide an 

effective algorithm for iterative learning control 

(ILC). 

The following cost function is proposed [4]: 

( ) 2

1

2

11 QkRkkk euuuJ +++ +−=                                   (1) 

where: 

( )1+kuJ  is the cost function with respect to the 

current trial input, 
2

1 kk uu −+
 is the norm of the difference between the 

current and previous trial inputs, 
2

1+ke is the norm of the current error and 

R, Q are symmetric and positive definite weighing 

matrices. It is assumed that R and Q are diagonal 

matrices, and for simplicity rIR =  and qIQ = , 

where q and r are positive real numbers ( )ℜ∈rq, . 

In ILC literature, researchers have suggested 

different cost functions to solve the ILC problem. 

The reasons that lead to the realization that the 

selected cost function (1) is effective and 

appropriate are the following: a) The 2

1 kk uu −+
 

factor represents the importance of keeping the 

deviation of the input between the trials small. 

Intuitively this should result in smooth convergence 

behaviour. This requirement could also be stated as 

the need for producing smooth control signals, in 

order to obtain smooth manipulation of actuators. b) 

The 2

1+ke factor represents the main objective of 

reducing the tracking error at each iteration. c) In 

order to state which of the above two factors plays a 

more significant role in the cost function the 

weighting matrices R and Q are used. If the interest 

is focused in retaining the deviation of the input 

between the trials small, then the ratio qr=β  has 

to be “large”. On the other hand, if keeping the error 

small is more significant, then the ratio qr=β  has 

to be “small”. The actual meaning of “small” and 

“large” depends on the system being considered and 

the units measured. d) Τhe optimal value of the cost 

function is bounded. If the cost function is evaluated 

with 
kk uu =+1
 then (1) becomes: 

( ) 222

QkQkRkkk eeuuuJ =+−=  and hence the 

optimal value: ( )
2

1 Qkk euJ ≤+
. It is also clear that the 

optimal cost function has a lower bound: 

( ) 2

1

2

1

2

11 QkQkRkkk eeuuuJ ++++ ≥+−= .  

Hence combining the above, the upper and lower 

bounds are expressed by (2). 

( ) 2

11

2

1 kkkk euJe ≤≤ +++                             (2) 

The differentiation of the cost function (1) with 

respect to 1+ku  produces the solution used to update 

the input, the norm-optimal ILC algorithm, which is 

investigated in this work. The input up-date law is 

the following [4]: 

11

1

1

1

0 +

∗

+

−

+

+

+=+=⇒= kkk

T

kk

k

eGuQeGRuu
u

J

ϑ

ϑ    (3) 

or 

1

1

1 +

−

+ =− k

T

kk QeGRuu       (4) 

where: 

1+ku  is the current trial input, 

ku  is the previous trial input, 

1+ke  is the current trial error and 

QGRG T1−∗ =  is the gain matrix-adjoint of the plant - 

that represents the relative weighting of the cost 

function requirements (error-input deviation). 

The causal solution to the above problem is given 

by introducing the following proposed algorithm for 

Norm-Optimal ILC, which consists of the following 

terms: 

Term I: The gain matrix K(t). Given in the form 

of the discrete Ricatti equation [6, 7]: 

( ) ( ) ( ) ( )[ ] ⋅+Γ+ΓΓ+Φ−Φ+Φ=
−1

111 RtKtKtKtK TTT

   ( ) QCCtK T+Φ+Γ⋅ Τ 1      (5) 

for ]1,0[ −∈ Nt  and with the terminal condition 

( ) 0=NK . 

Term II: The feedforward (predictive) term. 

( ) ( )[ ] ( ){ }11

11

1 +ΦΓΓ+= +

−−

+ tRtKIt k

TT

k ξξ   

   ( )1++ tQeC k

T                  (6) 

for ]1,0[ −∈ Nt  with the terminal condition 

( ) 01 =+ Nkξ . 

Term III: The input update law. 

( ) ( ) ( )( ) ( ) ⋅Γ+ΓΓ−=
−

+ tKRtKtutu TT

kk

1

1
  

                ( ) ( )[ ] ( )tRtxtx k

T

kk 1

1

1 +

−

+ Γ+−Φ⋅ ξ           (7) 
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Easily can be observed that Term I is 

independent of the inputs, outputs and states of the 

system, Term II, the predictive term ( )tk 1+ξ  is 

dependent on the previous trial error ( )1+tek
 and 

Term III, the input update law depends on the 

previous trial input ( )tuk
, the current state ( )tx k 1+

, 

the previous trial state ( )txk
, and the predictive term 

( )tk 1+ξ . This is hence a causal iterative learning 

control algorithm consisting of current trial-full 

state-feedback along with feedforward of the 

previous trial error data. 

 

 

3 Design and implementation of the 

ILC algorithm 
The development of the software for the 

implementation of the “Norm-Optimal ILC” 

algorithm includes the following stages: a) 

Simulation requirements: A breakdown of the 

specific tasks required to develop the proposed 

system and b) Construction and verification: Coding 

and testing the various systems’ components and 

eventually testing it as an integrated unit. 

As mentioned in section 2, the three terms which 

constitute the causal form of the ILC are: a) the gain 

matrix (5). b) the feedforward (predictive) term (6) 

and c) the input update law (7). These terms 

constitute the software’s required outputs as well as 

its inputs and thus have to be written in the 

appropriate programming language for 

implementation. The following phases represent a 

possible approach for designing the modules of the 

proposed software: 

Phase I: The modeling of the Ricatti equation 

solution for the gain matrix K(t). Since K(t) is 

independent of the inputs and states of the system, it 

may be independently simulated for all trials of K 

and trial steps 10 −≤≤ Nt . It is to be noted that 

this phase undergoes only one iteration and this 

iteration occurs at the beginning of the 

implementation. All the values of K(t) are stored in 

some type of array structure (within the Workspace) 

so that they may be referenced when necessary. 

Phase II: The modeling of the predictive 

(feedforward) term ( )tk 1+ξ , which regulates the 

plant’s operation along with the corresponding 

sampling times. It should be observed that the 

predictive term ( )tk 1+ξ  is dependent on the error 

quantum generated by the previous trial ( )1+tek
, 

thus the error data for each trial is fed into the 

following trial iteration / simulation 

( ) ( )( )11 +=+ teft kkξ . Since the final condition of the 

feedforward term is known ( ) 01 =+ Nkξ , the 

simulation will solve the term in a recursive fashion 

and subsequently store the data. This second phase 

will be iterated for every trial. 

Phase III: Modeling of the input update law (7) 

to produce new input data for each sample time of 

the corresponding trial. In order to simulate (7), a 

deviation of the term in three parts is required. Part I 

- ( )tuk
: this represents the feedforward data of the 

previous trial input. Part II - 

( )( ) ( ) ( ) ( )[ ]txtxtKRtK kk

TT −ΦΓ+ΓΓ +

−

1

1
: the 

feedforward of the previous trial state as well as the 

feedback of the current trial input. Part III - 

( )tR k

T

1

1

+

− Γ ξ : the feedforward of the predictive term. 

This phase uses data generated from the first two 

phases and generates the necessary input for the 

current trial (i.e., for every instance of t). The data 

accumulation from phases one and two is fed 

forward to the current phase and permits on-line 

simulation of the controller and the plant’s 

operation. The coding of the phases is as follows: 

Phase I - It is coded ‘from the ground up’ in the 

Matlab® 7 [8, 9] programming environment, Phase 

II - It follows a similar process to the first but also 

incorporates error data produced by the first and 

third phase during the previous trial, Phase III - It is 

implemented in the Matlab’s Simulink environment 

incorporating Matlab function code for certain 

Blocks and data produced by the first and second 

phase. 

The inputs for the implementation were: a) the 

Discrete System Matrices, namely Φ, Γ and C, with 

D being set to 0. If the matrices’ parameters are 

known, these parameters can be incorporated as 

actual values in the source code. In the event that 

only the discrete plant’s transfer function is known, 

then - with the assistance of an inbuilt Matlab 

function - the matrices can be extracted and directly 

expressed in the code. The code also provides the 

ability to change the system’s order and parameters, 

b) the number of iterations T, c) the sampling length 

N for each trial, d) the sampling interval Ts, e) the 

desired output, which is the reference signal r, f) the 

ratio β of the influence degrees q and r of the 

weighting matrices Q and R respectively, which can 

only take positive values, g) the initial conditions 

(IC) of the discrete plant and h) the initial input u0 

estimate. 

The outputs of the implementation were: a) the 

current trial output ynew which is used in error 

calculation, b) the current trial error enew, which is 

saved in an area of system main memory that 

Matlab® 7 [8, 9] has configured, commonly referred 

to Workspace. This Workspace data is also used as 
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an input for Phase II in the form of the previous 

error eold, c) the current state, which is fed back to 

the system as well as being further used as xold, thus 

it is also stored in the Workspace. The flow-chart in 

Fig. 1 illustrates the basic steps of the algorithm’s 

implementation. 

 
Fig. 1: Flow chart of the algorithm’s implementation 

 

As can be observed, the initial estimated error 

values are fed into the Workspace, simultaneously 

the data from the first phase - the K(t) gain matrix 

computation - is also being passed to this 

Workspace. The second phase (represented by the 

second turquoise box) takes all the data that has 

been stored so far in the Workspace from these two 

input sources and initializes. During the second 

phase’s operation, it generates the values for the 

predictive term sequence that, in turn, are fed to the 

third phase (the third box). Finally, the third phase 

references all the Workspace values and performs 

an on-line operation to regulate the plant. 

A representation of a typical Phase III Simulink 

model sequence of operations during an on-line 

plant regulation is shown in Fig. 2, where the 

components of this system are presented as a block 

diagram. The controller is fully implemented at this 

point to regulate the plant and part of its algorithm is 

responsible for training the plant in order to follow 

the desired trajectory-reference r. For clarity and 

ease of reference, the three parts of the up-date law 

modeled in Fig. 2 have been specifically encircled 

and designated via blue lettering. The red thick line 

indicates the feedback flow for the current sates. 

The Simulation model even if it is typical for an on-

line regulation for a discrete plant, it is not common 

in a real world environment where it is more usual 

to have continuous system control [10]. 

 

 

4 Evaluation of the ILC algorithm 
 

4.1 Effect of the relative degree 
The Norm-Optimal algorithm is applied to a 1

st
, a 

2
nd

 and a 3
rd

 order discrete linear system, with a 

relative degree of one, two and three respectively. 

At the end of the implementation an assessment in 

terms of reference tracking error and control effort 

is done. The selected systems, expressed in the 

Laplace domain, are the following: 1
st 

order system: 

( )
( )2

1
1

+
=

s
sH with a relative degree one, 2

nd
 order 

system: ( )
( )( )32

6
2

++
=

ss
sH  with a relative degree 

two and 3
rd

 order system: ( )
( )( )( )432

24
3

+++
=

sss
sH  

with a relative degree three. 

When the Norm-Optimal ILC algorithm is 

applied to all the above systems the response in 

terms of reference tracking emerges as shown in 

Fig. 3. Fig. 3 shows that the systems under 

investigation are controlled successfully and their 

output shows the ability of tracking the reference 

signal in an acceptable way. It can be observed that 

the 1
st
 order system with the relative degree of one 

achieves the most satisfactory final trial trajectory in 

terms of reference tracking. The worst tracking 

performance amongst the three systems belongs to 

the 3
rd

 order system, with the relative degree of 

three. In order to accomplish a more objective 

assessment for the three systems, the characteristic 

performance is plotted (Fig. 4). 

It is clear from the simulation results of Fig. 4 

that the convergence rate increases in inversely 

proportional with the relative degree of the system. 

The 1
st
 order system demonstrates the fastest 

convergence of the error sequence ( )tek
 to zero. On 

the other hand, the 3
rd

 order system demonstrates the 

slowest convergence to zero. It can also be observed 

that the smallest the relative degree of the system 

the less trials it takes for the algorithm to train the 

system, i.e., the error to reach small bounds with 

respect to zero. 
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Fig. 2: On-line simulation for control of a discrete linear plant 

 

 

Fig. 3: Tracking of reference signal. 

 

4.2 Varying reference signal r 
In this case an attempt to commend on the 

dependence of algorithm on the reference signal is 

made. As a desired output is selected the signal 

( )trk
 that has the property of changing from trial to 

trial. In practice this could be translated as an 

attempt of a robot arm to work on a moving target. 

In this simulation, the algorithm is applied to the 

following 2
nd

 order system ( )sH , expressed in the 

Laplace- domain: ( )
( )( )32

6

++
=

ss
sH , with zero 

initial ( ) ( ) ( ) ( )tbttr kk cos1sin −+= , where kbk ,  ∉ ℜ  

and where Trialsk =  has been selected. The 

conditions. In order to validate the algorithm’s 

performance the reference signal implementation of 

the Norm-Optimal ILC algorithm to the above 

system produces Fig. 5, which illustrate the 

performance of the algorithm with respect to the 

varying reference rk . 

These surface plots demonstrate the change of 

the reference ( )trk
 and the plant output ( )tyk

 (Fig. 5) 

for each sample time and trial. It can easily be 

observed that the plant  shows a good  behaviour  in 

 

 

Fig. 4: L2 Norm of the error sequence. 
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terms of reference tracking, despite the reference 

variation over the trials. Especially at the last trial 

the plant output demonstrates an improved reference 

tracking behaviour. In order to assess the overall 

algorithms performance the performance criterion 

(i.e. L2 Norm of the error) is plotted (Fig. 6). 

 

 

 

Fig. 5: Surface plot of the reference signal and plant 

output. 

 

As it can be seen in Fig. 6 the error convergence 

is very fast for the first seven trials. After that, it still 

continues to converge with a reduced speed until the 

82
th
 trial, where the error bound reaches desirable 

limits. The above deduction is reinforced through 

observation of the error sequence surface plot. It is 

obvious that as the number of trials grows, the 

performance of the plant improves and the error 

decreases. However, the number of trials required 

for the error to reach desirable bounds, is much 

greater than the previous examples. This is not odd, 

since the reference is changing over trials. But the 

algorithm adapts to the changes and as the number 

of trials increases, the algorithm begins to predict 

the change of the reference. It uses then the 

prediction to modify the control actions suitably in 

order to track the reference in an optimal way. 

 

 

 

Fig. 6: L2 Norm of the error and surface plot. 

 

4.3 Disturbance acting on the plant 
In this case the effect of noise presence in the plant 

is examined. It is assumed that the model of the 

plant is known and it is the following 2
nd

 order 

system ( )sH  given in the Laplace-domain as: 

( )
( )( )32

6

++
=

ss
sH  with zero initial conditions. The 

selected form of disturbance is bounded white noise 

with sampling time equal to the discrete systems 

sampling time. 

 

4.3.1 Study case I: Disturbance acting on the 

input of the plant 
The disturbance act is expressed with the presence 

of white noise in the input. The point of the noise 

entrance in the plant is presented in the relevant 

Simulink model used for the current simulation. The 

effect of the disturbance on the error evolution is 

given in Fig. 7. 
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Fig. 7: L2 Norm of the error sequence and surface 

plot 

 

It shows that the error decreases exponentially 

even with the influence of the white noise in the 

input. The convergence of the error is very fast for 

the first trials and for the next trials the convergence 

get slower. But even the first 15 trials are adequate 

for the tracking error bound to reach desirable 

limits. This assumption is reinforced through the 

observation of the error surface plot, where it is 

apparent that the error bounds, after the 15
th
 trial, are 

of small size. Hence, the algorithm succeeds to 

control the plant, despite the noise presence in the 

input. 

 

4.3.2 Study case II: Disturbance acting on the 

output 
The disturbance act is expressed with the presence 

of white noise in the output. The point of the noise 

entrance in the plant is presented in the relevant 

Simulink model used for the current simulation. The 

effect of the disturbance on the error evolution is 

presented in the following Fig. 8.  

 

 

Fig. 8: L2 Norm of the error sequence and surface 

plot of the new input. 

 

The convergence rate is fast for the first 20 trials, 

but becomes slow for the following ones. 

Furthermore the error does not reach satisfactory 

bounds within a reasonable number of trials. 

However, eventually it will converge to zero. In 

order to commend on the overall performance of the 

algorithm (and despite the errors zero convergence), 

the controlled input sequence is plotted, where 

excessive manipulations are required. It can be 

assumed that the noise that affects on the output is a 

critical phenomenon and seriously affects the plants 

zero tracking performance. Hence, the algorithm 

does not adequate cope with this effect. 

 

4.3.3 Comparison of the two study cases  
Another aspect of testing the algorithms 

performance is to compare its sensitivity towards 

the two studied cases of disturbance. In order to 

compare the ability of the algorithm to overcome the 

disturbances effect the performance criterion 

(L2Norm) is used. Fig. 9 demonstrates the 

convergence rate of the error sequence in both the 

cases of noise disturbance (input-output acting 

disturbance).  
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Based on Fig. 9 it is evident that the rate of the error 

convergence is faster for the case where the noise 

enters in the plant from the input. On the other hand, 

the algorithm accommodates the presence of noise 

in the output in a harder way and requires more 

trials in order to train the plant. One approach to 

validate this behaviour is the fact that the entrance 

of the noise from the input allows the plant to filter 

it out through the current state feedback. This 

filtering-action is not possible when the state enters 

the plant in the output. The algorithm has then to 

wait until the next sampling time and trial in order 

to cope with the disturbance [11]. 
 

 

Fig. 9: L2 Norm of the error. 

 

4.4 Plant uncertainty 
The plant uncertainty lies in the fact that the 

nominal plant model differs from the true one. 

Representative cases for plant uncertainty are 

selected and through their examination, the 

suitability and behaviour of the Norm-Optimal 

algorithm implementation is commended. The 

actual plant to be controlled is given in the Laplace 

domain as: ( )
( )( )( )731

21

+++
=

sss
sH , with zero 

initial conditions. This 3
rd

 order plant possess three 

stable poles 
321 ,, sss . The poles have certain 

properties in terms of classic control theory: The 

11 −=s  pole: The dominant pole, which plays the 

most significant role in terms of plant stability and 

also affects the speed of the plants response in a 

decelerating way [12, 13], The 32 −=s  pole. 

Finally, the 73 −=s  pole, which represents the fast 

response mode of the system [12]. 

Study Case I: The nominal plant ( )sH 1
 neglects 

the fast mode (with pole 73 −=s ) of the true plant 

( )sH . The nominal plant selected is the following 

3
rd

 order system (The nominal plant is chosen with 

the same relative degree as the true one, for 

implementation simplicity): 

( )
( )( )( )431

12
1

+++
=

sss
sH , with zero initial 

conditions. It can easily be observed that the 

nominal plant retains the first two poles of the true 

plant, with the difference that the fast response 

pole, 73 −=s  is replaced with 43 −=s . In practice, 

this can happen when a fast subsystem is wrongly 

modeled [4]. The main interest is to test if the 

algorithm converges despite the true plant and 

nominal model mismatch. 

 

 

 

Fig. 10: L2 Norm of the error sequence and surface 

plot. 

 

Fig. 10 shows that the error sequence converges 

practically to zero. The rate of the convergence is 
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fast for the first five trials and after that point 

becomes slower. It is clear that the band of error has 

reached satisfying small limits within the first five 

trials. 

Study Case II: The nominal plant ( )sH 2
 neglects 

the dominant pole ( 11 −=s ) of the true plant ( )sH . 

As the nominal plant ( )sH 2
 the following 3

rd
 order 

system is selected (The nominal plant is once again 

chosen with the same relative degree as the true one, 

for implementation simplicity): 

( )
( )( )( )734

84
2

+++
=

sss
sH , with zero initial 

conditions. It can easily be observed that the 

nominal plant retains two poles of the true plant: 

322 −== ss  and 733 −== ss  with the design 

difference that the dominant pole 11 −=s  is replaced 

with 41 −=s . The main interest is to test if the 

algorithm converges despite the mismatch between 

the true plant and nominal model. The simulation 

produces Fig. 11, that shows that the convergence 

rate of the error is exponential and the convergence 

gets much slower after the 10
th
 trial. Hence, the 

learning successfully takes place within the first 10 

trials and after those; the error converges practically 

to zero. 

 

 

5 Results and discussion 
In section 4, the Norm-Optimal Iterative Control 

algorithm has implemented to various systems. The 

algorithms control performance was tested and its 

potentials and limitations were studied. At the 

beginning, the dependence of the error convergence 

rate on the systems relative degree was tested. It was 

shown that the higher the relative degree of the 

system the slower the error sequence convergence. 

It has been shown also the ability of the algorithm to 

cope with a considerable true plant and nominal 

model mismatch. Furthermore the degree of 

robustness towards exogenous disturbances was 

examined. Two cases of disturbance were 

considered: the case of white noise entering the 

plant from the input and the case of white noise 

affecting the output. The algorithm demonstrated 

high convergence performance in the case of the 

input disturbance. For the case of the disturbance 

acting in the output, the implementation resulted in 

geometrical error convergence; however, the 

excessive control input manipulations reduced the 

algorithms performance. Another case revealed the 

algorithms ability to successfully train a plant in 

order to track a varying reference signal. On the 

whole, the Norm-Optimal ILC algorithm exhibited a 

high degree of robustness in the simulations. The 

most important property of the algorithm, its 

geometrical convergence of the error sequence, was 

proved also in practise. In other words, the error 

sequence is guaranteed to converge to zero in the 

limit when the algorithm is implemented. Finally it 

has been observed that the performance of the 

algorithm can be tuned to a high degree, through 

variation of design parameters and improvements. 

On the other hand, limitations of the algorithm 

can be considered the following. The algorithm 

cannot effectively cope a noisy output, as it is 

downstream of the control action. The robustness of 

the algorithm is still theoretically unproven. The 

implementation of the algorithm is possible only for 

cases where the plant model is known in advance 

and that the algorithm is effective only for invertible 

systems. 

 

 

 

Fig. 11: L2 Norm of the error sequence and surface 

plot. 

 

 

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS V. Vita, A. Vitas, G. E. Chatzarakis

ISSN: 1109-2734 47 Issue 2, Volume 10, February 2011



6 Conclusions 
In this paper an optimal iterative learning algorithm 

for discrete systems has been designed and 

implemented. Its design and implementation in 

Matlab® 7 and Simulink have been described in 

detail. The algorithm has been applied on several 

representative discrete systems cases in order to 

evaluate its performance and to reveal its 

capabilities and limitations. 
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