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Abstract: - The asynchronous circuit style is based on micropipelines, a style used to develop asynchronous 

microprocessors at Manchester University. This paper has presented some engineering work on developing a 

micropipeline blocksorter. The work presented in this paper demonstrates that VHDL can be used to describe the 

behaviour of micropipelined systems. It also shows a comparison of 2-phase and 4-phase implementations in 

transistor count, speed, and energy. Though the nature of the work is mainly engineering, there are some 

significant new insights gained in the course of the work. In summary, a design environment for asynchronous 

circuits has been established based upon the micropipeline style and VHDL, a standard hardware description 

language. 
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1 Introduction 
Asynchronous design has potential advantages over 

synchronous design [23][24][25], such as no clock 

skew problem, low power, average case performance 

and good Electro-Magnetic Compatibility (EMC). 

The benefits may be most apparent in mobile 

communication applications and other portable 

systems which use advanced VLSI technologies. The 

design of asynchronous circuits is more difficult than 

that of synchronous circuits. Hazards must be 

removed from the circuits to ensure that there are no 

unexpected transitions. Well structured asynchronous 

design styles such as micropipelines reduce the 

difficulty. Event-driven logic modules may be 

designed by electronic experts. Then designers with 

less experience can easily build micropipelined 

circuits using such modules. An automatic synthesis 

tool is available [6]. It converts the behavioural 

VHDL into structural VHDL and Verilog based on 

micropipelines had been published [6]. 2-phase and 

4-phase VHDL models of event-drive logic modules 

and standard logic function elements were created. 

In this paper we demonstrate the design of an 

asynchronous blocksorter using the sytnthesizer and 

evaluate the experimental results. 

Section 2 introduces some asynchronous logic 

techniques. Section 3 describes the synthesis flow 

which is used by the synthesizer. Section 4 introduces 

4-phase event-driven Logic modules and 4-phase 

control circuits. Examples of the “while loop” control 

circuits is given in Section 5. The blocksorter design 

will be presented in Section 6. Section 7 will present 

experimental results. Finally, Section 8 will give a 

short conclusion and suggestions for further research. 

 

2 Asynchronous logic 
Asynchronous design does not have a clock to govern 

the timing of state changes. Storage components for 

holding internal states and data within asynchronous 

systems work at different times depending on the 

preceding and successor circuits. For reliable 

operation, an asynchronous circuit must be free from 

critical races and unstable states and liveness 

checking must be undertaken. If a system contains n 

storage elements there are 2
 n
 possible states. One 

approach is to arrange that all storage elements work 

together to capture data at the same time. Such a 

system could have a central clock and storage 

elements that capture internal state signals and data on 

the rising edge of the clock, the new states being 

derived from combinational logical circuits that read 

the old state and inputs. Furber gave a more clear 

definition and relation between asynchronous and 

synchronous designs as follows:  
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It is a common misconception to view 

asynchronous design as a single alternative 

to synchronous design. It is more accurate 

to view synchronousdesign as a special 

case representing a single point in a 

multi-dimensional asynchronous design 

space [15]. 
 

Asynchronous logic circuits have several important 

advantages over their counterparts in clocked logic. 

An asynchronous logic function is potentially faster 

because it works at the average-case delay rather than 

the worst-case delay. There is no global clock on 

asynchronous circuits so they will not unnecessarily 

dissipate power when there is no useful work to do. 

Asynchronous logic has the potential for low power 

[16]. Asynchronous logic may be used to implement 

systems with lower power dissipation. 

 

The design of asynchronous circuits generally 

follows a modular approach, where a system is 

designed as an interconnection of modules. In the 

1988 Turing Award Lecture, Sutherland expounded a 

modular approach to building hardware systems 

based on data-driven asynchronous self-timed logic 

elements called micropipelines [17].  

 

 
 

Fig. 1. A block diagram of a synthesiser. 

 

3   The synthesis 
Fig. 1 shows a block diagram of a synthesiser. A 

synthesizer performs translations or compilations 

from specifications into the implementations of 

circuits.The specification describes the computation 

function of synthesized circuits. The libraries contain 

the standard gates and modules which are used to 

construct the synthesized circuits by the synthesizer. 

The specification may be denoted by languages, 

graphics or mathematics. Language based CSP [5][7] 

and Occam [4], graphic based Petri nets [8] and STGs 

[9], and mathematic based FSMs and Algebras [10] 

have been used previously for synthesizing 

asynchronous circuits. An alternative, IEEE standard 

language, VHDL [14], is used for the specifications in 

this work. 

The creation of component libraries is another key 

issue for synthesis. The libraries used here contain 

VHDL models and various views of 2-phase and 

4-phase modules and standard gates which were 

created either for this research or were used to 

develop AMULET1 [1] and AMULET2e [2]. 

Structural VHDL and Verilog are chosen to be the 

output of the synthesizer. 

The synthesis procedure begins by partitioning 

descriptions into several pipeline stages, the number 

depending on the concurrency and other properties of 

the description. Then we produce the circuits for each 

stage. Appropriate control circuits are automatically 

added into the stages. Finally, we produce the 

interconnections between the stages. 

 

 
Fig. 2. Design flow. 

 

Design flow 

 
Fig. 2. shows a potential design flow. The designs 

are described in behavioural VHDL descriptions. This 

VHDL descriptions may be simulated using a VHDL 

simulator (Leapfrog). Then the descriptions can be  

synthesized into two-phase and four-phase VHDL 

structural models and Verilog structural models 

respectively. The structural VHDL models may also 

be simulated using a VHDL simulator. The simulation 

results may be compared with the previous 

behavioural simulation results to verify the 

implementation against its specification. 

Fig. 3 shows the interface between the synthesizer 

and other tools, LARD [18], Yellow [19] and Balsa 

[20[21]. The design may be also described and 

simulated in LARD. The simulation results may be 

compared with the VHDL results to check the 

correctness of the input descriptions and the output 

implementation. 
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Fig. 3. Interfacing to other asynchronous description 

languages. 

 

 

4   Four-phase Micropipelines 
A “four-phase bundled data convention” is a 

communication system where a 4-phase handshaking 

protocol is used and an arbitrary number of data wires 

are treated as a bundle together with the request signal 

wire. In the 4-phase handshaking protocol, only rising 

transitions or only falling transitions of either control 

wire have the meaning; they represent request events 

or acknowledge events. In this signalling scheme, the 

operating cycle is (1) data available (2) change 

request to active state, (3) change acknowledge to 

active state, (4) return request to inactive state, and (5) 

return acknowledge to inactive state. If the active state 

is logic “1” the the operating cycle is (1) data 

available (2) request+, (3) acknowledge+, (4) 

request-, and (5)  acknowledge-. 

The data signals can use a traditional data 

representation which is similar to that used in 

synchronous circuits, such as the 8-4-2-1 code ... etc. 

Fig. 4 illustrates two kinds of four phase signalling, 

the ‘early’ mode and the ‘broad’ mode [11]. The 

‘early’ mode (Fig. 4(a)) uses the rising edge of the 

Request line to indicate ‘data available’ and the 

rising edge of the Acknowledge line to indicate ‘data 

latched’. The falling edges are return to zero actions 

that carry no meaning. The ‘broad’ mode (Fig. 4(b)) 

uses the rising edge of the Request line to indicate 

‘data available’ and the falling edge of the 

Acknowledge line to indicate ‘data latched’. Another 

possible protocol is ‘late’ mode which uses the falling 

edges as active. 

Various event-driven logic modules for 

controlling transition signals are shown in Fig. 5. 

They were devised for composing to 2-phase control 

circuits. Muller C-elements and XOR gates are the 

same whether they are used in 2- or 4-phase designs. 

However, 4-phase Toggle, Select, Call and Arbiter 

modules are different from their 2-phase counterparts. 
A Toggle is used to alternately deliver events on its 

input to one of two outputs. In the 2-phase protocol 

each transition denotes an event. Therefore, the odd 

number transitions on the input of a Toggle will be 

sent to the dotted output and the even number 

transitions on the input of a Toggle will be sent to the 

non-dotted output. In the 4-phase protocol each event 

consists of a rising transition and a falling transition. 

A rising transition and the following falling transition 

must be sent to the same output. Therefore, the odd 

number rising and falling transitions on the input of a 

Toggle will be sent to the dotted output and the even 

number rising and falling transitions on the input of a 

Toggle will be sent to the non-dotted output. 

 

 

 
 

Fig. 4. 4-phase bundled data convention 

 

 

 
 

Fig. 5. Various event-driven logic modules. 
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AMULET1 was implemented using a 2-phase 

micropipeline design style. However, AMULET2 and 

AMULET2e [2][12] use a 4-phase micropipeline 

design style to improve their performance. Furber and 

Day developed four kinds of 4-phase latch control 

circuits. They are the simple, semi-decoupled, fully 

decoupled and long hold 4-phase latch control circuits 

[13]. They use the 4-phase bundled data convention. 

 

 
 

Fig. 6. Asymmetric C-gate notation. 

 

 

The asymmetric C-gate notation shown in Fig. 6 

indicates that an input controls both edges of the 

output when it is connected to the main body of the 

gate; it controls only the rising edge when connected 

to the extension marked ‘+’, and it controls only the 

falling edge when connected to the extension marked 

‘-’.  

As shown in Fig. 7 Rin+ must wait for Aout- and 

Rin- must wait for Aout+ to proceed to lt+ and  lt- 

when the simple 4-phase latch control circuit is used, 

this may lead to poor performance. However, the cost 

is very low. 

 

 
 

Fig. 7. A simple 4-phase latch control circuit. 

 

 

The semi-decoupled and fully decoupled latch 

control circuits may be employed to solve this 

problem. In the semi-decoupled latch control circuit 

(see Fig. 8) Rin+ does not need to wait for Aout- and 

can proceed to lt+ after Rout-. But Rin- still needs to 

wait for  Aout+ to proceed to lt-. The fully decoupled 

latch control circuit (see Fig. 10) is much faster than 

simple and semi-decoupled control circuits. When it 

is used Rin+ can proceed to lt+ after Rout- and Rin- 

can through to Ain- after Ain+ shortly. For some 

applications, it may be necessary that the latch holds 

the data stable until Aout goes low. The long hold 

4-phase control circuit shown in Fig. 10 can serve this 

purpose. 

 
 

Fig. 8. A semi-decoupled 4-phase control circuit . 

 

 

 
 

Fig. 9. A fully decoupled 4-phase control circuit. 

 

 

 
 

Fig. 10. A long hold 4-phase control circuit. 
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5  while loop examples 

 
Fig. 11 shows the schematic of the output of the 

synthesizer for the following input description. 

 

        y := a; w := "00101"; 

        while ( w >= "00001" )  loop 

              y := y + "00001";   

w := w - "00001"; 

        end loop; 

        e <= y; 
 

 
 

Fig. 11. A schematic for a while loop example. 

 
 

Fig. 12 shows a 4-phase while loop control circuit 

which can perform the following loop operation. The 

circuit continuously performs the loop operation if the 

greater output of the comparator remains true. 

 

w = A; 

while ( w > "00101" ) loop 

w = w - "00001"; 

end loop; 

 

 

In the 4-phase handshaking protocol the request 

and acknowledge signals will return to their inactive 

state to start a new cycle. Activating the reset of 

related components is a simple and fast way to deliver 

a falling transition from the request input to the 

request output. Fig. 13 shows a 4-phase while loop 

control circuit where the reset is activated if the Rin is 

Low and the Aout is High. The circuit can also 

perform the same loop operation as shown in Fig. 12. 

It will terminate the loop operation if the ‘equal’ 

output of the comparator becomes true. The number 

of the inverters between the output of the asymmetric 

C-gate and the junction p1 must be odd. 

 

 

 
 

Fig. 12. A 4-phase while loop control circuit. 

 

 

 
 
Fig. 13. Another 4-phase while loop control circuit. 

 

 

6  The blocksorter 
The following description shows a simple 

handshaking control with a simple computation. 

When the Reset signal is logic ‘0’ it is in a reset loop 

to clear the AIN and Rout signals. While the Reset 

signal is logic ‘1’ the operating cycle is (1) waiting for 

an Rin transition; (2) computing; (3) sending AIN and 

Rout signals; (4) waiting for an Aout transition. 
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while ( RESET= '0' ) loop Qrin := '0'; Qaout := '0'; Sro := '0';  

ROUT <= sro;  AIN <='0'; 

end loop; 

while ( Rin = Qrin ) loop  end loop;  Qrin := Rin; 

if a > "00101" then   b := a - "00010";  else  b := a + "00011"; 

end if; 

E <= b; AIN <= RIN; sro := not sro;  Rout <= sro; 

while ( Aout = Qaout ) loop  end loop;  Qaout := Aout; 

 

 

A different synthesis procedure is applied to 

generate the circuits. Therefore, checking whether the 

loop statement contains handshaking controls is 

required before the circuit synthesis. In this case only 

the computation part of the description is required to 

convert into circuits and then a suitable control circuit 

is added. In the previous paper we discussed the 

blocksorter [22]. In the blocksorter [3] example a 

computation loop contains handshaking controls. A 

2-phase blocksorter can be described as follows: 

 
while ( RESET = '0' ) loop 

        Qrin := '0';  Qaout := '0';   Sro := '0'; 

        ROUT <= sro;  AIN <='0';   

end loop; 

while ( Rin = Qrin ) loop   end loop;   Qrin := Rin; 

y := a;    w := "00101"; 

AIN <= RIN; 

while ( w >= "00001" ) loop 

        while ( Rin = Qrin ) loop end loop;  Qrin := Rin; 

        x := a;   AIN <= RIN; 

        if x > y then  b := y;  else  b := x;  end if;   E <= b; 

        sro := not sro;   Rout <= sro; 

      if x > y then  y := x;  else  y := y;  end if; 

        while ( Aout = Qaout ) loop  end loop;   

Qaout := Aout;  

        w := w - "00001"; 

end loop; 

b := y;   E <= b; 

sro := not sro;  Rout <= sro; 

while ( Aout=Qaout ) loop end loop; Qaout := Aout; 

 

To get a correct simulation the description 

contains some handshaking control loop and initial 

assignments. However, this causes the synthesis work 

to be more difficult. If the reset loop, the handshaking 

control loop and initial assignments are put into 

procedures there is no effect on the simulation. But it 

is easier to remove these procedures and to convert 

the description into the circuits. The previous 

blocksorter description can be re-written as follows: 
 

ENTITY blocksort1 IS  

   PORT ( RIN, AOUT : IN  MVL;   

AIN, ROUT : OUT  MVL; 

          A : IN MVL_VECTOR ( 4 DOWNTO 0 ); 

          E : OUT MVL_VECTOR ( 4 DOWNTO 0 ); 

          RESET : IN MVL );  

END blocksort1; 

architecture BEHAVIORAL of blocksort1 is 

begin 

 U1: process  

   variable Qrin, Qaout : MVL; 

   variable sro : MVL;  

   variable X,Y,B,W:MVL_VECTOR (4 DOWNTO 0); 

PROCEDURE  req_in (Qrin: INOUT MVL) IS 

    BEGIN  while ( Rin = Qrin ) loop wait for 1 ns;  

end loop;   Qrin := Rin;   END req_in; 

PROCEDURE  req_out (sro: INOUT MVL) IS 

    BEGIN  sro := not sro;   Rout <= sro;   END req_out; 

PROCEDURE  ack_out (Qaout: INOUT MVL) IS 

    BEGIN  while ( Aout = Qaout ) loop   wait for 1 ns; 

    end loop;   Qaout := Aout;  END ack_out; 

PROCEDURE  ack_in IS 

    BEGIN  AIN <= RIN;  END ack_in; 

PROCEDURE  reset_q (Qrin, Qaout, sro: INOUT MVL) IS 

    BEGIN  while ( RESET = '0' ) loop   wait for 1 ns; 

        Qrin := '0';  Qaout := '0';  sro := '0';   wait for 1 ns; 

        ROUT <= sro;   AIN <='0';     end loop;   END reset_q; 

begin 

   wait for 1 ns;   reset_q(Qrin, Qaout, sro);    wait for 1 ns; 

   req_in(Qrin);  y := a;  w := "00101";  wait for 1 ns;   ack_in; 

   while ( w >= "00001" ) loop 

     wait for 1 ns;  req_in(Qrin);  x := a;  wait for 1 ns;  ack_in; 

     if x > y then  b := y;  else  b := x;  end if; 

     E <= b;   wait for 1 ns;  req_out(sro);   wait for 1 ns; 

     if x > y then  y := x;   else   y := y;   end if; 

   ack_out(Qaout);   w := w - "00001"; 

end loop; 

  wait for 1 ns;   b := y;  E <= b;  wait for 1 ns;   

req_out(sro);    ack_out(Qaout); 

end process U1; 

end BEHAVIORAL; 

 

We may count the number of appearances of the 

req_in, ack_in, req_out and ack_out signals in the 

description. A req_in and an ack_in appear before the 

while loop. A req_in, an ack_in, a req_out and an 

ack_out appear inside the while loop. A req_out and 

an ack_out appear after the while loop. The while 

loop contains four handshaking signals. In the 

previous simple while loop example the loop contains 

no handshaking signal. The handshaking signal 

number inside a while loop can be used to recognize 

for generating different while loop circuits. The 

handshaking signal numbers of the blocksorter 

description are shown as follows: 

 
req_in = 1  

             y := a;      w := "00101"; 

ack_in = 1 

             while ( w >= "00001" ) loop 

req_in = 2 

                 x := a; 

ack_in = 2 

                 if x > y then  b := y;  else  b := x;  end if; 

                 E <= b; 

req_out = 1 

                 if x > y then  y := x;  else   y := y;  end if; 

ack_out = 1 

                 w := w - "00001"; 

             end loop; 

             b := y; 

             E <= b; 

req_out = 2 

ack_out = 2 
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The synthesizer read the blocksorter behavioural 

description and produced the structural VHDL files of 

the circuit shown in Fig. 14. The synthesized 2-phase 

blocksorter was simulated using the test program and 

the correct result was obtained. 6-stage blocksorters 

connected together were also simulated using the test 

program and the expected results was obtained. A 

4-phase blocksorter circuit is shown in Fig. 15. 

“Return to zero” is required in the 4-phase 

handshaking protocol. The circuit enclosed in the 

dashed line and labelled M3 is used to ensure that the 

latches which are connected to the control signal lt y 

still hold data and that the signal connected to the 

input labelled d of the Call module becomes logical 

‘0’ when the output r of the Call module becomes 

logical ‘0’. The latches will be clear when the signal 

labelled CX becomes logical ‘1’ and wait for holding 

the next data. The circuit enclosed in the dashed line 

and labelled M1 is used to ensure that the control 

signal connected to the input r1 of the Arbiter module 

becomes logical ‘0’ when the signal labelled RX 

becomes logical ‘1’. This ensures that the complete 

cycle signal of the input d of the Call module is sent to 

the output d1 and then the request of RX can be sent 

into the Call module.  

 

The circuit also ensures that the signal labelled 

A1 stays logical ‘1’ if both signals labelled RX and 

RA are logical ‘1’ or the output d1 of the Call module 

is logical ‘1’. When the data is held and the output d2 

of the Call module becomes logical ‘1’ it ensures that 

Rin- goes through and the signal RA becomes logical 

‘0’ as well as the signal labelled A1 becomes logical 

‘0’. The circuit enclosed in the dashed line and 

labelled M2 is used to ensure that the request of the 

signal RX can be held until the corresponding 

completion signal is received.  

 

The circuits labelled M1 and M3 are required if 

the simple latch control circuit is applied. The circuits 

labelled M1, M2 and M3 are required if the 

semi-decoupled control circuit is applied. The circuits 

labelled M2 and M3 are required if the 

fully-decoupled control circuit and the long-hold 

control circuit are applied. The circuit enclosed in the 

dashed line and labelled M4 is to produce the select 

signal of the multiplexer at the front of the low active 

transparent latch w. The signal sel w goes high when 

the signal labelled A becomes high and it goes low 

when the signal labelled B becomes high.  

 

Table 1 shows the number of the transistors and 

the run time of the 120 sets of data, the throughput, the 

latency and the energy of the synthesized blocksorter 

circuit. Table 2 shows the number of the transistors 

and the run time of the 120 sets of data, the throughput 

and the latency of the 6-stage synthesized blocksorter 

circuits were connected in series. 

 

 

Table 1. The performance of the synthesized blocksorter. 

 
 

 

7 Experimental results 
A blocksorter was used to test the synthesizer. The 

properties of these synthesized circuits are shown in 

Tables 1 and 2. 120 sets of test data were sent to the 

synthesized blocksorter for the Leapfrog simulation. 

Rout of the blocksorter is connected to the Aout input 

directly. A new request was sent to the blocksorter 

when the test program received a transition from the 

Ain output. 

 

 
Table 2. The performance of the 6-stage synthesized 

blocksorters. 

 
 

 

The run time is the time difference between the 

request-out signal of the 120th data on Rout and the 

request-in signal of the first data on Rin. The energy 

information was obtained from PowerMill simulation 

for twelve sets of test data. As shown in Figures 16, 17 

and 18 the 2-phase blocksorter is the fastest and its 

power consumption is the lowest. 

 

The 2-phase blocksorter also has high 

throughput and high latency. But the cost is high. The 

blocksorter using the 4-phase simple latch control 

circuit has a small number of transistors. Therefore, 

its power consumption is low. The blocksorter using 

the 4-phase fully decoupled latch control circuit is the 

fastest of the different 4-phase circuits. It also has low 

latency. 
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Fig. 14. The synthesized 2-phase Blocksorter. 

 
 

This means that the time between the request-in 

signal on Rin and the request-out signal on Rout is 

short.  However, a waiting time is required in 

asynchronous design if the circuit is busy. The 

blocksorter using the 4-phase semi-decoupled control 

circuit does not have good performance here. The 

only advantage of the blocksorter using the 4-phase 

long hold control circuit is that it is fast. 

 
 

Fig. 15.The synthesized 4-phase Blocksorter. 

 

 

150 sets of test data were sent to the synthesized 

floating point adder/subtractor for the Leapfrog 

simulation. Rout of the floating point 

adder/subtractor is connected to the Aout input 

directly. A new request was sent to the floating point 

adder/subtractor when the test program received a 

transition from the Ain output. The run time is the 

time difference between the request-out signal of the 

150th data on Rout and the request-in signal of the 

first data  on Rin. The energy information was 

obtained from PowerMill simulation for fifteen sets of 

test data.  
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Circuit 2-phase 
4-p 

simple 

4-p 

semi 

4-p 

fully 

4-p 

long 

Energy 10.78 12.13 14.23 14.72 13.65 

 

 

Fig. 16. The performance of the synthesized 

blocksorter circuits. 

 

 

Fig. 17. The run time and the transistor number of the 

synthesized blocksorter circuits. 

 

 

The fast circuit is the 2-phase implementation. The 

two-phase circuit also has high throughput, high 

latency and low power consumption. For this circuit 

the 2-phase design is not especially expensive, unlike 

the blocksorter. The floating point adder/subtractor 

using the 4-phase simple latch control circuit is the 

cheapest and has low latency.  

 

The 4-phase semi-decoupled circuit is slowest and has 

low throughput. Again the 4-phase fully decoupled 

circuit is the fastest of the different 4-phase circuits. It 

also has high throughput. The 4-phase long hold 

circuit has high cost. 
 

 
Fig. 18. The throughput and latency of the synthesized 
blocksorter circuits. 

 

8 Conclusion 
This paper has presented some engineering work on 

developing a micropipeline blocksorter. In order to 

synthesize correct circuits the input description must 

be correct first. The simulation mechanism of VHDL 

is able to assist in the discovery of potential design 

errors at an early stage. Though the nature of the work 

is mainly engineering, there are some significant new 

insights gained in the course of the work.  

The experimental results show that the fastest 

speed is 7.80 MHz and the lowest power consumption 

is 10.78 fj for the 2-phase synthesized Blocksorter. 

Blocksorter using the 4-phase simple latch control 

circuit has the lowest the transistor count.  

The 2-phase circuits have good performance in 

speed. This is due to the rising and falling transitions 

of the 4-phase circuits following the same routes. 

Asymmetric delays with fast reset circuit can be 

applied to improve the performance.  

A difficult engineering problem with the 

synthesis method presented in this paper is the 

insertion of delays in the control path. In some cases 

the delay may reduce the performance of the circuits. 

For example, the 4-phase fully decoupled circuits 

have high speed performance, but if unsuitable delay 
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is added on the control path the performance of the 

circuits becomes poor. A dual-rail technique could be 

added as an option in the data path implementation to 

synthesize fully delay-insensitive pipelines, thereby 

avoiding this problem. 
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