
Investigation of the heat meters calculator applying a measurement
devices software reliability method

V.KNYVA, M.KNYVA

Department of Electronics and Measurements Systems
 Kaunas University of Technology

Studentu str. 50, LT-51368, Kaunas
LITHUANIA

phone: +370 37 300535; e-mail: vytautas.knyva@ktu.lt, mindaugas.knyva@ktu.lt

Abstract: Nowadays, parameters, characteristics and functionality of measurement devices basically depend on
microprocessors software. Software used in measurement devices overtakes functions from a hardware part of the device.
For example, data processing algorithms, control functions are implemented using software. Basically during verification
of the device, just a hardware part of the device is verified. But software controls all the functions of the measurement
device. Therefore, a method for metrological estimation of reliability of measurement devices software will be presented.

Keywords: software validation, metrology, measurement devices, verification and testing of software

1. Introduction

Most functions of a measurement device are
controlled by a microcontroller and software thereof.
Software clearly influences characteristics and
functionality of measurement devices. During
verification of the measurement device, just a hardware
part of the device is tested. OIML recommendations or
specific standards of measurement devices provide no
information on measurement devices software
verification methods or methodology. In this paper, a
method for metrological estimation of reliability of
measurement devices software will be presented.

2. Problems of metrological estimation
of measurement devices software

Today, most functions of measurement devices are
controlled by devices software. Therefore, analysis of
influence made by measurement devices software faults
on devices functionality shall be carried out. Errors of
measurements devices functionality can be divided to the
following:

 Critical, i.e. measurement devices
functionality is disturbed for an unknown period
of time;
 Minor, i.e. transient disorder of measurement
devices functionality.

All disorders of measurement devices are called
by known factors, i.e. faults in a software code,
simplified protection algorithm or others. In literature,
the following sorts of faults are mentioned:

 Coding faults;
 Faults of measurements converters;
 Inadmissible influences of a user;
 Hardware faults.

Software of measurement devices that measures
the same object is different by means of its complexity.

Complex software clearly can have considerably more faults
compared to simple one. Therefore, measurement devices
must be divided into groups by means of software
complexity and functionality thereof. The groups can be
described in the following way:

 Measurement devices with software data
processing;
 Measurement devices with software control of
measurement converters and data processing;
 Measurement systems.

Software faults influence metrological characteristics
of the measurement device. The following characteristics
may be distinguished:

 Characteristics of the measurement result –
measurement converters, stability of the
measurement device, fault detection, etc.;
 Characteristics of measurement precision –
instrumental, random, method faults;
 Dynamical characteristics of the measurement
device.

Not all characteristics are influenced by measurement
devices software. The influenced ones are provided below:

 Measurement faults – a wrong or incorrect
measurement algorithm;
 Stability of the measurement device;
 Fault detection algorithm;
 Detection algorithm of inadmissible influences
through a user, communication interfaces.

 After adoption of the Measurement Instruments
Directive (MID) [1], measurement devices software
verification is necessary. The Measurement Instruments
Directive started in the early nineties, was approved in
spring of 2004, and after transition period it became fully
functional in autumn of 2006. The MID introduces a “new
approach” to the measurement devices software and its
verification. Due to MID birth, in 1997 WELMEC (Western
European Legal Metrology Cooperation) formed the work
group WELMEC-SOFTWARE [2]. The main work object
of this group involved forming of essential MDS
requirements. Some time later, PTB (Physikalich-

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS V. Knyva, M. Knyva

ISSN: 1109-2734 163 Issue 3, Volume 9, March 2010

Technische Bundesanstalt) formed another work group,
i.e. MID-SOFTWARE, which detailed and concretized
WELMEC requirements.

On the basis of MID, WELMEC-SOFTWARE work
group formed the essential MDS requirements and
classified them into 5 groups:

 Software design and structure;
 Software protection;
 Software conformity;
 Software testability;
 Documentation for type approval.

For three of them (software protection, software

confirmation, software testability), 3 requirements levels,
i.e. High, Middle, Low were formed (Table 1). On the
basis of WELMEC publications, MID-SOFTWARE
group offered a new conception, i.e. risk classes (Table
2).

3. ALGORITHM IMPLEMENTATIONS FOR
REALIZATION OF MEASUREMENTS DEVICES
CHARACTERISTICS

Basically, the software implemented in the
measurement device is used for the following [3]:

 Control of measurement converters, processing
and storing of data thereof,

 Control of measurement devices functionality.
For data processing of devices measurement

converters, data analysis and filter algorithms are often used.
They can be implemented in a hardware part of device or in
software. In a hardware part, algorithms are designed
through application of classical solutions: data registers,
multipliers, summators, etc. In a software part, algorithms
are implemented through microprocessors firmware. For
additional implementations of the algorithm, programmable
hardware parts (DSP) are used. Before implementation of
the algorithms, suitability of a hardware part of the
measurement device must be analyzed. Basically, two forms
of microprocessors in measurement device design can be
used, i.e. fixed point and floating point arithmetic.

The result of floating point summation or
multiplication arithmetic can overrun, therefore, the register
must be rounded or truncated. Such a solution at fixed point
arithmetic can help using multiplication operation solely,
whereas application of summation rounding or truncation of
the result will not work. However, floating point arithmetic
gives a better dynamic range and greater error of the result.
These effects of microprocessors arithmetic must be
estimated before implementation of a calculation algorithm.

Most mathematical functions can be implemented using
transcendental functions. For example, the FFT
computations require generation of complex exponential
sequences.

Table 1 Levels of Measurement Instruments Software

Category MID
Annex*

Risk of fraud Software
protection level

Software
examination level

Degree of
Software

Conformity

Middle Middle Middle Middle Supply to the
customer by mains

MI-001,
MI-002,
MI-003,
MI-004

High High Middle Middle

Middle Middle Middle Low Commercial
transactions and
services

MI-005,
MI-006,
MI-007,
MI-009

High High Middle Middle

Environment safety,
health

MI-010 Middle Middle Middle Low

* MI-001 – water meters, MI-002 – gas meters, MI-003 – active electrical energy meters and measurement transformers,
MI-004 – heat meters, MI-005 –measuring systems for continuous and dynamic measurement of quantities of liquids other
than water, MI-006 – automatic weighing instruments, MI-007 – taximeters, MI-008 – material measures, no software, not
relevant, MI-009 –dimensional measuring instruments, MI-010 – exhaust gas analyzers

Table 2 Risk Classes of Measurement Instruments (Germany, PTB)

Risk class Software
protection

level

Software
examination

level

Degree of
Software

Conformity
A Low Low Low
B Middle Middle Low s
C Middle Middle Middle
D High High Middle
E High High High

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS V. Knyva, M. Knyva

ISSN: 1109-2734 164 Issue 3, Volume 9, March 2010

These sequences can be generated by second order digital
filter structures or through application of transcendental
functions based on truncated polynomial expansions.
These types of expansions are often used for measurement
devices microcontroller implementations. For example, the
sine of number x can be approximated using an expansion:

9753 0000027.00001984.0008333.0166667.0)sin(xxxxxx .(1)

where argument x is in radians, and its range restricted to
the first quadrant – 0 to 2/ . If x is outside this range, its
sine can be computed by making use of identities

)sin()sin(xx or])2/sin[(])2/sin[(xx .

Decreasing the number of the components in the formula
the approximation error will increase. Figure 1 shows the
plots of the sine approximation computed applying just
2 components in formula (1) and the error due to
approximation.

-0,1

0,1

0,3

0,5

0,7

0,9

0 0,2 0,4 0,6 0,8 1 1,2 1,4

x

si
n

(x
),

 a
p

rx
si

n
(x

),
 e

rr
o

r

Fig. 1 Plots of the sine value computed using

approximation, the actual sine value and error between the
actual sine value and approximated

Each measurement device or system can be

considered as resistant to faults if the software protection
algorithms can identify and correct critical or minor faults.
Otherwise, the results received by measurement devices
software without protection algorithms can be faulty. It can
be considered that the measurement device tolerates faults
if software is able to finish measurement successfully after
faults have been detected.

Measurement devices software protection
algorithms must be tested in the following way:

 Testing the algorithm at the designing state
(analyzing the software code),
 Testing the algorithm at the working state
(analyzing the functionality of protection software)

4. Possible stages for estimation of
measurement devices software

For measurement devices software investigation,
two complementary stages can be used [4]:

 Document investigation;
 Functional investigation.

The main purpose of the documentation
investigation is to collect all information about MDS and

to estimate it. If there is too few information about some
legally relevant software parts and without this information
other investigation stages cannot be performed, a decision
may be made that measurement devices software cannot be
considered as metrologically reliable. For example, if there
is no documentation about measurement devices software
control commands, then there is no possibility to check the
functionality of the measurement device.

The main purpose of the functionality investigation
is to check whether measurement devices software behaves
according to its documentation.

Investigation of measurement devices software
documentation is one of the simplest stages [5]. The data
collected from measurement devices software
documentation can be used in other two investigation
stages. Measurement device’s documentation must be
investigated by the three following aspects:

 Software’s conformity requirement is fulfilled by
checking its identification process and
identification code in measurement devices
software documentation. Besides, if there is an
explanation of identification, algorithm estimation
must be done to make sure that all legally relevant
software is covered by that algorithm;

 Security requirements are fulfilled when
information about all measurement devices
control commands, data deletion/changing
commands or software‘s updating/changing
commands is presented and can be evaluated.

 Testing requirements are fulfilled when all
information necessary for measurement devices
software verification can be found in its
documentation.

For this investigation we can offer a universal
questionnaire method (fig. 2). The main point is the
following: for each aspect, a questionnaire must be made
in such a way that answers for each question can be only
YES/NO. When all information about documentation is
collected, the decisions concerning its completeness for
verification of next stages can be made. If information is
insufficient the functionality of measurement devices
software cannot be investigated and the measurement
device cannot be considered as metrologically reliable.

Hereby information about measurement devices
software can be collected. It shall be highlighted that this
investigation stage must be used as support for a
functionality investigation stage. Selection of questions is a
very responsible procedure and it is difficult to formalize
it, whereas from an investigator this stage requires a high
level of experience and responsibility.

Questions must be applicable to a particular
measuring device. For example, if we have a measuring
device without a user interface, there is no control panel
with a keyboard, but this measuring device has
communication interface (for example, RS232), through
which it can be remotely controlled; to the questions
related to a user interface all answers will be NO and it can
lead to wrong conclusions about measurement devices
software.

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS V. Knyva, M. Knyva

ISSN: 1109-2734 165 Issue 3, Volume 9, March 2010

Fig. 2 Universal questionnaire

The main purpose of the functionality investigation
is to check whether measurement devices software
operates according to the presented documentation.

What concerns the functionality investigation, four
investigation sub-stages could be defined [6]:

1. User interface investigation:
o Investigation of a user interface menu block

scheme using a manufacturer’s scheme;
o Verification of user interface protection;

2. Communication interface investigation;
3. Data processing software investigation:

o Investigation of measurement devices
software functionality when nominal value
data sets are used;

o Investigation of measurement devices
software functionality when boundary value
data sets are used;

o Investigation of measurement devices
software functionality when dynamically
changing value data sets are used;

4. Investigation of software protection algorithms.
User interface investigation

Investigation of a user interface of many
conventional measuring devices contains checking of the
functionality of buttons and LCD. However, manufacturers
claim that a great number of software errors unmask even

when measuring devices are under normal conditions of
use. As an example, menu navigation of a user interface
can be presented [7]. The situation may occur when LCD
displays wrong parameters or data. This can lead to
misunderstanding or even worse – to economical
problems. Further the Measurement Instruments Directive
states: the indication of any result must be clear and
unambiguous and accompanied by marks and inscriptions
required to inform the user on the significance of the result.
The presented result must be easy readable under normal
conditions of use. In connection to this, the author has
proposed an investigation method of a user interface of
conventional measuring devices and developed it in details
for heat meters as widely spread measuring devices. An
automatic procedure realizing the proposed method is
described. It could be used in meters manufacturing and/or
type approval phases.

Generally, user menu of a conventional measuring
device is controlled by means of control buttons. In this
case, verification of the user menu functionality can be
performed by simulating operation of control facilities and
checking output measurement data or parameters directly
on the LCD indicator or receiving them via a
communication interface and processing on PC.

As a typical example, the verification procedure of
user menu of heat meters as widely spread measuring
devices is presented hereafter. User interfaces of many heat

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS V. Knyva, M. Knyva

ISSN: 1109-2734 166 Issue 3, Volume 9, March 2010

meters are controlled by signals called “short” and “long”.
“Short” signal is produced by pressing the control button
for less than 2 seconds. “Long” signal is produced by
pressing the control button for more than 2 seconds. By
means of these signals one can switch from one menu item
to another and output to LCD different data or parameters,
e.g. the quantity of the heat consumed, flow rate of the heat
conveying liquid passing through a heat meter, etc.

For automatic control of a user interface by means
of PC, external contacts of control buttons are required. To
these contacts, an external function generator or DAQ
board controlled by PC could be connected. Then
controlling the generator or DAQ board, the “short” or
“long” signals could be simulated.

The second step of verification would be data
acquisition from LCD indicator. The following three
techniques are known:

 Taking digital photos of LCD indicator;
 Shooting LCD indicator;
 Processing signals from a communication
interface.

The first and the second cases are commonly used in
industry, for example, by defect diagnosis of wood splint
panels. However, implementation of these approaches in
the event of verification of a user interface of a measuring
device is the third case based on processing signals from a
communication interface.

Usually, the manufacturers of measurement devices
provide only a user menu block diagram in the user’s
guide. Development of a user menu graph would require
few man-hours in comparison with man-hours required for
the design project of a heat meter. However, the graph
would facilitate verification procedure.

1

7

10

2 3
4

5
6

8

9

11 12

1314

Momental par.

1 system power
2 system power

T difference

T1

T2

Information
No. of
device

M-Bus speed
Integral par.

Power Mass difference

1 channel
mass

2 channel
mass

Fig. 3 User interface menu graph

In order to find the paths of the graph the method
called “Depth first search” can be used. In this case, all
vertices of the graph are treated as new (unvisited).
Suppose the search begins from vertex v0. At the
beginning, this vertex is treated as not new (visited).
Second step is to find vertex u contiguous to vertex v0. If
vertex u is not new, then finding of the path follows from
it. When vertex vn that has any contiguous vertex is
reached we must return to the vertex from which we
passed to vertex vn and continue the path finding. Vertex vn
is depleted. The full path is found when vertex v0 becomes
depleted. In our case, the full paths can be written as an
array:

[1 2 3 4 5 6 4 1 7 8 9 7 10 11 12 13 14 11 10 1]

Here, numbers correspond to the menu sections and

subsections. All other paths can be found in the same
manner choosing different first vertex.

The user menu verification diagram is presented in
Figure 4.

PC calculates all paths and creates test sequences for
the graph, which describes the user menu diagram. A test
generator chooses test sequences randomly. It must be
highlighted that the number of sequences will be equal to
the number of graph vertices. Control software generates
appropriate commands for the chosen test sequence and
sends them to an external function generator that
elaborates signals for simulation of user menu navigation
button signals (“short” or “long” signal). After each pass
from one menu subsection to another, indicated data on
LCD must be read through a communication interface.
Decision making software compares the test sequence sent
to the heat meter and data received from it.
If fault is detected, decision making software informs in
which menu section it was found. If verification is made
during manufacturing of a measuring device, user menu
software must be corrected and verified once more. If
verification is made at a type approval stage, the decision
must be made whether fault is critical or not, i.e. whether
user menu fulfills MID requirements or not.

Personal Computer

Comparison
software

Test sequence generator

Graph model of
measurement device user

interface

Measurement device. User
interface

DAQ board

Digital video camera
Data

recognition
software

Fig. 4 User menu verification diagram

Communication interface investigation

According to MID, commands received through a
communication interface cannot influence measurement
device software and measurement data. For the detailed
investigation of a communication interface, the specially
created command lists presented by the manufacturer must
be used. The communication interface verification block
scheme presented in figure 5.

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS V. Knyva, M. Knyva

ISSN: 1109-2734 167 Issue 3, Volume 9, March 2010

Fig. 5 Communication interface verification block

scheme

Investigation of data processing software

The last and most important sub-stage of the
measurement instruments software functionality
investigation is a verification data processing part of
software. For this investigation, a mathematical model of
measurement devices data processing software must be
created. The investigation of data processing software is
based on “black box” principles; a structure scheme of
investigation is presented in Fig. 6

In this case, a test data sequence generator presents
data sets for a mathematical model, which can be called
reference software, and real measurement devices
software. Results of a mathematical model and real
measurement device are compared. If no errors are
observed, measurement devices data processing software is
considered as metrologically reliable.
Measurement devices software functionality can be
investigated using “black box” principles. Each software
module can be described as a function depending on input
data. For this investigation, specific test sequences required
[8,9,10]. In this work, 4 different input data sets were
described:

 Boundary input data sets. For investigation of
measurement devices software functionality when

measurements are performed using boundary values of
measurement converters. For example, measurement
of the minimum or maximum temperature (Fig. 7);

Fig. 7 Boundary data sets

 Faults in boundary data sets show how software
protection algorithms respond to single faults. For
example, negative temperature of heat conveying
liquid (Fig. 8).

Fig. 8 Faults in boundary data

Boundary data set

Boundary data set with
faults

Worst case data set

Faulty measurement
converters signal data

sets

Generator of test
sequence

Model of measurement
device

Measurement device

Comparison software

Personal computer

DAQ
board

Fig. 6 Investigation of data processing software

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS V. Knyva, M. Knyva

ISSN: 1109-2734 168 Issue 3, Volume 9, March 2010

 Worst case boundary data sets demonstrate how
software protection algorithms react to regular logical
faults in measurement data (Fig. 9).

Fig. 9 Worst case boundary data sets

 Faulty measurement converters signal data sets
illustrate how software protection algorithms react to
illegal signals received from measurement converters
(Fig. 10).

Fig. 10 Faulty measurement converters signal data sets

5 Investigation of the heat meters
calculator applying a measurement
devices software reliability method

Results calculated by heat meters software can be
influenced through communication or user interfaces,
temperature or flow sensors. Therefore, for investigation of
the heat meters calculator the following experiments shall
be accomplished:

1. Investigation of temperature measurement
software

2. Investigation of flow measurement software
3. Investigation of measurement data processing

software
4. Investigation of software protection algorithms.
For these investigations, specific test data sequences

were used. Simulation of temperature sensors was
performed using resistor bridge load. Load limits of a
standard heat meter are 500 800 . Flow sensors were

simulated by external pulse generators. Pulse parameters of
a standard heat meter are as follows: pulse repetition
frequency within the range is 0 1000 Hz , pulse

amplitude is 3 0.3 V and pulse duty cycle is

20 80 % .

A block scheme of the used verification equipment
is presented in Fig. 11. Resistor bridges R1, R2 simulate

temperature sensors. Functional generators G1 and G2
simulate flows of the flow and return liquids. Software,
written in the C language and implemented using
LabWindows/CVI controls all devices.

Verification is performed in the following order.
Control software starts generators and a universal counter
which begins calculation of the pulses fed to the heat meter
calculator. Pulse generators must be stopped after not less
than 1000 pulses are counted up. Then control software
reads data from all devices via a communication interface,
i.e. temperatures of a flow and return liquids, volumes of
the passed liquids, quantity of the heat given up calculated
by the heat meters calculator and number of pulses counted
by a universal counter.

Fig. 11 Verification scheme and a user interface

Then the reference volume of the passed liquid is

calculated according to the formula:
V N k . (2)

Here, N – number of the counted pulses, k – value of one

pulse, i.e. 3pulse/m . The reference quantity of the heat

given up can be calculated applying the expressions
presented in the OIML recommendations [7] i.e.:

refQ k V . (3)

Here, refQ – reference quantity of the heat given up,

flow ref temperature difference between the

flow and return of the heat exchange circuit. V – volume
of the passed liquid calculated using expression (2), k –
heat coefficient calculated using the following expression

1
(, ,)flow return

h
k p

. (4)

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS V. Knyva, M. Knyva

ISSN: 1109-2734 169 Issue 3, Volume 9, March 2010

Flow liquid
temperature

Return liquid
temperature

Specific enthalpy of
flow liquid

Specific enthalpy of
return liquid

Coefficients Specific liquid mass Heat coefficient

Flow meter
Volume of liquid

passed

Quantity of heat
given up

flow

return

flowh

returnh

iii JnI ,,

V

),(returnflowk refQ

Fig. 12 Mathematical model of the heat meters calculator

Here, flow refh h h – specific enthalpy difference

between the flow and return enthalpies, – specific liquid
mass, p – pressure of the liquid.

Mathematical model of the heat meters calculator is
depicted in Fig 2. After calculations of the reference
quantity of the heat given up, relative error of heat meter
measurement results is estimated according to the
following expression

ref m

ref

Q Q
E

Q

 . (5)

The maximum permissible error of the heat meter
calculator is

min(0.5 /)cE . (6)

Here, min – minimum temperature difference –

parameter of the specific heat meter.
An experiment was made in order to verify

metrological reliability of temperature measurement
software. Verification was carried out in the following
order:

 Resistor bridges R1, R2 simulate temperature
sensors;

 Heat measuring system measures Θ1m, Θ2m, ΔΘm
temperatures;

 Comparison between the calculated Θ1, Θ2, ΔΘ and
measured Θ1m, Θ2m, ΔΘm temperatures was made.
Results are presented in Table 3. Measurements 1-9

were made using boundary value analysis test cases.
Measurements 10-13 were made using “faulty” test cases.
Each time when heat measuring systems software receives
a “faulty” signal from temperature sensors, it must
generate a warning on fault.

R
eference
results

M
ea

su
re

d
re

su
lts

Fig. 13 Experimental scheme

Here, fin= Y shows that “faulty” data was sent to
measurement systems software, whereas fin= N
demonstrates that correct data was sent to measurement
systems software. fms= Y shows that measurement systems
software detected “faulty” data, and fms= N indicates that
software failed.
Table 3 Experimental results with boundary value analysis

No.
Θ1,
ºC

Θ2,
ºC

ΔΘ
ºC

Θ1m,
ºC

Θ2m,
ºC

ΔΘm
ºC

fin. fms

1 80 0 80 79,91 0 79,91 Y Y

2 80 8 72 79,92 7,59 72,33 N N

3 80 40 40 79,86 39,52 40,34 N N

4 80 152 -72 79,9 155,49 -75,59 Y Y

5 80 157 -77 79,91 156,56 -76,65 Y Y

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS V. Knyva, M. Knyva

ISSN: 1109-2734 170 Issue 3, Volume 9, March 2010

6 3 40 -37 2,35 39,55 -37,2 Y Y

7 8 40 -32 7,76 39,49 -31,73 Y Y

8 152 40 112 152,07 39,5 112,57 N N

9 160 40 120 160,8 39,5 121,3 N N

10 168 40 128 168,21 39,5 128,71 Y N

11 -8 80 -88 0 79,65 -79,65 Y Y

12 80 -8 88 79,9 0 79,9 Y Y

13 80 164 -84 79,97 163,6 -83,63 Y Y

Experimental results illustrated that measurement

systems software detected negative difference between
temperatures. At 10 measurements, software detected no
faulty value of flow liquid temperature. For detailed
verification, the worst case testing case was used.
Experimental results are presented in Table 4. Here, only
the test cases where measurement systems software failed
are provided.

Table 4 Experimental results with worst case testing

No.
Θ1,
ºC

Θ2,
ºC

ΔΘ
ºC

Θ1m,
ºC

Θ2m,
ºC

ΔΘm
ºC

1 160 0 160 159,9 0 159,9
2 152 0 152 151,93 0 151,93
6 8 0 8 7,47 0 7,47

17 168 -8 176 167,9 0 167,9
18 160 -8 168 159,9 0 159,9
19 152 -8 160 151,9 0 151,9
21 168 160 8 167,9 159,8 8,1
27 160 -8 168 159,7 0 159,7
28 168 0 168 167,8 0 167,8
31 168 152 16 167,8 151,7 16,1
35 8 -8 16 7,61 0 7,61

As it was expected, heat metering systems software
detected fault only at negative temperature differences and
minimum temperature values. But it failed with exceeded
temperature values and minimum or even negative return
liquid temperature values. Such performances of
measurement systems software contradict with the
essential measurement systems requirements presented in
the Measurement Instruments Directive. Besides, it can be
stated that measurement results obtained with the
measurement system using such software can be falsified
or incorrect, i.e. metrologically unreliable.

The standard verification procedure of heat meters
covers the estimation of the maximum permissible errors
of calculators. As a result, it is not possible to answer the
following questions: how the heat meter calculator will
respond to the faulty signals received from sensors and
how these faults influence measurement results?

In order to answer these questions, an experiment
related to verification of heat meters data processing
software using the type approved heat meter was carried
out.

Primarily, the ramp and random flows were
simulated. Parameters of corresponding pulse sequences
were:
 Increasing pulse repetition frequency within the range

0 1000 Hz ,

 Randomly changing pulse repetition frequency within
the range 0 1000 Hz .

-0,8

-0,6

-0,4

-0,2

0

0,2

0,4

0,6

0,8

100 200 300 400 500 600 700 800 900 1000

f, Hz

R
e

la
ti

v
e

 e
rr

o
r,

 %

Fig. 14 Relative error of the heat meter calculator with the

ramp flow

-0,8

-0,6

-0,4

-0,2

0

0,2

0,4

0,6

0,8

100 200 300 400 500 600 700 800 900 1000

f, Hz

R
el

at
iv

e
 e

rr
o

r,
 %

Upper permissible bound of relative error

Lower permissible bound of relative error

Fig. 15 Relative error of the heat meter calculator with the

random flow
Results presented in Fig. 14 and 15 demonstrate that

the flow type (ramp or random) have no influence on
relative error of the heat meter calculator in a sense that it
remains within the maximum permissible error range.
The last experiment showed how heat meters software
protection algorithms operate when faulty signals from
measurement converters are received. For this experiment,
flow sensors signals of the heat meter were chosen. The
manufacturer declares that the signal received from the
flow sensor can have the following parameters: amplitude
can vary 3 0,3 V , duty cycle – in bounds of %8020 .

According to this, the test sequences were generated:
 Pulse signal (3 0,3 V), with varying amplitude in

form of a triangle,
 Pulse signal (3 0,3 V), with varying amplitude in

form of a rectangular,
 Pulse signal (3 0,3 V), with varying amplitude in

form of a sine,
 Pulse signal (3 0,3 V), with varying amplitude in

form of uniform noise,
 Filtered pulse signal.

The figure below demonstrates how varying pulse
amplitude affects the calculated volume error of heat
conveying liquid. When test sequences of the filtered pulse
signal (Test6) were used, the calculated volume error of
heat conveying liquid was similar to the maximum
permissible error. Thus, heat meters software receiving
such a “faulty” signal will work normally and can be

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS V. Knyva, M. Knyva

ISSN: 1109-2734 171 Issue 3, Volume 9, March 2010

considered as metrologically reliable. With other test
sequences (Test2–Test5), the maximum permissible error
was exceeded about two times. The experimental results
illustrate that the test sequence with varying amplitude in
form of uniform noise has the greatest influence on the
calculated results of heat meters.

0,00%

0,20%

0,40%

0,60%

0,80%

1,00%

1,20%

1,40%

1,60%

1 2 3 4 5 6 7

No.

R
el

at
iv

e
er

ro
r test2

test3

test4

test5

test6

Fig. 16 Calculated volume error of heat conveying liquid

The last experiment was made with “faulty”
conveying liquid temperature values. Nominal values of
flow and return liquids are 80 and 40 oC, whereas a
standard temperature measurement range of heat meters is
0-160 oC. Results are presented in Table 1 and Figure 7.
Analysis of the experiment results highlighted that in the
cases of particular combinations of temperature values (but
still permissible values) of conveying liquids the quantity
of heat given up is calculated wrongly, and the main thing
is that the software gives no report about the faults.

-12

-10

-8

-6

-4

-2

0

2

4

0 1 2 3 4 5 6 7 8

Matavimo nr.

S
an

ty
ki

n
ė

p
ak

la
id

a,
 %

Measurement no.

Upper permissible bound of relative error

Lower permissible bound of relative error

Fig. 17 Relative error of the heat meter calculator with

faulty temperature values

Consequently, experiments with the type approved
heat meter pointed out that in some cases, especially when
parameters of the signals (pulse amplitude and duty cycle)
received from sensors reach marginal but still permissible
values, the value of heat given up is calculated by the heat
meter calculator wrongly. It would be difficult or even
impossible to get such results by the standard heat meters
verification procedure. And this shows that after adoption
of the Measuring Instruments Directive and starting
verification of data processing software of heat meters
some of them fail to pass the type approval stage.

Conclusions
1. A method for estimation of measurement devices
software metrological reliability has been developed. The
method enables to test the implemented algorithms,
functionality and documentation of the measurement
device.
2. Analysis of potential errors that can influence
measurement devices software has shown that the method
of measurement devices reliability must contain the
following two stages: estimation of measurement devices
documentation and estimation of measurement devices
software functionality.
3. Experimental results have shown that the proposed
method is appropriate for estimation of metrological
reliability of measurement devices software.
Examination has confirmed that simulation of heat meters
measurement converters signals identifies logical faults of
the software protection algorithm:

 Logical faults in the software protection
algorithm when temperature sensors measure higher
than the maximum permissible temperature of flow
liquid or negative temperature of return liquid.

 Incorrect volume result and “no faults detected”
by the software protection algorithm when
simulating a “corrupted” signal of a flow sensor.

References

[1] Directive 2004/22/ec of the European Parliament and of the
Council of 31 March 2004 on Measuring Instruments. Official
Journal of the European Union. – 2004. [europa.eu.int].
[2] Software Requirements on the Basis of the Measuring
Instruments Directive. WELMEC guide 7.1. – 1999.
[www.welmec.org].
[3] Lazić, Lj., Velašević, D., Mastorakis, N., A framework of
integrated and optimized software testing process, WSEAS
TRANSACTIONS on COMPUTERS, Issue 1, Volume 2, 15-23,
January 2003.
[4] Čitavičius A., Knyva V., Knyva M. Investigation of Heat
meters Software Functionality. Digest of Conference on precision
electromagnetic measurements (CPEM 2006), Torino, Italy. –
2006, P.418-420.
[5] Knyva V., Knyva M. Investigation of Heat Meters Data
Processing Software Proceedings of the 2007 WSEAS Int.
Conference on Circuits, Systems, Signal and
Telecommunications, Gold Coast, Australia, January 17-19, 2007
[6] Knyva V., Knyva M. Problems of Heat Meters Software
Verification. WSEAS Transaction on Systems. – Athens:WSEAS
Press, Issue 5, Volume 6, 2007
[7] Čitavičius A., Knyva V., Knyva M. Verification of User
Interface of Supply to the Customer by Mains Measuring
Devices. WSEAS Transaction on Systems. – Athens:WSEAS
Press, 2006. – Vol. 5, No. 10, P. 2450-2455.
[8] Francisco J. G., Veronica R., Virtudes T. Pseudo-random
sequence generators based on cellular automata and bent
functions . WSEAS Transaction on Compuiter Research. –
Athens:WSEAS Press, Issue 5, Volume 6, 2008
[9] Cox M. G., Harris P. M. Design and use of reference data
sets for testing scientific software. Analytica Chimica Acta. –
1999. – Vol. 380, No. 2. – , P. 339-351.
[10]Niculescu E., Purcaru D., Niculescu M. Worst Case
Analysis of the Analog Circuits, Proceedings of the 11th WSEAS
International Conference on CIRCUITS, Agios Nikolaos, Crete
Island, Greece, July 23-25, 20

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS V. Knyva, M. Knyva

ISSN: 1109-2734 172 Issue 3, Volume 9, March 2010

