
A VHDL-based design methodology for asynchronous circuits

SUN-YEN TAN
1
, WEN-TZENG HUANG

2

1
 Department of Electronic Engineering

National Taipei University of Technology

No.

1, Sec. 3, Chung-hsiao E. Rd., Taipei,10608, Taiwan, R.O.C.

 sytan@ntut.edu.tw

2
 Department of Computer Science and Information Engineering

Mingsin University of Science and Technology

No.1, Xinxing Rd., Xinfeng Hsinchu 30401, Taiwan, R.O.C.

 wthuang@must.edu.tw

Abstract: - The asynchronous circuit style is based on micropipelines, a style used to develop asynchronous

microprocessors at Manchester University. This paper has presented some engineering work on developing a

micropipeline blocksorter. The work presented in this paper demonstrates that VHDL can be used to describe the

behaviour of micropipelined systems. It also shows a comparison of 2-phase and 4-phase implementations in

transistor count, speed, and energy. Though the nature of the work is mainly engineering, there are some

significant new insights gained in the course of the work. In summary, a design environment for asynchronous

circuits has been established based upon the micropipeline style and VHDL, a standard hardware description

language.

Key-Words: - Asynchronous design, Micropipelines, Blocksorter, VHDL, Synthesis

1 Introduction
Asynchronous design has potential advantages over

synchronous design [23][24][25], such as no clock

skew problem, low power, average case performance

and good Electro-Magnetic Compatibility (EMC).

The benefits may be most apparent in mobile

communication applications and other portable

systems which use advanced VLSI technologies. The

design of asynchronous circuits is more difficult than

that of synchronous circuits. Hazards must be

removed from the circuits to ensure that there are no

unexpected transitions. Well structured asynchronous

design styles such as micropipelines reduce the

difficulty. Event-driven logic modules may be

designed by electronic experts. Then designers with

less experience can easily build micropipelined

circuits using such modules. An automatic synthesis

tool is available [6]. It converts the behavioural

VHDL into structural VHDL and Verilog based on

micropipelines had been published [6]. 2-phase and

4-phase VHDL models of event-drive logic modules

and standard logic function elements were created.

In this paper we demonstrate the design of an

asynchronous blocksorter using the sytnthesizer and

evaluate the experimental results.

Section 2 introduces some asynchronous logic

techniques. Section 3 describes the synthesis flow

which is used by the synthesizer. Section 4 introduces

4-phase event-driven Logic modules and 4-phase

control circuits. Examples of the “while loop” control

circuits is given in Section 5. The blocksorter design

will be presented in Section 6. Section 7 will present

experimental results. Finally, Section 8 will give a

short conclusion and suggestions for further research.

2 Asynchronous logic
Asynchronous design does not have a clock to govern

the timing of state changes. Storage components for

holding internal states and data within asynchronous

systems work at different times depending on the

preceding and successor circuits. For reliable

operation, an asynchronous circuit must be free from

critical races and unstable states and liveness

checking must be undertaken. If a system contains n

storage elements there are 2
 n
 possible states. One

approach is to arrange that all storage elements work

together to capture data at the same time. Such a

system could have a central clock and storage

elements that capture internal state signals and data on

the rising edge of the clock, the new states being

derived from combinational logical circuits that read

the old state and inputs. Furber gave a more clear

definition and relation between asynchronous and

synchronous designs as follows:

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Sun-Yen Tan, Wen-Tzeng Huang

ISSN: 1109-2734 315 Issue 5, Volume 9, May 2010

It is a common misconception to view

asynchronous design as a single alternative

to synchronous design. It is more accurate

to view synchronousdesign as a special

case representing a single point in a

multi-dimensional asynchronous design

space [15].

Asynchronous logic circuits have several important

advantages over their counterparts in clocked logic.

An asynchronous logic function is potentially faster

because it works at the average-case delay rather than

the worst-case delay. There is no global clock on

asynchronous circuits so they will not unnecessarily

dissipate power when there is no useful work to do.

Asynchronous logic has the potential for low power

[16]. Asynchronous logic may be used to implement

systems with lower power dissipation.

The design of asynchronous circuits generally

follows a modular approach, where a system is

designed as an interconnection of modules. In the

1988 Turing Award Lecture, Sutherland expounded a

modular approach to building hardware systems

based on data-driven asynchronous self-timed logic

elements called micropipelines [17].

Fig. 1. A block diagram of a synthesiser.

3 The synthesis
Fig. 1 shows a block diagram of a synthesiser. A

synthesizer performs translations or compilations

from specifications into the implementations of

circuits.The specification describes the computation

function of synthesized circuits. The libraries contain

the standard gates and modules which are used to

construct the synthesized circuits by the synthesizer.

The specification may be denoted by languages,

graphics or mathematics. Language based CSP [5][7]

and Occam [4], graphic based Petri nets [8] and STGs

[9], and mathematic based FSMs and Algebras [10]

have been used previously for synthesizing

asynchronous circuits. An alternative, IEEE standard

language, VHDL [14], is used for the specifications in

this work.

The creation of component libraries is another key

issue for synthesis. The libraries used here contain

VHDL models and various views of 2-phase and

4-phase modules and standard gates which were

created either for this research or were used to

develop AMULET1 [1] and AMULET2e [2].

Structural VHDL and Verilog are chosen to be the

output of the synthesizer.

The synthesis procedure begins by partitioning

descriptions into several pipeline stages, the number

depending on the concurrency and other properties of

the description. Then we produce the circuits for each

stage. Appropriate control circuits are automatically

added into the stages. Finally, we produce the

interconnections between the stages.

Fig. 2. Design flow.

Design flow

Fig. 2. shows a potential design flow. The designs

are described in behavioural VHDL descriptions. This

VHDL descriptions may be simulated using a VHDL

simulator (Leapfrog). Then the descriptions can be

synthesized into two-phase and four-phase VHDL

structural models and Verilog structural models

respectively. The structural VHDL models may also

be simulated using a VHDL simulator. The simulation

results may be compared with the previous

behavioural simulation results to verify the

implementation against its specification.

Fig. 3 shows the interface between the synthesizer

and other tools, LARD [18], Yellow [19] and Balsa

[20[21]. The design may be also described and

simulated in LARD. The simulation results may be

compared with the VHDL results to check the

correctness of the input descriptions and the output

implementation.

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Sun-Yen Tan, Wen-Tzeng Huang

ISSN: 1109-2734 316 Issue 5, Volume 9, May 2010

Fig. 3. Interfacing to other asynchronous description

languages.

4 Four-phase Micropipelines
A “four-phase bundled data convention” is a

communication system where a 4-phase handshaking

protocol is used and an arbitrary number of data wires

are treated as a bundle together with the request signal

wire. In the 4-phase handshaking protocol, only rising

transitions or only falling transitions of either control

wire have the meaning; they represent request events

or acknowledge events. In this signalling scheme, the

operating cycle is (1) data available (2) change

request to active state, (3) change acknowledge to

active state, (4) return request to inactive state, and (5)

return acknowledge to inactive state. If the active state

is logic “1” the the operating cycle is (1) data

available (2) request+, (3) acknowledge+, (4)

request-, and (5) acknowledge-.

The data signals can use a traditional data

representation which is similar to that used in

synchronous circuits, such as the 8-4-2-1 code ... etc.

Fig. 4 illustrates two kinds of four phase signalling,

the ‘early’ mode and the ‘broad’ mode [11]. The

‘early’ mode (Fig. 4(a)) uses the rising edge of the

Request line to indicate ‘data available’ and the

rising edge of the Acknowledge line to indicate ‘data

latched’. The falling edges are return to zero actions

that carry no meaning. The ‘broad’ mode (Fig. 4(b))

uses the rising edge of the Request line to indicate

‘data available’ and the falling edge of the

Acknowledge line to indicate ‘data latched’. Another

possible protocol is ‘late’ mode which uses the falling

edges as active.

Various event-driven logic modules for

controlling transition signals are shown in Fig. 5.

They were devised for composing to 2-phase control

circuits. Muller C-elements and XOR gates are the

same whether they are used in 2- or 4-phase designs.

However, 4-phase Toggle, Select, Call and Arbiter

modules are different from their 2-phase counterparts.
A Toggle is used to alternately deliver events on its

input to one of two outputs. In the 2-phase protocol

each transition denotes an event. Therefore, the odd

number transitions on the input of a Toggle will be

sent to the dotted output and the even number

transitions on the input of a Toggle will be sent to the

non-dotted output. In the 4-phase protocol each event

consists of a rising transition and a falling transition.

A rising transition and the following falling transition

must be sent to the same output. Therefore, the odd

number rising and falling transitions on the input of a

Toggle will be sent to the dotted output and the even

number rising and falling transitions on the input of a

Toggle will be sent to the non-dotted output.

Fig. 4. 4-phase bundled data convention

Fig. 5. Various event-driven logic modules.

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Sun-Yen Tan, Wen-Tzeng Huang

ISSN: 1109-2734 317 Issue 5, Volume 9, May 2010

AMULET1 was implemented using a 2-phase

micropipeline design style. However, AMULET2 and

AMULET2e [2][12] use a 4-phase micropipeline

design style to improve their performance. Furber and

Day developed four kinds of 4-phase latch control

circuits. They are the simple, semi-decoupled, fully

decoupled and long hold 4-phase latch control circuits

[13]. They use the 4-phase bundled data convention.

Fig. 6. Asymmetric C-gate notation.

The asymmetric C-gate notation shown in Fig. 6

indicates that an input controls both edges of the

output when it is connected to the main body of the

gate; it controls only the rising edge when connected

to the extension marked ‘+’, and it controls only the

falling edge when connected to the extension marked

‘-’.

As shown in Fig. 7 Rin+ must wait for Aout- and

Rin- must wait for Aout+ to proceed to lt+ and lt-

when the simple 4-phase latch control circuit is used,

this may lead to poor performance. However, the cost

is very low.

Fig. 7. A simple 4-phase latch control circuit.

The semi-decoupled and fully decoupled latch

control circuits may be employed to solve this

problem. In the semi-decoupled latch control circuit

(see Fig. 8) Rin+ does not need to wait for Aout- and

can proceed to lt+ after Rout-. But Rin- still needs to

wait for Aout+ to proceed to lt-. The fully decoupled

latch control circuit (see Fig. 10) is much faster than

simple and semi-decoupled control circuits. When it

is used Rin+ can proceed to lt+ after Rout- and Rin-

can through to Ain- after Ain+ shortly. For some

applications, it may be necessary that the latch holds

the data stable until Aout goes low. The long hold

4-phase control circuit shown in Fig. 10 can serve this

purpose.

Fig. 8. A semi-decoupled 4-phase control circuit .

Fig. 9. A fully decoupled 4-phase control circuit.

Fig. 10. A long hold 4-phase control circuit.

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Sun-Yen Tan, Wen-Tzeng Huang

ISSN: 1109-2734 318 Issue 5, Volume 9, May 2010

5 while loop examples

Fig. 11 shows the schematic of the output of the

synthesizer for the following input description.

 y := a; w := "00101";

 while (w >= "00001") loop

 y := y + "00001";

w := w - "00001";

 end loop;

 e <= y;

Fig. 11. A schematic for a while loop example.

Fig. 12 shows a 4-phase while loop control circuit

which can perform the following loop operation. The

circuit continuously performs the loop operation if the

greater output of the comparator remains true.

w = A;

while (w > "00101") loop

w = w - "00001";

end loop;

In the 4-phase handshaking protocol the request

and acknowledge signals will return to their inactive

state to start a new cycle. Activating the reset of

related components is a simple and fast way to deliver

a falling transition from the request input to the

request output. Fig. 13 shows a 4-phase while loop

control circuit where the reset is activated if the Rin is

Low and the Aout is High. The circuit can also

perform the same loop operation as shown in Fig. 12.

It will terminate the loop operation if the ‘equal’

output of the comparator becomes true. The number

of the inverters between the output of the asymmetric

C-gate and the junction p1 must be odd.

Fig. 12. A 4-phase while loop control circuit.

Fig. 13. Another 4-phase while loop control circuit.

6 The blocksorter
The following description shows a simple

handshaking control with a simple computation.

When the Reset signal is logic ‘0’ it is in a reset loop

to clear the AIN and Rout signals. While the Reset

signal is logic ‘1’ the operating cycle is (1) waiting for

an Rin transition; (2) computing; (3) sending AIN and

Rout signals; (4) waiting for an Aout transition.

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Sun-Yen Tan, Wen-Tzeng Huang

ISSN: 1109-2734 319 Issue 5, Volume 9, May 2010

while (RESET= '0') loop Qrin := '0'; Qaout := '0'; Sro := '0';

ROUT <= sro; AIN <='0';

end loop;

while (Rin = Qrin) loop end loop; Qrin := Rin;

if a > "00101" then b := a - "00010"; else b := a + "00011";

end if;

E <= b; AIN <= RIN; sro := not sro; Rout <= sro;

while (Aout = Qaout) loop end loop; Qaout := Aout;

A different synthesis procedure is applied to

generate the circuits. Therefore, checking whether the

loop statement contains handshaking controls is

required before the circuit synthesis. In this case only

the computation part of the description is required to

convert into circuits and then a suitable control circuit

is added. In the previous paper we discussed the

blocksorter [22]. In the blocksorter [3] example a

computation loop contains handshaking controls. A

2-phase blocksorter can be described as follows:

while (RESET = '0') loop

 Qrin := '0'; Qaout := '0'; Sro := '0';

 ROUT <= sro; AIN <='0';

end loop;

while (Rin = Qrin) loop end loop; Qrin := Rin;

y := a; w := "00101";

AIN <= RIN;

while (w >= "00001") loop

 while (Rin = Qrin) loop end loop; Qrin := Rin;

 x := a; AIN <= RIN;

 if x > y then b := y; else b := x; end if; E <= b;

 sro := not sro; Rout <= sro;

 if x > y then y := x; else y := y; end if;

 while (Aout = Qaout) loop end loop;

Qaout := Aout;

 w := w - "00001";

end loop;

b := y; E <= b;

sro := not sro; Rout <= sro;

while (Aout=Qaout) loop end loop; Qaout := Aout;

To get a correct simulation the description

contains some handshaking control loop and initial

assignments. However, this causes the synthesis work

to be more difficult. If the reset loop, the handshaking

control loop and initial assignments are put into

procedures there is no effect on the simulation. But it

is easier to remove these procedures and to convert

the description into the circuits. The previous

blocksorter description can be re-written as follows:

ENTITY blocksort1 IS

 PORT (RIN, AOUT : IN MVL;

AIN, ROUT : OUT MVL;

 A : IN MVL_VECTOR (4 DOWNTO 0);

 E : OUT MVL_VECTOR (4 DOWNTO 0);

 RESET : IN MVL);

END blocksort1;

architecture BEHAVIORAL of blocksort1 is

begin

 U1: process

 variable Qrin, Qaout : MVL;

 variable sro : MVL;

 variable X,Y,B,W:MVL_VECTOR (4 DOWNTO 0);

PROCEDURE req_in (Qrin: INOUT MVL) IS

 BEGIN while (Rin = Qrin) loop wait for 1 ns;

end loop; Qrin := Rin; END req_in;

PROCEDURE req_out (sro: INOUT MVL) IS

 BEGIN sro := not sro; Rout <= sro; END req_out;

PROCEDURE ack_out (Qaout: INOUT MVL) IS

 BEGIN while (Aout = Qaout) loop wait for 1 ns;

 end loop; Qaout := Aout; END ack_out;

PROCEDURE ack_in IS

 BEGIN AIN <= RIN; END ack_in;

PROCEDURE reset_q (Qrin, Qaout, sro: INOUT MVL) IS

 BEGIN while (RESET = '0') loop wait for 1 ns;

 Qrin := '0'; Qaout := '0'; sro := '0'; wait for 1 ns;

 ROUT <= sro; AIN <='0'; end loop; END reset_q;

begin

 wait for 1 ns; reset_q(Qrin, Qaout, sro); wait for 1 ns;

 req_in(Qrin); y := a; w := "00101"; wait for 1 ns; ack_in;

 while (w >= "00001") loop

 wait for 1 ns; req_in(Qrin); x := a; wait for 1 ns; ack_in;

 if x > y then b := y; else b := x; end if;

 E <= b; wait for 1 ns; req_out(sro); wait for 1 ns;

 if x > y then y := x; else y := y; end if;

 ack_out(Qaout); w := w - "00001";

end loop;

 wait for 1 ns; b := y; E <= b; wait for 1 ns;

req_out(sro); ack_out(Qaout);

end process U1;

end BEHAVIORAL;

We may count the number of appearances of the

req_in, ack_in, req_out and ack_out signals in the

description. A req_in and an ack_in appear before the

while loop. A req_in, an ack_in, a req_out and an

ack_out appear inside the while loop. A req_out and

an ack_out appear after the while loop. The while

loop contains four handshaking signals. In the

previous simple while loop example the loop contains

no handshaking signal. The handshaking signal

number inside a while loop can be used to recognize

for generating different while loop circuits. The

handshaking signal numbers of the blocksorter

description are shown as follows:

req_in = 1

 y := a; w := "00101";

ack_in = 1

 while (w >= "00001") loop

req_in = 2

 x := a;

ack_in = 2

 if x > y then b := y; else b := x; end if;

 E <= b;

req_out = 1

 if x > y then y := x; else y := y; end if;

ack_out = 1

 w := w - "00001";

 end loop;

 b := y;

 E <= b;

req_out = 2

ack_out = 2

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Sun-Yen Tan, Wen-Tzeng Huang

ISSN: 1109-2734 320 Issue 5, Volume 9, May 2010

The synthesizer read the blocksorter behavioural

description and produced the structural VHDL files of

the circuit shown in Fig. 14. The synthesized 2-phase

blocksorter was simulated using the test program and

the correct result was obtained. 6-stage blocksorters

connected together were also simulated using the test

program and the expected results was obtained. A

4-phase blocksorter circuit is shown in Fig. 15.

“Return to zero” is required in the 4-phase

handshaking protocol. The circuit enclosed in the

dashed line and labelled M3 is used to ensure that the

latches which are connected to the control signal lt y

still hold data and that the signal connected to the

input labelled d of the Call module becomes logical

‘0’ when the output r of the Call module becomes

logical ‘0’. The latches will be clear when the signal

labelled CX becomes logical ‘1’ and wait for holding

the next data. The circuit enclosed in the dashed line

and labelled M1 is used to ensure that the control

signal connected to the input r1 of the Arbiter module

becomes logical ‘0’ when the signal labelled RX

becomes logical ‘1’. This ensures that the complete

cycle signal of the input d of the Call module is sent to

the output d1 and then the request of RX can be sent

into the Call module.

The circuit also ensures that the signal labelled

A1 stays logical ‘1’ if both signals labelled RX and

RA are logical ‘1’ or the output d1 of the Call module

is logical ‘1’. When the data is held and the output d2

of the Call module becomes logical ‘1’ it ensures that

Rin- goes through and the signal RA becomes logical

‘0’ as well as the signal labelled A1 becomes logical

‘0’. The circuit enclosed in the dashed line and

labelled M2 is used to ensure that the request of the

signal RX can be held until the corresponding

completion signal is received.

The circuits labelled M1 and M3 are required if

the simple latch control circuit is applied. The circuits

labelled M1, M2 and M3 are required if the

semi-decoupled control circuit is applied. The circuits

labelled M2 and M3 are required if the

fully-decoupled control circuit and the long-hold

control circuit are applied. The circuit enclosed in the

dashed line and labelled M4 is to produce the select

signal of the multiplexer at the front of the low active

transparent latch w. The signal sel w goes high when

the signal labelled A becomes high and it goes low

when the signal labelled B becomes high.

Table 1 shows the number of the transistors and

the run time of the 120 sets of data, the throughput, the

latency and the energy of the synthesized blocksorter

circuit. Table 2 shows the number of the transistors

and the run time of the 120 sets of data, the throughput

and the latency of the 6-stage synthesized blocksorter

circuits were connected in series.

Table 1. The performance of the synthesized blocksorter.

7 Experimental results
A blocksorter was used to test the synthesizer. The

properties of these synthesized circuits are shown in

Tables 1 and 2. 120 sets of test data were sent to the

synthesized blocksorter for the Leapfrog simulation.

Rout of the blocksorter is connected to the Aout input

directly. A new request was sent to the blocksorter

when the test program received a transition from the

Ain output.

Table 2. The performance of the 6-stage synthesized

blocksorters.

The run time is the time difference between the

request-out signal of the 120th data on Rout and the

request-in signal of the first data on Rin. The energy

information was obtained from PowerMill simulation

for twelve sets of test data. As shown in Figures 16, 17

and 18 the 2-phase blocksorter is the fastest and its

power consumption is the lowest.

The 2-phase blocksorter also has high

throughput and high latency. But the cost is high. The

blocksorter using the 4-phase simple latch control

circuit has a small number of transistors. Therefore,

its power consumption is low. The blocksorter using

the 4-phase fully decoupled latch control circuit is the

fastest of the different 4-phase circuits. It also has low

latency.

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Sun-Yen Tan, Wen-Tzeng Huang

ISSN: 1109-2734 321 Issue 5, Volume 9, May 2010

Fig. 14. The synthesized 2-phase Blocksorter.

This means that the time between the request-in

signal on Rin and the request-out signal on Rout is

short. However, a waiting time is required in

asynchronous design if the circuit is busy. The

blocksorter using the 4-phase semi-decoupled control

circuit does not have good performance here. The

only advantage of the blocksorter using the 4-phase

long hold control circuit is that it is fast.

Fig. 15.The synthesized 4-phase Blocksorter.

150 sets of test data were sent to the synthesized

floating point adder/subtractor for the Leapfrog

simulation. Rout of the floating point

adder/subtractor is connected to the Aout input

directly. A new request was sent to the floating point

adder/subtractor when the test program received a

transition from the Ain output. The run time is the

time difference between the request-out signal of the

150th data on Rout and the request-in signal of the

first data on Rin. The energy information was

obtained from PowerMill simulation for fifteen sets of

test data.

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Sun-Yen Tan, Wen-Tzeng Huang

ISSN: 1109-2734 322 Issue 5, Volume 9, May 2010

Circuit 2-phase
4-p

simple

4-p

semi

4-p

fully

4-p

long

Energy 10.78 12.13 14.23 14.72 13.65

Fig. 16. The performance of the synthesized

blocksorter circuits.

Fig. 17. The run time and the transistor number of the

synthesized blocksorter circuits.

The fast circuit is the 2-phase implementation. The

two-phase circuit also has high throughput, high

latency and low power consumption. For this circuit

the 2-phase design is not especially expensive, unlike

the blocksorter. The floating point adder/subtractor

using the 4-phase simple latch control circuit is the

cheapest and has low latency.

The 4-phase semi-decoupled circuit is slowest and has

low throughput. Again the 4-phase fully decoupled

circuit is the fastest of the different 4-phase circuits. It

also has high throughput. The 4-phase long hold

circuit has high cost.

Fig. 18. The throughput and latency of the synthesized
blocksorter circuits.

8 Conclusion
This paper has presented some engineering work on

developing a micropipeline blocksorter. In order to

synthesize correct circuits the input description must

be correct first. The simulation mechanism of VHDL

is able to assist in the discovery of potential design

errors at an early stage. Though the nature of the work

is mainly engineering, there are some significant new

insights gained in the course of the work.

The experimental results show that the fastest

speed is 7.80 MHz and the lowest power consumption

is 10.78 fj for the 2-phase synthesized Blocksorter.

Blocksorter using the 4-phase simple latch control

circuit has the lowest the transistor count.

The 2-phase circuits have good performance in

speed. This is due to the rising and falling transitions

of the 4-phase circuits following the same routes.

Asymmetric delays with fast reset circuit can be

applied to improve the performance.

A difficult engineering problem with the

synthesis method presented in this paper is the

insertion of delays in the control path. In some cases

the delay may reduce the performance of the circuits.

For example, the 4-phase fully decoupled circuits

have high speed performance, but if unsuitable delay

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Sun-Yen Tan, Wen-Tzeng Huang

ISSN: 1109-2734 323 Issue 5, Volume 9, May 2010

is added on the control path the performance of the

circuits becomes poor. A dual-rail technique could be

added as an option in the data path implementation to

synthesize fully delay-insensitive pipelines, thereby

avoiding this problem.

References:
[1] Furber, S. B., Day, P., Garside, J.D., Paver, N.C.

and Woods, J.V., “A Micropipelined ARM”, 1993

International Conference on VLSI, Grenoble,

France, September 6-10, 1993.

[2] Furber, S.B., Day, P., Garside, J.D., Paver, N.C.

and Temple, S., “AMULET2e”, EMSYS'96 -

OMI Sixth Annual Conference, Berlin, 23-25

September 1993, IOS Press ISBN 90 5199 300 5.

[3] van Berkel, K., Handshake Circuits -- An

Asynchronous Architecture for VLSI

programming, 1993, Cambridge Univ. Press.

[4] Inmos, Occam Programming Manual, 1983.

[5] Hoare, C. A. R., “Communicating Sequential

Processes”, Prentice-Hall, 1985.

[6] Tan, S.-Y., Furber, S.B., Yen, W.-F., “The Design

of an Asynchronous VHDL Synthesizer”,

Proceedings of the Design, Automation and Test

in Europe Conference 1998 (DATE98), Paris, Feb.

1998, pp. 44-51.

[7] Hoare, C. A. R., “Communicating Sequential

Processes”, Communications of the ACM", Vol.

21, No. 8, August 1978, pp. 666-677.

[8] Peterson, J. L., “Petri Nets”, Computing Surveys",

Vol. 9, No. 3, September 1977, pp. 223-253.

[9] Chu, T. A., “Synthesis of Self-timed VLSI

Circuits from Graph-Theoretic Specifications”,

PhD Thesis, MIT/LCS/TR-393, MIT Laboratory

for Computer Science, June 1987.

[10] Josephs, M. B., Udding, J. T., “Delay-Insensitive

Circuits: An Algebraic Approach to their Design”,

Lecture Notes in Computer Science, edited by J. C.

M. Baeten and J. W. Klop, Vol. 458,

Springer-Verlag, August 1990, pp. 342-366.

[11] Furber, S.B., and and Liu, J., “Dynamic Logic in

Four-Phase Micropipelines”, Async'96,

Aizu-Wakamatsu, Japan, Mar 18-21 1996.

[12] Furber, S.B., Garside, J.D., Temple, S., Liu, J.,

Day, P., and Paver, N.C., “AMULET2e: An

Asynchronous Embedded Controller”, Proc. of

Async '97, Apr. 1997, pp. 290-299.

[13] Furber, S.B., Day, P., “Four-Phase Micropipeline

Latch Control Circuits”, IEEE Trans. on VLSI

Systems, vol. 4 no. 2, Jun. 1996 pp. 247-253.

[14] Sacker, M., Brown, A.D., Rushton, A.J., Wilson,

P.R., “A Behavioral Synthesis System for

Asynchronous Circuits”, IEEE Trans. on VLSI

Systems, vol. 12 no. 9, Sep. 2004, pp. 978-994.

[15] Furber, S.B., “An Introduction to Asynchronous

Design: The Return of Asynchronous Logic”,

Department of Computer Science, University of

Manchester, UK, 1995.

[16] Furber, S.B., “Computing without Clocks:

Micropipelining the ARM Processor”, in

“Asynchronous Digital Circuit Design” edited by

G. Birtwistle and A. Davis, Springer Verlag,

pp.211-262.

[17] Sutherland, I. E., “Micropipelines", The

1988 Turing Award Lecture, Communications of

the ACM, Vol. 32, No. 6, January 1989, pp.

720-738.

[18] Endecott, P.B. and Furber, S.B., “Modelling and

Simulation of Asynchronous Systems using the

LARD Hardware Description Language”,

Proceedings of the 12th European Simulation

Multiconference, Manchester, June 1998, pp.

39-43.

[19] Barringer, H. and Fellows, D., Gough, G.,

Williams, A., “Abstract Modelling of

Asynchronous Micropipeline Systems using

Rainbow”, International Conference on Hardware

Description Languages and their Applications,

edited by C. D. Kloos and E. Cerny, IFIP, 20-25

April 1997, Spain, pp. 285-304.

[20] Bardsley, A. and Edwards, D., “Compiling the

language Balsa to Delay Insensitive Hardware”,

International Conference on Hardware

Description Languages and their Applications,

edited by C. D. Kloos and E. Cerny, IFIP, 20-25

April 1997, Spain, pp. 89-91.

[21] Bardsley, A., “Implementing Balsa Handshake

Circuits", PhD Thesis, Dept. of Computer Science,

University of Manchester, 2000.

[22] S.-Y. Tan, W.-T. Huang, “The Design of an

Asynchronous Blocksorter”, VLSI and Signal

Processing (ICNVS '10), Feb. 2010, pp.73-78.

[23] J. Carlsson, K. Palmkvist, and L. Wanhammar,

“Synchronous Design Flow for Globally

Asynchronous Locally Synchronous Systems”,

Proceedings of the 10th WSEAS International

Conference on CIRCUITS, Vouliagmeni, Athens,

Greece, July 10-12, 2006, pp. 64-69.

[24]A. N. Ismailoglu, M. Askar, “Verification of

Delay Insensitivity in Bit-Level Pipelined

Dual-Rail Threshold Logic Adders”, 7th WSEAS

Int. Conf. on Electronics, Hardware, Wireless and

Optical Communications, Cambridge, UK,

February 20-22, 2008

[25]A.Vasilescu, “Algebraic model for the

intercommunicating hardware components

behaviour”, 12th WSEAS International

Conference on COMPUTERS, Heraklion,

Greece, July 23-25, 2008, pp. 241-246.

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Sun-Yen Tan, Wen-Tzeng Huang

ISSN: 1109-2734 324 Issue 5, Volume 9, May 2010

