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Abstract: The line-to-output (LTO) frequency response of switched DC-DC converter describes how the small-
signal harmonic perturbation of the converted input DC voltage penetrates into the converter output, depending 
on the frequency of this perturbation. In the paper, the LTO frequency response conceived in this sense is faced 
with the LTO response, obtained by applying the well-known State-Space-Averaging (SSA) technique to 
switched converters, with the aim of determining the fundamental limitations of the SSA-approach. The general 
analysis is then applied to Buck-, Boost-, Buck-Boost-, and Cuk- type converters. It is shown that the accuracy 
of SSA outputs is related to the character of the state matrices of the converters. 
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1   Introduction 
Averaging belongs to the most popular tools for 
effective modeling and computer simulation of 
switched circuits with a view to DC-DC converters, 
both in the time and the frequency domains [1-22]. 
Instead of a complicated switched-level model of the 
converter, a simplified model is employed, which 
smoothes the switching effects and replaces the 
complicated waveforms by their low-frequency 
envelopes. The State-Space Averaging method 
(SSA) was published in 1977 [2], and circuit-
oriented tools for simple building of the averaged 
models were subsequently designed, particularly the 
method of converter canonical models [3] and the 
method of PWM switch [4, 5]. Problems associated 
with the impact of ESR (Equivalent Series 
Resistances) modeling of filtering capacitors are also 
discussed in the last two references when the method 
of PWM switches can provide different results from 
those by the SSA approach. The final solution of the 
above problem is described in [6]. A special way of 
implementing the model of the PWM switch 
guarantees the same results as those of the SSA 
method. This procedure is then generalized in [7] for 
behavioral modeling of the actual influence of switch 
parameters, and another generalization is described 
in [8], providing automatic extraction of switch 
parameters from complex SPICE models of the 
transistor and the diode. 

Since the average models enable a simple small-
signal AC analysis, they play an irreplaceable role in 
the analysis of small-signal frequency responses of 
switched converters. However, since the averaging 
techniques represent a certain simplification of the 
original switched-level model, the question can arise 

whether such a simplification introduces errors in the 
AC analysis, with a negative impact, for instance, on 
the results of the stability testing of the switched 
regulator. Back in the original work [2], the accuracy 
of the SSA method is determined by a condition that 
the natural frequency of the filter inside the switched 
converter must be much lower than the switching 
frequency. An additional condition must be also 
fulfilled, namely that the frequency of the signal 
which modulates the switching duty ratio must be 
also substantially below the switching frequency [9], 
[10]. A statement is given in [11] that SSA provides 
exact results only for zero-frequency signals, and 
when this frequency approaches the switching 
frequency, the error becomes ill-defined. In fact, the 
switching frequency does not appear in the classical 
SSA method, but it represents an important real 
parameter of switched converter. In [12], two 
assumptions for a correct operation of the SSA 
method are defined: 1) The switching frequency is 
much higher than the highest natural frequency of 
the converters in each switching phase, and 2) the 
input of the converters in each switching phase must 
be time-independent or a slow time-varying variable 
in comparison with the switching frequency. In [13], 
the conditions for the justification of state-space 
averaging have been characterized as follows: a 
„small ripple” condition, a „linear ripple” 
approximation, and „the degree to which certain 
vector fields commute“. As a consequence of these 
limitations, several modifications of the conventional 
averaging techniques have been developed, enabling, 
for example, an analysis of resonant-type converters 
[12, 13, 14] or predicting the switching instabilities 
in peak-current PWM converters [15]. 
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The above facts can raise doubts whether the 
conventional SSA technique provides credible 
outputs of the analysis of frequency responses, 
particularly near and above the Nyquist frequency. 
When perturbing the input of the converter by a 
small-signal harmonic excitation with the frequency 
ωi, there appears a rich spectrum at the converter 
output. If we consider the single spectral term at 
frequency ωi, then the converter transfer function can 
be defined as a ratio of the phasor that represents this 
spectral term, to the phasor of the input signal. In 
this paper, we find an answer to the following 
question: Does the SSA method provide a frequency 
response, also known as the LTO (Line-To-Output) 
response, that precisely corresponds to the above 
transfer function? 

The paper has the following structure: Section 2, 
which follows this Introduction, specifies the 
assumptions for the subsequent analysis, and 
introduces the model of switched converter. Based 
on the Fourier analysis, a structure of general 
equations of the converter is found, which enables 
numerical computation of the spectral terms of the 
output signal of the converter on the assumption of 
its harmonic excitation. Also, a connection between 
the conventional SSA equations and the above 
general equations is found, and an error term is 
identified which represents the disagreement 
between the output of the SSA method and the actual 
behavior of the converter. In Section 3, the results of 
numerical computations for Buck, Boost, Buck-
Boost, and Cuk converters are presented, and 
connections between the SSA inaccuracies and the 
forms of the state matrices discussed. 
 
2   Mathematical model 
Let us consider a DC-DC converter consisting of 
linear passive elements and ideal switches that have r 
different configurations. Normally, r = 2 for 
converters operating in the continuous current mode 
(CCM), and r = 3 for converters operating in the 
discontinuous current mode (DCM). 

Let us restrict the subsequent analysis to 
converters operating in CCM, where the switching 
instants are determined only by the external control 
signal, i.e. r = 2. In each switch configuration the 
converter represents a linear system 

 v
dt
d

ii BxAx += , i = 1, 2, (1) 

where nℜ∈x  is the state vector, nn
i

×ℜ∈A , 
n

i ℜ∈B  are the converter state matrices and vectors, 
and v is the input voltage. Switch states periodically 
repeat with the period Ts = 1/fs = 2π/ωs, where fs (ωs) 

is the switching frequency. 
Let the converter operate with a constant ratio of 

durations of switching phases T1 and T2, where 
T1+T2 = Ts , i.e. with a constant duty ratio d = T1/Ts. 
Thus the results obtained by this analysis will be 
useful in assessing the applicability of the SSA 
method for converters operating with constant duty 
ratio and for the evaluation of accuracy of „line-to-
output“ responses. 

With respect to the above assumptions, the 
converter can be regarded as a linear system with 
time-varying structure, having the state equations 

 vtt
dt
d )()( BxAx += , (2) 

where A(t) and B(t) are periodic matrix (vector) 
functions with repeating period Ts. 

With respect to periodicity, matrix A and vector 
B can be represented by the Fourier series: 

 ∑
+∞

−∞=

=
k

tjkk set ω)()( AA , ∑
+∞

−∞=

=
k

tjkk set ω)()( BB . (3) 

In the case of two-state switching, where A1 and B1 
correspond to the “ON” state of the active switch 
lasting for dTs and A2 and B2 correspond to the 
“OFF” state lasting for (1-d)Ts, the spectral 
components A(k) and B(k) are given by the well-
known formulae: 

)()1( 21221
)0( AAAAAA −+=−+= ddd , 

)()sin(
21

)( AAA −= − djkk e
dk

dkd π

π
π , k≠0,  (4a) 

)()1( 21221
)0( BBBBBB −+=−+= ddd  

)()sin(
21

)( BBB −= − djkk e
dk

dkd π

π
π , k≠0.  (4b) 

As system (2) is linear, a “one-sided” excitation 
of the converter can be considered in the form 

 tj ietv ω=)(  (5) 

with frequency fi (or ωi=2πfi). 
Then the spectrum of the state vector x of the 

converter in the steady state contains only 
components with combinational frequencies 
kωs+mωi, k= …-2, -1, 0, 1, 2, …, m = -1, 0, 1. The 
spectral term of the state vector on frequency 
kωs+mωi will be denoted ( )mk ,x  or simply (k, m). 
 

 
Fig. 1: Spectrum of state vector. 
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The Fourier series of the state vector can be 
written as 

[ ]
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and its time-derivative will be 

∑
+∞

−∞=

+++=
k

tjk
is

k
s

iekjjkt
dt
d ωωωω )1,()0,( )([)( xxx  

.])( )1,( tjktjk
is

ii eekj ωωωω −−−+ x  (7) 

With respect to (3), (5)-(7), state equation (2) can 
be rewritten to 
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After a rearrangement we obtain 
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representing an equality of the Fourier series of two 
signals. This means that individual spectral 
components with the corresponding frequencies must 
be equal. 

Let us exclude cases where the spectral terms 
cross due to aliasing from further analyses. With 
respect to the fact that the spectra of matrix A and 
vector B contain only terms at multiples of ωs, the 
energetic balance of (9) is formed separately by 
spectral components with the same index ωi. 

Therefore (9) can be divided into three equations: for 
components (•,+1) 

[ ] =+ +
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−∞=
∑ tkj
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isekj )()1,()( ωωωω x
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for components (•,0) 
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and for components (•,-1) 

[ ] =− −
+∞

−∞=

−∑ tkj

k

k
is

isekj )()1,()( ωωωω x

∑ ∑
+∞

−∞=
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k

tkj
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For a fixed k, i.e. for a particular spectral 
component (k,+1), the factor tkj ise )( ωω +  in (10a) is 
reduced and we obtain a set of n infinite linear 
equations that follows from the equality of spectral 
component at frequency kωs+ωi. 

 )()1,()1,()( )( kk
is

m

mmk kj BxxA −=+−∑
+∞

−∞=

− ωω . (11) 

Writing (11) for all spectral components leads to an 
infinite set of linear equations for an infinite number 
of unknowns x(k,1). A fragment of the set is shown as 
(12). A similar procedure can be applied to (10b) for 
components x(k,0), and to (10c) for components x(k,-1). 
In contrast to (10a), both (10b) and (10c) lead to a 
homogenous set of equations as there is no input 
excitation at the particular frequencies. 

It was proved in [23] that for passive circuits the 
infinite set of equations has one and only one 
solution, and any corresponding finite set of 
truncated equations have a unique solution. If the 
maximum frequency ωi of the input signal is 
restricted, then the solution of the truncated set 
converges to the solution of the infinite set, i.e. for 
any chosen error there always exists a truncated set 
that approximates the solution of the infinite set with 
a lower error. 

(6) 

   …    …  … 
 A(0)-j(ωi-2ωs)E A(-1) A(-2) A(-3) A(-4)  x(-2,1)  B(-2) 
 A(1) A(0)-j(ωi-ωs)E A(-1) A(-2) A(-3)  x(-1,1)  B(-1) 
…A(2) A(1) A(0)-jωiE A(-1) A(-2)  x(0,1) = - B(0) 
 A(3) A(2) A(1) A(0)-j(ωi+ωs)E A(-1)  x(1,1)  B(1) 
 A(4) A(3) A(2) A(1) A(0)-j(ωi+2ωs)E  x(2,1)  B(2) 
   …    …  … 

(12)
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It is obvious that a nonzero solution can be 
obtained only from (10a), which corresponds to the 
chosen input signal (5). Other spectral components 
will not be excited. 

Assuming k = 0 in (11) and after a rearrangement 
we get 

 [ ] )0(

0

)1,()()1,0()0( BxAxEA −=+− ∑
+∞

≠
−∞=

−

m
m

mm
ijω , (13) 

where E is the unity matrix. 
Without the second term on the left-hand side, 

(13) represents the well-known state equation of the 
averaged model. Thus the second term represents an 
error factor that determines the difference between 
the averaged model and the reality. 

The impact of the error term on the accuracy of 
the averaged model depends on the spectrum of 
matrix A and the spectral components x(m,1), which 
represent ripple of the state vector around its average 
value. The spectrum of matrix A is determined by 
state matrices in the individual quasistable phases of 
the converter and by the duty ratio d. The influence 
of spectral components x(m,1) decreases with 
increasing ratio of the switching frequency to the 
highest natural frequency of the converter. 

Examining (12) and (13) one can find that: 
• The error term in (13) exists even for ωi = 0 
provided that A(k)≠0 for k≠0. Harmonic 
components of the switching frequency kωs (k≠0) 
are translated back to the DC component by the 
switching action, causing a difference between DC 
solution of the averaged model and reality. 
• For ωs→∞, the amplitudes of all spectral 
components x(k,+1) (k≠0) of the state vector, which 
represent the ripple of state variables, vanish. It can 
be proved by rearranging (11) for k≠0 to 

 
)()(

)(
)1,(

)1,()(

is

k
k

is

m

mmk

kjkj ωωωω +
−

=−
+

∑
+∞

−∞=

−

Bx
xA

. (14) 

As the spectral components of A are bounded and 
state variables x have finite energy, the sum on the 
left-hand side will be finite according to Parseval’s 
theorem. For ωs→∞, we obtain a simple solution 
x(k,+1) = 0 for k≠0. The only nonzero variable in (12) 
will be the component x(0,+1). Equation (12) 
transforms into (13) with the zero error term on the 
left-hand side, i.e. into the averaged model. 

The result confirms that in the case of negligible 
ripple of the state variables (i.e. for ωs→∞), the 
averaged model gives exact results. 

The components of the error term in (13) can be 
computed numerically by truncating the original 

infinite set. Equation (13) is highlighted in (12). The 
magnitudes of the components of the generalized 
vector x(k,1) quickly decrease with increasing k. The 
same holds for the spectral components of matrix A 
and vector B. It is therefore possible to use a finite 
number of equations and to determine, with a certain 
error, the components of x(k,1) by solving (12). It 
requires the knowledge of spectral components of 
matrices A and B, and frequencies ωi and ωs. 

Let us restrict the harmonic components x(k,1) to a 
finite set, i.e. k = -K, ...,0, ...,K., with K being a 
positive integer. For the converter with n 
accumulating elements (the state vector has n 
components), equation (12) represents a set of 
(2K+1)n scalar linear equations. Numerical 
experiments show that starting from a certain value 
of K, a further increase in the number of harmonic 
components does not influence the component (0,1). 
The number of harmonics is a trade-off between 
accuracy and the size of the resulting system of 
equations. If ωM is the maximum frequency of 
interest of the input signal for examining LTO 
transfer functions, then 

 ⎥
⎥

⎤
⎢
⎢

⎡
>

s

MK
ω
ω  . (15) 

Let us consider the truncated version of (12), 
where K has been chosen sufficiently high, such that 
the truncation error is negligible on the frequency 
interval of interest. Equations (12) can be rearranged 
as follows: 

 
2

1
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where x~  is a truncated approximation of the exact 
solution, EAH ijω−= )0(

11 , )0(
1 BG −= , 

TKK ),...,,,...,( )()1()1()(
2

−−− −−−−= BBBBG , and H12 to 
H22 represent the remaining coefficients of the 
truncated set (12). 

Then the SSA model can be written as 

 1
)1,0(

11 Gx =Η A  , (17) 

where xA is the averaged solution. The full model can 
be obtained by pivoting-out higher spectral 
components 

 2
1

22121
)1,0(

21
1

221211
~)( GHHGxHHHH −− −=− . (18) 

The difference between the state vectors for full 
and averaged model )1,0()1,0()1,0( ~

AA xxx −=Δ  can be 
estimated from 
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which follows from a general procedure for 
perturbed solution of linear equations [24]. 

The first term in brackets on the right-hand side 

 
Table 1: Analyzed switched converters. 

 
type schematic, output description state description 
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can be interpreted as an error caused by the 
excitation of higher harmonics from the component 
(0,1), and the second term represents the excitation 
due to the input signal. 

 
3   Numerical experiments 
In order to be able to compute small-signal transfer 
functions in a general case, it is necessary to 
complete (2) with the output equation to the full 
form of state description 
 vtDtu )()( += xC , (20) 

where u is the output voltage, C is a vector of 
dimension (1, n), and D is a scalar. 

Similar to the derivation of (10), we obtain the 
frequency domain form of (20) 

+= ∑ ∑∑
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For the component (k, 1) and a finite number of 
harmonic components we obtain finally 

 )()1,()()1,( k
K

Km

mmkk Du += ∑
+

−=
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The spectral components C(k-m) and D(k) are given by 
formulae similar to (4). 

The analysis has been implemented in Matlab for 
an arbitrary K and for an arbitrary number of 
switching phases. Boost, Buck, and Buck-Boost 
converters from Table 1 were analyzed using the 
following parameters that assure operation in the 
continuous-current mode: 
d = 0.25, fs = 10 kHz, R = 60 Ω, C = 1 mF,  
L = 6 mH, RC = 1 Ω, RL = 3 Ω. 
 
The Cuk converter was analyzed using the following 
parameters: 
d = 0.25, fs = 10 kHz, R = 60 Ω, C1 = 1 mF,  
L1 = 10 mH, RC1 = 1 Ω, RL1 = 5 Ω, L2 = 10 mH, 
C2 = 1 mF, RC2 = 1 Ω, RL2 = 5 Ω. 
 

The table shows all matrices and vectors of the 
complete state description. Figs. 2 and 3 show the 
results of AC analyses obtained by the numerical 
solution of (12) for K = 10. 

A comparison of spectral component (0,1) with 
the LTO transfer functions generated by the SSA 
method shows a good agreement for the Buck and 
Boost converters in a wide frequency band, i.e. also 
above the Nyquist frequency fs/2 = 5 kHz. But for 
the Buck-Boost and Cuk converters, a substantial 
difference occurs above the Nyquist frequency. 

(a) 

(b) 

Fig. 2: Comparison of the LTO frequency response 
obtained from the averaged model (dots) with 
spectral components (-1,1), (0,1), and (1,1) for (a) 
Buck, (b) Boost converters. The vertical dashed line 
represents the 5 kHz Nyquist frequency and the full 
line represents the 10 kHz switching frequency.  
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In the case of the Buck converter, the agreement 
between the results of the SSA method and the 

frequency response (0,1) can be explained based on 
the form of state matrices A1 and A2 in Table 1. The 
matrices are the same. According to (4a) this means 
that all spectral components except for the DC 
component are zero: A(k) = 0, k ≠0. It means that the 
error term on the left-hand side of (13) is zero, 
irrespective of the nonzero higher spectral 
components of the state vector, representing the 
ripple of circuit quantities. The equality of the two 
state matrices means that the SSA method gives 
correct results and provides an accurate AC analysis 
for all frequencies, i.e. also above the Nyquist 
frequency. 

The spectrum of matrices A and C is rich for the 
Boost converter as the matrices are time-varying. 
Thus the frequency-conversion effects occur and 
there is energetic interaction between the spectral 
terms. As vector B is constant, the higher harmonics 
are not directly excited. Their nonzero magnitude 
results from the conversion of the (0,1) component. 
The higher harmonics cause the nonzero error term 
in (12), i.e. the difference between the component 
(0,1) and the LTO of the SSA model. However, their 
influence is negligible. 

State equations of the Buck-Boost converter are 
similar to those of the Boost converter. As vector B 
is time-varying, the higher harmonics are directly 
excited in (13) and their magnitudes are comparable 
to the (0,1) component. The difference between (0,1) 
and LTO occurs even below the Nuquist frequency, 
as shown in Fig. 3a. A similar behavior can be 
observed in the Cuk converter. There is a substantial 
difference between (0,1) and LTO below the Nuquist 
frequency, see Fig. 3b. 

Table 2 compares all four converters from the 
point of view of the interaction between the basic 
spectral component (0,1) and the higher components. 
The table shows both terms of (19) that quantify the 
influence of spectral conversion effects (matrix 
perturbation), and the external excitation (right-side 
perturbation) on the original SSA equations. The 
figures were obtained at the Nyquist frequency for 
the above values of network parameters. 
 
Table 2: Influence of higher harmonics on 

component (0,1). 
converter AA /Δ  BB /Δ  
Buck 0 0 
Boost 9.15*10-6 0 
Buck-Boost 9.15*10-6 4.77*10-3 
Cuk 9.18*10-6 0 

 
Let us consider an idealized Boost converter with 

lossless accumulation elements (RC = 0, RL = 0). 

Fig. 3: Comparison of the LTO frequency response 
obtained from the averaged model (dots) with
spectral components (-1,1), (0,1), and (1,1) for (a)
Buck-Boost, (b) Cuk converters. The vertical dashed
line represents the 5 kHz Nyquist frequency and the
full line represents the 10 kHz switching frequency. 
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Then its SSA model is simple enough to be solved 
symbolically. The LTO transfer function in CCM is 
then  

 22, )1(/
1

dRsLLCs
dK BTLTO −++

−
=  . (23) 

The converter works in CCM if the accumulation 
inductance L is greater than the minimum value 

 
Sf

RddL
2

)1( 2

min
−

=  . (24) 

The formula holds for a practical case when the 
output voltage ripple is negligible. For L = Lmin the 
minimum inductor current is 0, i.e. the current ripple 
is the maximum possible for CCM. Thus the higher 
harmonics, which cause the SSA model error, will be 
maximum. 

Let us fix the inductance at the value L = Lmin. 
The LTO transfer function will be 

12

1
1

1~
222

,

++⎟
⎠
⎞

⎜
⎝
⎛−

=
dsd

d
RCfsd

K
N

S
N

BTLTO

ππ
 , (25) 

where sN = s/(2πfS) is the normalized complex 
frequency. The term in brackets in the denominator 
represents the reciprocal value of the output ripple 
for ideal capacitor, i.e. for RC = 0 [9] 

 
S

r RCf
dk

u
u

==
Δ  . (26) 

At the boundary of CCM, the LTO transfer 
function of simplified converter depends only on the 
duty ratio d and the required output ripple. 

A similar procedure can be applied to the Buck-
Boost converter. The LTO transfer function of the 
lossless converter is 

 22, )1(/
)1(

dRsLLCs
ddK BBLTO −++

−−
=  . (27) 

The minimum inductance for the CCM operation is 
[9] 

 
Sf

RdL
2

)1( 2

min
−

=  , (28) 

which leads to  

12

1
1

~
22

,

++⎟
⎠
⎞

⎜
⎝
⎛−

−
=

ππ N
S

N

BBLTO

sd
d

RCfsd
dK  . (29) 

Formula (26) for the output ripple also holds for the 
Buck-Boost converter. 

Figs. 4 and 5 show the results of numerical 
simulation for the Boost and Buck-Boost converters 
at the boundary between CCM and DCM in order to 
evaluate the worst-case error of the SSA method. 

The accumulation inductance was set according to 
(24) and (28) for three values of the duty ratio d. The 
capacitor value was computed for kr = 0.01. Plot (a) 
shows the difference between SSA and full-model 
LTO responses in decibels for lossless converter. 
Plots (b) and (c) show the results for capacitor 
normalized ESR being RC/R = 0.01, and plot (c) for 
inductor normalized ESR being RL/L=0.5 10-3. In 
cases (b) and (c), the inductance was adjusted 
numerically, ensuring operation at the CCM 
boundary. 
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Fig. 4: Error of SSA LTO frequency response for 
Boost converter at CCM boundary, (a) ideal, (b) with 
RC, (c) with RC and RL. The vertical dashed line 
represents the 5 kHz Nyquist frequency. 
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Fig. 5: Error of SSA LTO frequency response for 
Buck-Boost converter at CCM boundary, (a) ideal, 
(b) with RC, (c) with RC and RL. The vertical dashed 
line represents the 5 kHz Nyquist frequency. 

 
Fig. 4 shows that the error is negligible for the 

Boost converter approximately up to 0.8 of the 
switching frequency. The analysis of Buck-Boost 
converter in Fig. 5 exhibits a substantial error even 
below the Nyquist frequency. 

4   Conclusions 
The paper shows that: 

(a) There is a simple numerical method for 
determining an arbitrary number of spectral 
components of the response of a switched converter 
excited by a single-tone input signal. It allows 
performing a generalized AC analysis of the 
converter. 

(b) The classical SSA equations can be seen as a 
simplified case of the general equation of switching 
converter that determines the response to the 
harmonic input signal in the frequency domain. 

(c) The difference between SSA model and actual 
converter behavior is given by the error term that 
depends on state matrices in quasistable switching 
phases and on higher spectral components of state 
variables. 

(d) The SSA method provides the most accurate 
results for the Buck converter, whose state matrices 
A1 and A2 are identical in both switching phases. The 
results of AC analysis are valid in a broad frequency 
band, i.e. also above the Nuquist frequency. On the 
other hand, inaccuracies occur even below the 
Nyquist frequency for the Buck-Boost converter. 
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