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Abstract: Nowadays, parameters, characteristics and functionality of measurement devices basically depend on 
microprocessors software. Software used in measurement devices overtakes functions from a hardware part of the device. 
For example, data processing algorithms, control functions are implemented using software. Basically during verification 
of the device, just a hardware part of the device is verified. But software controls all the functions of the measurement 
device. Therefore, a method for metrological estimation of reliability of measurement devices software will be presented. 
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1. Introduction 
 

Most functions of a measurement device are 
controlled by a microcontroller and software thereof. 
Software clearly influences characteristics and 
functionality of measurement devices. During 
verification of the measurement device, just a hardware 
part of the device is tested. OIML recommendations or 
specific standards of measurement devices provide no 
information on measurement devices software 
verification methods or methodology. In this paper, a 
method for metrological estimation of reliability of 
measurement devices software will be presented. 

 
 

2. Problems of metrological estimation 
of measurement devices software 
 

Today, most functions of measurement devices are 
controlled by devices software. Therefore, analysis of 
influence made by measurement devices software faults 
on devices functionality shall be carried out. Errors of 
measurements devices functionality can be divided to the 
following: 

 Critical, i.e. measurement devices 
functionality is disturbed for an unknown period 
of time; 
 Minor, i.e. transient disorder of measurement 
devices functionality. 

All disorders of measurement devices are called 
by known factors, i.e. faults in a software code, 
simplified protection algorithm or others. In literature, 
the following sorts of faults are mentioned: 

 Coding faults; 
 Faults of measurements converters; 
 Inadmissible influences of a user; 
 Hardware faults. 

Software of measurement devices that measures 
the same object is different by means of its complexity. 

Complex software clearly can have considerably more faults 
compared to simple one. Therefore, measurement devices 
must be divided into groups by means of software 
complexity and functionality thereof. The groups can be 
described in the following way: 

 Measurement devices with software data 
processing; 
 Measurement devices with software control of 
measurement converters and data processing; 
 Measurement systems. 

Software faults influence metrological characteristics 
of the measurement device. The following characteristics 
may be distinguished: 

 Characteristics of the measurement result – 
measurement converters, stability of the 
measurement device, fault detection, etc.; 
 Characteristics of measurement precision – 
instrumental, random, method faults; 
 Dynamical characteristics of the measurement 
device. 

Not all characteristics are influenced by measurement 
devices software. The influenced ones are provided below: 

 Measurement faults – a wrong or incorrect 
measurement algorithm; 
 Stability of the measurement device; 
 Fault detection algorithm; 
 Detection algorithm of inadmissible influences 
through a user, communication interfaces. 

 After adoption of the Measurement Instruments 
Directive (MID) [1], measurement devices software 
verification is necessary. The Measurement Instruments 
Directive started in the early nineties, was approved in 
spring of 2004, and after transition period it became fully 
functional in autumn of 2006. The MID introduces a “new 
approach” to the measurement devices software and its 
verification. Due to MID birth, in 1997 WELMEC (Western 
European Legal Metrology Cooperation) formed the work 
group WELMEC-SOFTWARE [2]. The main work object 
of this group involved forming of essential MDS 
requirements. Some time later, PTB (Physikalich-
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Technische Bundesanstalt) formed another work group, 
i.e. MID-SOFTWARE, which detailed and concretized 
WELMEC requirements.  

On the basis of MID, WELMEC-SOFTWARE work 
group formed the essential MDS requirements and 
classified them into 5 groups: 

 
 Software design and structure; 
 Software protection; 
 Software conformity; 
 Software testability; 
 Documentation for type approval. 

 
For three of them (software protection, software 

confirmation, software testability), 3 requirements levels, 
i.e. High, Middle, Low were formed (Table 1). On the 
basis of WELMEC publications, MID-SOFTWARE 
group offered a new conception, i.e. risk classes (Table 
2). 
 
3. ALGORITHM IMPLEMENTATIONS FOR 
REALIZATION OF MEASUREMENTS DEVICES 
CHARACTERISTICS 
 

Basically, the software implemented in the 
measurement device is used for the following [3]: 

 Control of measurement converters, processing 
and storing of data thereof, 

 Control of measurement devices functionality. 
For data processing of devices measurement 

converters, data analysis and filter algorithms are often used. 
They can be implemented in a hardware part of device or in 
software. In a hardware part, algorithms are designed 
through application of classical solutions: data registers, 
multipliers, summators, etc. In a software part, algorithms 
are implemented through microprocessors firmware. For 
additional implementations of the algorithm, programmable 
hardware parts (DSP) are used. Before implementation of 
the algorithms, suitability of a hardware part of the 
measurement device must be analyzed. Basically, two forms 
of microprocessors in measurement device design can be 
used, i.e. fixed point and floating point arithmetic.  

The result of floating point summation or 
multiplication arithmetic can overrun, therefore, the register 
must be rounded or truncated. Such a solution at fixed point 
arithmetic can help using multiplication operation solely, 
whereas application of summation rounding or truncation of 
the result will not work. However, floating point arithmetic 
gives a better dynamic range and greater error of the result. 
These effects of microprocessors arithmetic must be 
estimated before implementation of a calculation algorithm. 

Most mathematical functions can be implemented using 
transcendental functions. For example, the FFT 
computations require generation of complex exponential 
sequences.  
 

Table 1 Levels of Measurement Instruments Software 

Category MID 
Annex* 

Risk of fraud Software 
protection level 

Software 
examination level 

Degree of 
Software 

Conformity 

Middle Middle Middle Middle Supply to the 
customer by mains 

MI-001, 
MI-002, 
MI-003, 
MI-004 

High High Middle Middle 

Middle Middle Middle Low Commercial 
transactions and 
services 

MI-005, 
MI-006, 
MI-007, 
MI-009 

High High Middle Middle 

Environment safety, 
health 

MI-010 Middle Middle Middle Low 

 
* MI-001 – water meters, MI-002 – gas meters, MI-003 – active electrical energy meters and measurement transformers, 
MI-004 – heat meters, MI-005 –measuring systems for continuous and dynamic measurement of quantities of liquids other 
than water, MI-006 – automatic weighing instruments, MI-007 – taximeters, MI-008 – material measures, no software, not 
relevant, MI-009 –dimensional measuring instruments, MI-010 – exhaust gas analyzers 
 
Table 2 Risk Classes of Measurement Instruments (Germany, PTB) 

Risk class Software 
protection 

level 

Software 
examination 

level 

Degree of 
Software 

Conformity 
A Low Low Low 
B Middle Middle Low s 
C Middle Middle Middle 
D High High Middle 
E High High High 
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These sequences can be generated by second order digital 
filter structures or through application of transcendental 
functions based on truncated polynomial expansions. 
These types of expansions are often used for measurement 
devices microcontroller implementations. For example, the 
sine of number x can be approximated using an expansion: 

9753 0000027.00001984.0008333.0166667.0)sin( xxxxxx  .(1) 

where argument x is in radians, and its range restricted to 
the first quadrant – 0 to 2/ . If x is outside this range, its 
sine can be computed by making use of identities 

)sin()sin( xx   or ])2/sin[(])2/sin[( xx   . 

Decreasing the number of the components in the formula 
the approximation error will increase. Figure 1 shows the 
plots of the sine approximation computed applying just 
2 components in formula (1) and the error due to 
approximation.  
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Fig. 1 Plots of the sine value computed using 

approximation, the actual sine value and error between the 
actual sine value and approximated  

 
Each measurement device or system can be 

considered as resistant to faults if the software protection 
algorithms can identify and correct critical or minor faults. 
Otherwise, the results received by measurement devices 
software without protection algorithms can be faulty. It can 
be considered that the measurement device tolerates faults 
if software is able to finish measurement successfully after 
faults have been detected. 

Measurement devices software protection 
algorithms must be tested in the following way: 

 Testing the algorithm at the designing state 
(analyzing the software code), 
 Testing the algorithm at the working state 
(analyzing the functionality of protection software) 

 
4. Possible stages for estimation of 
measurement devices software  
 

For measurement devices software investigation, 
two complementary stages can be used [4]: 

 Document investigation; 
 Functional investigation. 

The main purpose of the documentation 
investigation is to collect all information about MDS and 

to estimate it. If there is too few information about some 
legally relevant software parts and without this information 
other investigation stages cannot be performed, a decision 
may be made that measurement devices software cannot be 
considered as metrologically reliable. For example, if there 
is no documentation about measurement devices software 
control commands, then there is no possibility to check the 
functionality of the measurement device. 

The main purpose of the functionality investigation 
is to check whether measurement devices software behaves 
according to its documentation. 

Investigation of measurement devices software 
documentation is one of the simplest stages [5]. The data 
collected from measurement devices software 
documentation can be used in other two investigation 
stages. Measurement device’s documentation must be 
investigated by the three following aspects: 

 Software’s conformity requirement is fulfilled by 
checking its identification process and 
identification code in measurement devices 
software documentation. Besides, if there is an 
explanation of identification, algorithm estimation 
must be done to make sure that all legally relevant 
software is covered by that algorithm; 

 Security requirements are fulfilled when 
information about all measurement devices 
control commands, data deletion/changing 
commands or software‘s updating/changing 
commands is presented and can be evaluated. 

 Testing requirements are fulfilled when all 
information necessary for measurement devices 
software verification can be found in its 
documentation. 

For this investigation we can offer a universal 
questionnaire method (fig. 2). The main point is the 
following: for each aspect, a questionnaire must be made 
in such a way that answers for each question can be only 
YES/NO. When all information about documentation is 
collected, the decisions concerning its completeness for 
verification of next stages can be made. If information is 
insufficient the functionality of measurement devices 
software cannot be investigated and the measurement 
device cannot be considered as metrologically reliable. 

Hereby information about measurement devices 
software can be collected. It shall be highlighted that this 
investigation stage must be used as support for a 
functionality investigation stage. Selection of questions is a 
very responsible procedure and it is difficult to formalize 
it, whereas from an investigator this stage requires a high 
level of experience and responsibility. 

Questions must be applicable to a particular 
measuring device. For example, if we have a measuring 
device without a user interface, there is no control panel 
with a keyboard, but this measuring device has 
communication interface (for example, RS232), through 
which it can be remotely controlled; to the questions 
related to a user interface all answers will be NO and it can 
lead to wrong conclusions about measurement devices 
software. 
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Fig. 2 Universal questionnaire 
 

The main purpose of the functionality investigation 
is to check whether measurement devices software 
operates according to the presented documentation. 

What concerns the functionality investigation, four 
investigation sub-stages could be defined [6]: 

1. User interface investigation: 
o Investigation of a user interface menu block 

scheme using a manufacturer’s scheme; 
o Verification of user interface protection; 

2. Communication interface investigation; 
3. Data processing software investigation: 

o Investigation of measurement devices 
software functionality when nominal value 
data sets are used; 

o Investigation of measurement devices 
software functionality when boundary value 
data sets are used; 

o Investigation of measurement devices 
software functionality when dynamically 
changing value data sets are used; 

4. Investigation of software protection algorithms.  
User interface investigation 

Investigation of a user interface of many 
conventional measuring devices contains checking of the 
functionality of buttons and LCD. However, manufacturers 
claim that a great number of software errors unmask even 

when measuring devices are under normal conditions of 
use. As an example, menu navigation of a user interface 
can be presented [7]. The situation may occur when LCD 
displays wrong parameters or data. This can lead to 
misunderstanding or even worse – to economical 
problems. Further the Measurement Instruments Directive 
states: the indication of any result must be clear and 
unambiguous and accompanied by marks and inscriptions 
required to inform the user on the significance of the result. 
The presented result must be easy readable under normal 
conditions of use. In connection to this, the author has 
proposed an investigation method of a user interface of 
conventional measuring devices and developed it in details 
for heat meters as widely spread measuring devices. An 
automatic procedure realizing the proposed method is 
described. It could be used in meters manufacturing and/or 
type approval phases. 

Generally, user menu of a conventional measuring 
device is controlled by means of control buttons. In this 
case, verification of the user menu functionality can be 
performed by simulating operation of control facilities and 
checking output measurement data or parameters directly 
on the LCD indicator or receiving them via a 
communication interface and processing on PC. 

As a typical example, the verification procedure of 
user menu of heat meters as widely spread measuring 
devices is presented hereafter. User interfaces of many heat 
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meters are controlled by signals called “short” and “long”. 
“Short” signal is produced by pressing the control button 
for less than 2 seconds. “Long” signal is produced by 
pressing the control button for more than 2 seconds. By 
means of these signals one can switch from one menu item 
to another and output to LCD different data or parameters, 
e.g. the quantity of the heat consumed, flow rate of the heat 
conveying liquid passing through a heat meter, etc. 

For automatic control of a user interface by means 
of PC, external contacts of control buttons are required. To 
these contacts, an external function generator or DAQ 
board controlled by PC could be connected. Then 
controlling the generator or DAQ board, the “short” or 
“long” signals could be simulated. 

The second step of verification would be data 
acquisition from LCD indicator. The following three 
techniques are known: 

 Taking digital photos of LCD indicator; 
 Shooting LCD indicator; 
 Processing signals from a communication 
interface. 

The first and the second cases are commonly used in 
industry, for example, by defect diagnosis of wood splint 
panels. However, implementation of these approaches in 
the event of verification of a user interface of a measuring 
device is the third case based on processing signals from a 
communication interface.  

Usually, the manufacturers of measurement devices 
provide only a user menu block diagram in the user’s 
guide. Development of a user menu graph would require 
few man-hours in comparison with man-hours required for 
the design project of a heat meter. However, the graph 
would facilitate verification procedure. 
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Fig. 3 User interface menu graph  

In order to find the paths of the graph the method 
called “Depth first search” can be used. In this case, all 
vertices of the graph are treated as new (unvisited). 
Suppose the search begins from vertex v0. At the 
beginning, this vertex is treated as not new (visited). 
Second step is to find vertex u contiguous to vertex v0.  If 
vertex u is not new, then finding of the path follows from 
it. When vertex vn that has any contiguous vertex is 
reached we must return to the vertex from which we 
passed to vertex vn and continue the path finding. Vertex vn 
is depleted. The full path is found when vertex v0 becomes 
depleted. In our case, the full paths can be written as an 
array: 

 
[1 2 3 4 5 6 4 1 7 8 9 7 10 11 12 13 14 11 10 1] 

 
Here, numbers correspond to the menu sections and 

subsections. All other paths can be found in the same 
manner choosing different first vertex. 

The user menu verification diagram is presented in 
Figure 4. 

PC calculates all paths and creates test sequences for 
the graph, which describes the user menu diagram. A test 
generator chooses test sequences randomly. It must be 
highlighted that the number of sequences will be equal to 
the number of graph vertices. Control software generates 
appropriate commands for the chosen test sequence and 
sends them to an external function generator that 
elaborates signals for simulation of user menu navigation 
button signals (“short” or “long” signal). After each pass 
from one menu subsection to another, indicated data on 
LCD must be read through a communication interface. 
Decision making software compares the test sequence sent 
to the heat meter and data received from it. 
If fault is detected, decision making software informs in 
which menu section it was found. If verification is made 
during manufacturing of a measuring device, user menu 
software must be corrected and verified once more. If 
verification is made at a type approval stage, the decision 
must be made whether fault is critical or not, i.e. whether 
user menu fulfills MID requirements or not. 

Personal Computer

Comparison 
software

Test sequence generator

Graph model of 
measurement device user 

interface

Measurement device. User 
interface

DAQ board

Digital video camera
Data 

recognition 
software

 
Fig. 4 User menu verification diagram 

 
Communication interface investigation 

According to MID, commands received through a 
communication interface cannot influence measurement 
device software and measurement data. For the detailed 
investigation of a communication interface, the specially 
created command lists presented by the manufacturer must 
be used. The communication interface verification block 
scheme presented in figure 5.  
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Fig. 5 Communication interface verification block 

scheme 
 

Investigation of data processing software 
 

The last and most important sub-stage of the 
measurement instruments software functionality 
investigation is a verification data processing part of 
software. For this investigation, a mathematical model of 
measurement devices data processing software must be 
created. The investigation of data processing software is 
based on “black box” principles; a structure scheme of 
investigation is presented in Fig. 6 

In this case, a test data sequence generator presents 
data sets for a mathematical model, which can be called 
reference software, and real measurement devices 
software. Results of a mathematical model and real 
measurement device are compared. If no errors are 
observed, measurement devices data processing software is 
considered as metrologically reliable. 
Measurement devices software functionality can be 
investigated using “black box” principles. Each software 
module can be described as a function depending on input 
data. For this investigation, specific test sequences required 
[8,9,10]. In this work, 4 different input data sets were 
described: 

 Boundary input data sets. For investigation of 
measurement devices software functionality when 

measurements are performed using boundary values of 
measurement converters. For example, measurement 
of the minimum or maximum temperature (Fig. 7); 

 
Fig. 7 Boundary data sets 

 Faults in boundary data sets show how software 
protection algorithms respond to single faults. For 
example, negative temperature of heat conveying 
liquid (Fig. 8).  

 
Fig. 8 Faults in boundary data 
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Fig. 6 Investigation of data processing software 
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 Worst case boundary data sets demonstrate how 
software protection algorithms react to regular logical 
faults in measurement data (Fig. 9).  

 
Fig. 9 Worst case boundary data sets 

 Faulty measurement converters signal data sets 
illustrate how software protection algorithms react to 
illegal signals received from measurement converters 
(Fig. 10). 

 
Fig. 10 Faulty measurement converters signal data sets 

 

5 Investigation of the heat meters 
calculator applying a measurement 
devices software reliability method 

Results calculated by heat meters software can be 
influenced through communication or user interfaces, 
temperature or flow sensors. Therefore, for investigation of 
the heat meters calculator the following experiments shall 
be accomplished: 

1. Investigation of temperature measurement 
software 

2. Investigation of flow measurement software 
3. Investigation of measurement data processing 

software 
4. Investigation of software protection algorithms. 
For these investigations, specific test data sequences 

were used. Simulation of temperature sensors was 
performed using resistor bridge load. Load limits of a 
standard heat meter are 500 800  . Flow sensors were 

simulated by external pulse generators. Pulse parameters of 
a standard heat meter are as follows: pulse repetition 
frequency within the range is 0 1000 Hz , pulse 

amplitude is 3 0.3 V  and pulse duty cycle is 

20 80 % .  

A block scheme of the used verification equipment 
is presented in Fig. 11. Resistor bridges R1, R2 simulate 

temperature sensors. Functional generators G1 and G2 
simulate flows of the flow and return liquids. Software, 
written in the C language and implemented using 
LabWindows/CVI controls all devices. 

Verification is performed in the following order. 
Control software starts generators and a universal counter 
which begins calculation of the pulses fed to the heat meter 
calculator. Pulse generators must be stopped after not less 
than 1000 pulses are counted up. Then control software 
reads data from all devices via a communication interface, 
i.e. temperatures of a flow and return liquids, volumes of 
the passed liquids, quantity of the heat given up calculated 
by the heat meters calculator and number of pulses counted 
by a universal counter. 

 

 
Fig. 11 Verification scheme and a user interface 

 
Then the reference volume of the passed liquid is 

calculated according to the formula: 
V N k .  (2) 

Here, N – number of the counted pulses, k – value of one 

pulse, i.e. 3pulse/m . The reference quantity of the heat 

given up can be calculated applying the expressions 
presented in the OIML recommendations [7] i.e.: 

refQ k V  . (3) 

Here, refQ  – reference quantity of the heat given up, 

flow ref      temperature difference between the 

flow and return of the heat exchange circuit. V  – volume 
of the passed liquid calculated using expression (2), k  – 
heat coefficient calculated using the following expression 

1
( , , )flow return

h
k p




  


.  (4) 
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Fig. 12 Mathematical model of the heat meters calculator 

 

Here, flow refh h h    – specific enthalpy difference 

between the flow and return enthalpies,   – specific liquid 
mass, p – pressure of the liquid. 

Mathematical model of the heat meters calculator is 
depicted in Fig 2. After calculations of the reference 
quantity of the heat given up, relative error of heat meter 
measurement results is estimated according to the 
following expression 

ref m

ref

Q Q
E

Q


 . (5) 

The maximum permissible error of the heat meter 
calculator is 

min(0.5 / )cE      . (6) 

Here, min  – minimum temperature difference – 

parameter of the specific heat meter. 
An experiment was made in order to verify 

metrological reliability of temperature measurement 
software. Verification was carried out in the following 
order: 

 Resistor bridges R1, R2 simulate temperature 
sensors; 

 Heat measuring system measures Θ1m, Θ2m, ΔΘm 
temperatures; 

 Comparison between the calculated Θ1, Θ2, ΔΘ and 
measured Θ1m, Θ2m, ΔΘm temperatures was made. 
Results are presented in Table 3. Measurements 1-9 

were made using boundary value analysis test cases. 
Measurements 10-13 were made using “faulty” test cases. 
Each time when heat measuring systems software receives 
a “faulty” signal from temperature sensors, it must 
generate a warning on fault. 
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Fig. 13 Experimental scheme 

Here, fin= Y shows that “faulty” data was sent to 
measurement systems software, whereas fin= N 
demonstrates that correct data was sent to measurement 
systems software. fms= Y shows that measurement systems 
software detected “faulty” data, and fms= N indicates that 
software failed. 
Table 3 Experimental results with boundary value analysis 

No. 
Θ1,
ºC 

Θ2,
ºC 

ΔΘ
ºC 

Θ1m, 
ºC 

Θ2m, 
ºC 

ΔΘm 
ºC 

fin. fms 

1 80 0 80 79,91 0 79,91 Y Y 

2 80 8 72 79,92 7,59 72,33 N N 

3 80 40 40 79,86 39,52 40,34 N N 

4 80 152 -72 79,9 155,49 -75,59 Y Y 

5 80 157 -77 79,91 156,56 -76,65 Y Y 
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6 3 40 -37 2,35 39,55 -37,2 Y Y 

7 8 40 -32 7,76 39,49 -31,73 Y Y 

8 152 40 112 152,07 39,5 112,57 N N 

9 160 40 120 160,8 39,5 121,3 N N 

10 168 40 128 168,21 39,5 128,71 Y N 

11 -8 80 -88 0 79,65 -79,65 Y Y 

12 80 -8 88 79,9 0 79,9 Y Y 

13 80 164 -84 79,97 163,6 -83,63 Y Y 

 
Experimental results illustrated that measurement 

systems software detected negative difference between 
temperatures. At 10 measurements, software detected no 
faulty value of flow liquid temperature. For detailed 
verification, the worst case testing case was used. 
Experimental results are presented in Table 4. Here, only 
the test cases where measurement systems software failed 
are provided. 

 
Table 4 Experimental results with worst case testing 

No. 
Θ1, 
ºC 

Θ2, 
ºC 

ΔΘ 
ºC 

Θ1m, 
ºC 

Θ2m, 
ºC 

ΔΘm 
ºC 

1 160 0 160 159,9 0 159,9 
2 152 0 152 151,93 0 151,93 
6 8 0 8 7,47 0 7,47 

17 168 -8 176 167,9 0 167,9 
18 160 -8 168 159,9 0 159,9 
19 152 -8 160 151,9 0 151,9 
21 168 160 8 167,9 159,8 8,1 
27 160 -8 168 159,7 0 159,7 
28 168 0 168 167,8 0 167,8 
31 168 152 16 167,8 151,7 16,1 
35 8 -8 16 7,61 0 7,61 

As it was expected, heat metering systems software 
detected fault only at negative temperature differences and 
minimum temperature values. But it failed with exceeded 
temperature values and minimum or even negative return 
liquid temperature values. Such performances of 
measurement systems software contradict with the 
essential measurement systems requirements presented in 
the Measurement Instruments Directive. Besides, it can be 
stated that measurement results obtained with the 
measurement system using such software can be falsified 
or incorrect, i.e. metrologically unreliable. 

The standard verification procedure of heat meters 
covers the estimation of the maximum permissible errors 
of calculators. As a result, it is not possible to answer the 
following questions: how the heat meter calculator will 
respond to the faulty signals received from sensors and 
how these faults influence measurement results?  

In order to answer these questions, an experiment 
related to verification of heat meters data processing 
software using the type approved heat meter was carried 
out.  

Primarily, the ramp and random flows were 
simulated. Parameters of corresponding pulse sequences 
were: 
 Increasing pulse repetition frequency within the range 

0 1000 Hz , 

 Randomly changing pulse repetition frequency within 
the range 0 1000 Hz . 

-0,8

-0,6

-0,4

-0,2

0

0,2

0,4

0,6

0,8

100 200 300 400 500 600 700 800 900 1000

f, Hz

R
e

la
ti

v
e

 e
rr

o
r,

 %

 
Fig. 14 Relative error of the heat meter calculator with the 

ramp flow 
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Fig. 15 Relative error of the heat meter calculator with the 

random flow 
Results presented in Fig. 14 and 15 demonstrate that 

the flow type (ramp or random) have no influence on 
relative error of the heat meter calculator in a sense that it 
remains within the maximum permissible error range. 
The last experiment showed how heat meters software 
protection algorithms operate when faulty signals from 
measurement converters are received. For this experiment, 
flow sensors signals of the heat meter were chosen. The 
manufacturer declares that the signal received from the 
flow sensor can have the following parameters: amplitude 
can vary 3 0,3 V , duty cycle – in bounds of %8020 . 

According to this, the test sequences were generated: 
 Pulse signal (3 0,3 V ), with varying amplitude in 

form of a triangle, 
 Pulse signal (3 0,3 V ), with varying amplitude in 

form of a rectangular, 
 Pulse signal (3 0,3 V ), with varying amplitude in 

form of a sine, 
 Pulse signal (3 0,3 V ), with varying amplitude in 

form of uniform noise, 
 Filtered pulse signal. 

The figure below demonstrates how varying pulse 
amplitude affects the calculated volume error of heat 
conveying liquid. When test sequences of the filtered pulse 
signal (Test6) were used, the calculated volume error of 
heat conveying liquid was similar to the maximum 
permissible error. Thus, heat meters software receiving 
such a “faulty” signal will work normally and can be 
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considered as metrologically reliable. With other test 
sequences (Test2–Test5), the maximum permissible error 
was exceeded about two times. The experimental results 
illustrate that the test sequence with varying amplitude in 
form of uniform noise has the greatest influence on the 
calculated results of heat meters. 
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Fig. 16 Calculated volume error of heat conveying liquid 

The last experiment was made with “faulty” 
conveying liquid temperature values. Nominal values of 
flow and return liquids are 80 and 40 oC, whereas a 
standard temperature measurement range of heat meters is 
0-160 oC. Results are presented in Table 1 and Figure 7. 
Analysis of the experiment results highlighted that in the 
cases of particular combinations of temperature values (but 
still permissible values) of conveying liquids the quantity 
of heat given up is calculated wrongly, and the main thing 
is that the software gives no report about the faults. 
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Fig. 17 Relative error of the heat meter calculator with 

faulty temperature values 
 

Consequently, experiments with the type approved 
heat meter pointed out that in some cases, especially when 
parameters of the signals (pulse amplitude and duty cycle) 
received from sensors reach marginal but still permissible 
values, the value of heat given up is calculated by the heat 
meter calculator wrongly. It would be difficult or even 
impossible to get such results by the standard heat meters 
verification procedure. And this shows that after adoption 
of the Measuring Instruments Directive and starting 
verification of data processing software of heat meters 
some of them fail to pass the type approval stage. 

 

Conclusions 
1. A method for estimation of measurement devices 
software metrological reliability has been developed. The 
method enables to test the implemented algorithms, 
functionality and documentation of the measurement 
device. 
2. Analysis of potential errors that can influence 
measurement devices software has shown that the method 
of measurement devices reliability must contain the 
following two stages: estimation of measurement devices 
documentation and estimation of measurement devices 
software functionality.  
3. Experimental results have shown that the proposed 
method is appropriate for estimation of metrological 
reliability of measurement devices software.  
Examination has confirmed that simulation of heat meters 
measurement converters signals identifies logical faults of 
the software protection algorithm: 

 Logical faults in the software protection 
algorithm when temperature sensors measure higher 
than the maximum permissible temperature of flow 
liquid or negative temperature of return liquid. 

 Incorrect volume result and “no faults detected” 
by the software protection algorithm when 
simulating a “corrupted” signal of a flow sensor. 
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