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Abstract: The effective noise reduction schemes in ultrasonic inspection have shown significant role for detection  
of flaws in materials. This paper presents the comparative result of noise reducing schemes based on 
Hilbert-Huang transform and Wavelet transform. The basic principle of HHT scheme includes two parts which are 
empirical mode decomposition (EMD) algorithm and a sum of intrinsic mode functions (IMF). By doing EMD 
process, the valuable information out of individual IMF can be maintained with reduced noise level for feature 
vectors. In the Wavelet transform, the signals are decomposed into low and high information and the feature 
vectors can be selected by Wavelet coefficients. In order to compare the performance of the two distinct schemes, 
this paper utilizes the soft and hard thresholding criterion on WT and HHT.  
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1 Introduction 
Ultrasonic inspection techniques are commonly used 
to characterize welds in a variety of applications such 
as chemical and nuclear plants, and gas transmission. 
Due to the imperfections introduced into the material 
during the welding process, welding regions are often 
susceptible to various kinds of defects.  In ultrasonic 
inspection of submarine hull welding, the detection of 
flaws is often rendered difficult by the clutter 
introduced due to the grain structure of the material. 
The scattering of ultrasonic waves from grain 
boundaries can interfere and introduce artifacts in the 
received signal that can sometimes mask indications 
of a small flaw. Hence, denoising the signal will 
enhance the ability of the automatic signal processing 
(ASP) system to detect flaws. In order to reduce noise 
in the detected signal, researchers provided many 
different kinds of signal processing methods, such as 
Short Time Fourier transform (STFT), 
two-dimensional fast Fourier transform, Wavelet 
transform and Wigner-Ville Transform [1,2]. 
Time-frequency distribution method is one of popular 
approaches in various applications for non-stationary 
and nonlinear signals [3]. Since STFT only analyzes 
stationary signals, the window width must be 
restricted in time and frequency domain. Wavelet 
transform has advantages such as being able to change 

adaptively to the time and frequency resolution 
according to the different frequency band, but the 
performance depends on the selection of wavelet 
basis. 

Hilbert-Huang Transform (HHT) is a 
time-frequency analysis technique introduced by 
Huang et al, to process non-stationary signals. It 
combines the Hilbert transform and the Empirical 
Mode Decomposition (EMD). According to time scale 
characteristics, a signal is decomposed into a sum of  
monotonic function called Intrinsic Mode Function 
(IMF), which emphasizes local feature. [4] has been 
applied to EEG signals using the characteristics of 
IMF, instantaneous frequency (IF), marginal 
frequency (MF), and the Hilbert spectrum. In [5], Qin 
et al, introduced the instantaneous frequency 
estimation with iterated Hilbert transformation for 
multi-component demodulation. Through the 
decomposition, these IMF coefficients are 
transformed and processed by Hilbert transform. The 
HHT has two advantages: First, the signals with 
variable amplitudes and frequencies are obtained 
based on the EMD process. This process shows the 
advantage of breaking down the restriction of the 
Fourier transform with fixed amplitudes and 
frequencies. Second, EMD belongs to adaptive 
decomposition whose basis functions are sine and 
cosine functions, which has a series of variable 
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amplitudes and frequencies. For non-stationary signals, 
this paper applied to the HHT method for reducing the 
noise. HHT can be applied to vector controller in 
control system [6]. 

 In this paper, we describe the introductory 
ultrasonic welding inspection system in section 2. 
Wavelet transform and Hilbert-Huang transform will 
be explained in section 3 and 4 including the 
experimental results. Conclusions are drawn in section 
5. 
 
 
2 Ultrasonic inspection system 
Welding is the most efficient way to join metals.  It is 
also the only way to join two or more pieces of metal 
to make them act as one piece.  Welding is widely used 
to manufacture or repair all products made of metal.  
Welds are encountered in many structures such as gas 
transmission pipelines, nuclear power reactors, 
aircrafts, automobiles, and ships.   

Weld defects are produced by material stress, 
fatigue, and environmental changes as well as the 
manufacturing process.  During weld inspection, the 

commonly occurring defects in welded joints are 
porosity, slag, lack of fusion, and cracks in Figure 1.   

These defects can be categorized into two major 
types of discontinuities, namely volumetric and planar.  
Volumetric discontinuities include porosity and slag.  
Lack of fusion and cracks in the joints are referred to 
as planar flaws. 

Test welds were fabricated with induced 
discontinuities. The welded test plates were 24 x 24 x 
1 ½ - inch thick HY-80 steel as shown in Figure 2.  A 
gas metal arc welding (GMAW) process was used to 
fabricate the plates.  Figure 3 shows a general 
scanning procedure and geometry for a test plate.  The 
transducer was moved along the longitudinal axis of 
the weld. In order to ensure coverage of the defect area, 
the test sample plate was scanned from either sides of 
the weld, referred to as north and south views. 

Signals using an automated scanning system were 
generated using a 5 MHz transducer, 60 degree angle 
beam, and a sampling frequency of 25 MHz. Figure 4 
shows the measured signal and corresponding 
frequency spectrum. 
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Fig. 1. Description of flaw types. 

 
Fig. 2. Test sample of weld inspection. 
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Fig. 3. Weld inspection geometry. 

 
3   Wavelet transformation 
 
3.1 General 
Wavelet transform [7-9] is a recent analysis technique 
that is becoming increasing popular in many signal 
processing applications. The main characteristic of the 
wavelet transform is its multi-resolution 
decomposition of the information contained in a 
function or signal at different scales. In other words, 
wavelet analysis allows the use of longer time 
intervals where we want more precise low frequency 
information and shorter time intervals at high 
frequency information to get a good time resolution. 

In the time-frequency plane, the basis functions of 
wavelet transform are localized in both frequency 
(scale) and time, in contrast to Fourier basis functions 
that are localized only in frequency.  This multi-scale 
or multi-resolution analysis (MRA) is based on the 
following properties.  First, the spanned signal spaces 
are nested from the null space to the full space, which 
can be written as 
 

)(}0{ 2
21012 RLVVVVVVV =⊂⊂⊂⊂⊂⊂⊂⊂= ∞−−∞− LL

  (1) 
 
The above equation implies that 1V  consists exactly of 
all the functions in 0V  compressed by a factor of 2, 2V  
consists of the functions in 0V  compressed by a factor 

of 422 = , 1−V  consists of the functions in 0V  dilated  
by a factor 2, and so on.  For every pair of spaces 

},{ 1+jj VV , we can define an orthogonal complement  
 
 

 
jW  from which the higher space can be recovered.  

This relation can be expressed as  
 

.  ,1 ZjVWV jjj ∈=⊕ +                    (2) 
 

The symbol ‘⊕’ in Eq. (2) implies that the vectors in 
jW  plus the vectors in jV  can generate all vectors in 

1+jV .  jV and jW  are orthogonal.  The basis for each 

nested subspace jV  are derived from a scaling 

function )(tφ .  This scaling function )(tφ  and its 
translation )()( kttk −=φφ  form an orthonormal 
basis for 0V  and can be written as { })(0 tspanV k

k
φ= .  

Hence, any function 0)( Vtf ∈  can be expressed as 

∑=
k

kk tatf )()( ψ .  A two dimensional family of 

functions is generated from the dyadic scaling 
function according to ))(2(2)( 2/

, ktt jj
kj −= ϕϕ  so 

that { })(, tspanV kj
k

j ϕ= .  The details in the signal 

reside in the subspaces jW  which are spanned by 

dilates and translates of the wavelet function ).(, tkjψ   
Furthermore, it is required that the scaling functions 
and wavelets be orthogonal. 
 
 
3.2 Denoising scheme 
The original wavelet shrinkage algorithm of Donoho 
and Johnstone [10][11] has found many applications  

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Jaejoon Kim

ISSN: 1109-2734 93 Issue 2, Volume 9, February 2010



 
(a) (b) 

Fig. 4.  The original signal and its spectrum. 
 
 
in data de-noising.  Noise cancellation using wavelet 
shrinkage is one possible approach for ultrasonic 
nondestructive evaluation. The main idea underlying 
wavelet shrinkage de-noising relies on wavelet 
coefficient thresholding.  A standard model of noise in 
signals is additive Gaussian white noise that can be 
modeled as 
 

iii zfy += ,  .1,...,1,0 −= ni            (3) 

where if  are samples of f  and iz  are independent 
and identically distributed (iid) N(0,1) random 
variables. For this model, Donoho and Johnstone 
showed in [12] that orthogonal wavelet transforms 
provide a powerful tool in recovering the original 
samples if  by applying a simple thresholding rule to 
the noisy wavelet coefficients.  The wavelet shrinkage 
de-noising procedures can be summarized as follows: 
 
1. Decomposition. 
Apply the discrete wavelet transform to a signal in 
Equation (3.19) and get the wavelet coefficients that 
can be defined as  
 

)()()( iii zWTfWTyWT +=   (4) 

 
where WT stands for discrete wavelet transform, 

which is a linear operation.  Hence, )1,0(~)( NzWT
iid

i  
is also a Gaussian. 
 
 
 

 
 
2. Threshold detail coefficients. 
The main part of wavelet based de-noising is 
thresholding, which simply assigns wavelet 
coefficients with amplitudes less than a certain 
threshold to zero.  In order to choose the threshold 
value, it is defined by nlog2σλ =  where n is a 
signal length and σ is the noise variance of the 
wavelet coefficients at the finest level [13][14].  In this 
research investigation, the level-independent 
estimates [15] of λ , i.e.,  one common estimate for all 
the multi-resolution levels in the wavelet 
decomposition, is obtained by including all the detail 
coefficients.   

The threshold calculation method involves 
selecting the threshold as a quantile of the empirical 
distribution of the wavelet coefficients.  In order to 
perform the thresholding operation, a nonlinear soft 
thresholding operation [16] may be applied as 
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3. Reconstruction. 
Using the inverse DWT, the thresholded wavelet 
coefficients are transformed back to obtain the filtered 
estimate of function, if̂  of if . 

Figure 5 shows the denoised signal and 
decomposition process by the Daubechies Wavelet 
threshold method. 
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4    Hilbert-Huang Transformation 
 
4.1 General 
The Hilbert Huang Transform (HHT) consists of two 
processes. First, it performs the Empirical Mode 
Decomposition (EMD) of the signal. Second, it 
calculates the Hilbert Spectrum of the EMD output 
IMFs. From these spectrums, an amplitude and 
frequency-time representation of the signal can be 
determined. Figure 6 describes the general flow of 
HHT. EMD algorithm plays role in HHT method to 
remove the measurement noise. The main interest of 

the EMD is to consider the features of the analyzed 
signal, which are oscillations on determining the IMFs 
by using an iterative process. This explains that the 
time-scale of the decomposition will automatically be 
adapted to the dynamic of the analyzed signal. The 
individual IMF is the result of the sifting process, 
which attempts to satisfy the following two criteria 
[17-20]. 
 

(1) The number of zero crossings and the number of 
local extrema must be the same or off by at 
most one. 

 
 
 

 
(a)

 
(b) 

 
Fig. 5. The results from (a) a denoised signal and (b) its decomposition by Wavelet Transform 
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 (2) The mean defined by the average of the local 
maxima envelop and local minimum envelop 
must be zero. 

 
The following describes the general procedures for 

the sifting process of EMD. 
 
Step 1:  Calculate the upper and lower envelopes of 

the signal x(t) and their mean value m1(t). 
Step 2:  Calculate h1(t)=x(t)-m1(t) 
Step 3:  Check if h1(t) satisfies the IMF properties.  
Step 4:  If not, use h2(t)= h1(t)-m2(t) to obtain new h, 

where m2(t) is found from h1(t) as in Step 
1. 

Step 5: Continue until an hk(t) satisfies the IMF 
properties. When done, c1(t)=hk(t) is the 
first IMF. 

Step 6: Considering the r(t)=x(t)-c1(t) as the new 
signal, continue from Step 1 to get the 
higher IMFs, upto cn(t). The process is 
continued until the residue becomes a 
monotonous function. 

 
Figure 7 shows the EMD decomposition and 

corresponding frequency spectrum on different scales 
with a signal,  

   randt
tttx

∗+∗∗∗+
∗∗∗+∗∗=

2.0)1502sin(
)1002sin()*502sin()(

π
ππ     (6) 

From Figure 7, it can be seen that EMD is a new 
principal component analysis method, which extracts 
IMFs from high to low frequency, and those IMF 
coefficients focus on the most significant information 
of the original signal. Generally, noises are mainly 
concentrated on the first several scales. In Figure 7, 
IMF1 mainly includes high-frequency noise on the 
first scale, IMF2 on second scale of 150Hz, IMF3 of 
100Hz, and IMF4 of 50Hz respectably. Through this 
process, the useful information can be extracted from 
EMD algorithm. 
 
 
4.2 Denosing scheme 
In Figure 5-(a), we can see that the denoising effect is 
not very well compared to that of the Wavelet 
transform. Figure 5-(b) shows the decomposition on 
different scales and the decomposition shows that 
measurement noise still exists on different scales. This 
paper uses the HHT method to remove the 
measurement noise. Figure 8 is the decomposed signal 
by HHT, which shows that noise and useful signal 
mainly focus on the first several scales (such as 1st,2nd, 
3rd). In other words, the rest of IMFs can be ignored 
since the scales of the intrinsic mode amplitude are 
very small. 

 

 
 

Fig. 6. The overall process of HHT 
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(a) 

 
(b) 

 
Fig. 7. EMD decomposition and frequency spectrum analysis: (a) EMD decomposition and  

(b) Frequency spectrum on different scales 

The denoising procedure by HHT is as follows: 
(1) The signal with the noise is decomposed by 

EMD. 

(2) From the scale with the valuable information, 
for example, 1st, 2nd or 3rd scale, choose 
appropriate threshold at every scale [21] and 
remove high frequency noises using Eq. (7). 
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where }{ jC are thresholds. The proceeded IMF 
coefficients from those scales (mainly the first 3 

scales) are reconstructed and the filtered signal can be 
obtained from the reconstruction process. Fig.8-(b) 
shows the filtered signal by the method above. 
Comparing to Fig.5-(a), we could figure out that the 
result of the HHT method is better than that of the 
Wavelet transform. 

 
 

 
(a) 

 
(b) 

 
Fig. 8.  The results from (a) decomposition by HHT and (b) the denoised signal. 
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5 Conclusion 
This paper introduced a method that is used to remove 
the measurement noise in welding by HHT. After 
analyzing its characteristics, the HHT method showed 
the capability to remove the measurement noise. The 
results showed that IMF coefficients by EMD include 
the local attribute information of the signal, which can 
reflect the signal’s non-stationarity. Compared to the 
Wavelet transform, the HHT method has a better 
improvement.  
     Using the HHT method, several problems should be 
resolved for the future works. First, boundary 
treatment: Due to the limited length of the signal, both 
its two endpoints are not sure to be the extrema, 
therefore, the upper and lower envelop by cubic spline 
interpolation could be distorted seriously near the 
signal’s each endpoint. Therefore the method of 
symmetric extension, endpoints value extension or a 
method selecting a starting point of the spline 
interpolation near the endpoint according to the 
change trends should be considered. Second, soft 
thresholding method: For the denoising purpose, it 
always comes up as a main issue for thresholding. We 
need to more study for the optimal thresholding value 
selection.  
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