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Abstract: - The goal of this paper is to generate a laser pulse and to capture it by an image acquisition system. 

We use a confocal resonator to generate a laser pulse; then the generate light is focused in to an optical fiber 

using a lens; the light propagates through the fiber and at the fiber output light is projected on a CMOS sensor. 

We compute the PSF (point spread function) and MTF (modulation transfer function) in order to characterize 

the functionality of the lens and the optical part of a CMOS sensor. We analyze the CMOS electrical part 

considering the photon shot noise and the FPN (fixed pattern noise). Finally, we use a Lapacian filter, an 

amplitude filter and a bilateral filter in order to reconstruct the noisy blurred image. We consider the image 

capture system to be linear shift invariant, axial and the light is orthogonal to the system. 

 

Key-Words: - Hermite Gaussian polynomial, lens design, PSF, MTF, fixed pattern noise, photon shot noise, 

amplitude filter, Laplacian filter, bilateral filter   
 

1   Introduction 
Image acquisition sensors are complex systems of 

optical, mechanical and electrical components, 

which convert radiance into numerical signals [4,7]. 

Consequently, they require to transform the signals 

through a number of different devices. Our system 

consists of a laser whose functionality is 

characterized by the Hermite Gaussian polynomial, 

a graded index fiber, a lens, a CMOS sensor, a 

Lapacian filter, an amplitude filter and a bilateral 

filter. In this simulation we shall try to imagine the 

functionality of the system when a Hermite 

Gaussian pulse propagates trough it. We focus our 

analysis to the aspects related to system resolution, 

noises analysis and the signal recovery. 

Due to the signal transformations that happen 

during the pulse propagations trough the devices 

from which is made our image acquisition system, 

we need a controlled simulation in order to better 

understand the system functionality. We control the 

simulation environment in order to provide the 

engineer with useful guidance that improves the 

understanding of design considerations for 

individual parts and algorithms.  

We consider the image capture system to be LSI 

(linear shift invariant) [4,9,16], axial and the light is 

orthogonal to the system. We assume that we have a 

spherical mirror resonant cavity which generates the 

Hermite Gaussian paraxial beam. The Gaussian 

beam remains a Gaussian beam as long as the 

overall system maintains the paraxial nature of the 

wave [13]. Consequently, we have to ensure this 

condition and we focus the pulse, with a lens, set at 

z = 20mm in front of the resonator, in to a fiber. 

During the Gaussian pulse propagation trough 

the image capture system the useful signal become 

noisy and blurred. In order to reconstruct the signal 

we sharp and we filter the noises. 
  

 

2   The image capture system 
The image capture system can be divided in two 

parts: the optical part and the electrical part. The 

optical system must be axial.  

 

 

2.1   The resonator modes 
In order to find the laser modes we consider a 

confocal resonator system. The optical axis is noted 
with z, and the light propagates from left to right in 

report with the optical axis. The resonator is made 

by two concave mirrors of equal radii of curvature 

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Toadere Florin, Nikos E. Mastorakis

ISSN: 1109-2734 22 Issue 1, Volume 9, January 2010



2

d
R =  separated by a distance d, and one mirror is a 

partially refractive mirror 2M  [13]. We consider the 

middle of the resonator in the point 0
22

=+−=
dd

z .  

 

 
Fig. 1 A schematic of the image capture system 

 

After certain calculus [12], the modes in the middle 

of the resonator can be express as 
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where 0w is the waist of the beam, mH  is the 

Hermite Gaussian polynomials 
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Fig. 2 The Hermite Gaussian intensity distribution in 

transverse plane a) 00TEM , b) 11TEM , c) 12TEM   

 

Each set (m,n) corresponds to a particular transverse 

electromagnetic mode of the resonator as the electric 

(and magnetic) field of the electromagnetic wave is 

orthogonal in the middle of the resonator in point 

0=z . The lowest-order Hermite polynomial 0H  is 

equal to unity; hence the mode corresponding to the 

set (0,0) is called the 00TEM  mode and has a 

Gaussian radial profile. The laser output comprises a 

small fraction of the energy in the resonator that is 

coupled out through a partially refractive mirror. 

The width of the Gaussian beam is a monotonically 

increasing function of propagation on direction z, 

and reaches 2  times its original width at Rayleigh 

range. For a circular beam, this means that the mode 
area is doubled at this point [12,13]. 

In this paper we consider that the laser generates 

a pulse with a Gaussian radial profile ( 00TEM ). In 

order not to spread too much its width, in the 

Rayleigh range at 20mm, we focus the pulse in to a 

graded index fiber using a lens.  

 

 

2.2   The optical system analysis 
When we work with optical components, the most 

important problem is that it is impossible to image a 
point object as a perfect point image. An optical 

system is made by a set of components (surfaces) 

through which the light passes. The optical sensor is 
analyzed in space by the PSF (point spread function) 
and in the spatial frequency by the MTF 

(modulation transfer function), which are the most 

important integrative criterions of imaging 
evaluation for the optical system [3,4,9,10,16]. The 

PSF gives the 2D intensity distribution about the 
image of a point source. PSF gives the physically 
correct light distribution in the image plane 

including the effects of aberrations and diffraction. 

Errors are introduced by design (geometrical 

aberrations), optical and mechanical fabrication or 
alignment. MTF characterize the optical system 
functionality in spatial frequencies. Most optical 

systems are expected to perform a predetermined 
level of image integrity. A method to measure this 

quality level is the ability of the optical system to 

transfer various levels of details from the object to 

the image. This performance is measured in terms of 
contrast or modulation, and is related to the 
degradation of the image of a perfect source 

produced by a lens. MTF describe the image 
structure as a function of spatial frequency and is 

specified in lines per millimeter. It is obtain by 

Fourier transform in the image spatial distribution or 
spread function.  

When an optical system process an image using 

incoherent light, then the function which  describe 

the intensity in the image plane produced by a point 
in the object plane is called the impulse response 

function [3,4,9,10,16]: 

                       ( ) ( )[ ]yxfHyxg ,, =                         (3) 

H is an operator representing a linear, position (or 
space) invariant system. The input object intensity 

pattern and the output image intensity pattern are 
related by a simple convolution equation: 

( ) ( ) ( )( )[ ]∫ ∫
+∞

∞−

−−= βαβαδβα ddyxHfyxg ,,,                  
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      ( ) ( ) ( )∫ ∫
+∞

∞−

−−= βαβαβα ddyxhfyxg ,,,        (4)     

( ) ( )[ ]βαδβα −−=−− yxHyxh ,,  is the impulse 

response of H; in optics, it is called the point spread 

function (PSF) [3,4,9,10,16]. 
The image acquisition sensor’s PSF is a multiple 

convolution of individual response from each optical 

component trough which the light propagates: the 

lens and the transfer function of the CMOS [14,15] 

                      CMOSlens PSFPSFPSF ∗= .               (5) 

The PSF characterizes the image analyses in 

space but also we can characterize the image in 
frequency using the OTF (optical transfer function). 
OTF is the normalized autocorrelation of the transfer 

function and has the formula:  
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The numerator represents the area of overlap of two 
pupil functions P (square or circle), one of which is 

displaced by 
2

α
 in direction u and by 

2

β
in direction 

v; and the other in opposite direction by -
2

α
 and -

2

β
. The denominator represents the complete area 

of the pupil function [3,4,9,16].  

The change in contrast when an image passes 

trough an optical system is expected to have a lot to 
do with the optical transfer function that specifies 

the quality of the system. 

The MTF (modulation transfer function) is 
defined as: the ratio of the contrast of the output 

image to that of the input image 

contrast of output image
MTF

contrast of input image
= . 

The OTF describe the response of the optical system 

to a know input  and  the  relation between  OTF and 

MTF is: 

                           MTF OTF= .                            (7) 

In conclusion, the modulation transfer function is 

identical to the absolute value of the optical transfer 

function. The net sensor’s MTF is a multiplication of 
individual transfer functions in a way similar to 

equation 5. 

                       
CMOSlens MTFMTFMTF ⋅=               (8) 

              In general, the contrast of any image which has 

gone through an image capture system is worse that 

the contrast of the input image.  

      The PSF afferent to the sensor’s optical part is a 
convolution of individual response from the lens 
and the optical part of the CMOS sensor [14,15]. 

We work with multiple convolutions, and we focus 

our attention on space analysis using PSF specific to 

each device from the optical sensor. The optical 
fiber is analyzed from the spatial resolution point of 
view.  

 
 

2.3  The lens design 
Optical lens design refers to the calculation of lens 
construction parameters that will meet a set of 
performance requirements and constraints. 

Construction parameters include surface profile 

types and the parameters such as radius of 
curvature, thickness, semi diameter, glass type and 

optionally tilt and decenter [4]. In our particularly 

case we design a lens with power and coma x errors 
[10]. Before we proceed, we notice that the human 
eye can only distinguish aberrations up to the fourth 

or fifth order. When we design the lens we have to 
take in consideration the: aberrations, the aberration 

correction and the design consideration [18].  

 
 

2.3.1.   The monochromatic aberrations 
Aberrations are the failure of light rays emerging 

from a point object to form a perfect point image 
after passing through an optical system. Aberrations 

lead to blurring of the image, which is produced by 

the image-forming optical system [4,10,18]. The 
wave front emerging from a real lens is complex 
because has error in the design, fabrication and lens 

assembly. Nevertheless, well made and carefully 

assembled lenses possess certain inherent 
aberrations. To describe the primary monochromatic 

aberrations, of rotationally symmetrical optical 
systems, we specify the shape of the wave front 
emerging from the exit pupil. For each object point, 

there will be a quasi-spherical wave front 

converging toward the paraxial image point. 

 

 
Fig. 3 The wavefront aberrations 
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The wave aberration function, W(x,y), is defined 
as the distance, in optical path length, from the 
reference sphere to the wavefront in the exit pupil 

measured along the ray as a function of the 

transverse coordinates (x,y) of the ray intersection 

with a reference sphere centered on the ideal image 
point [4,10,18].  

To specifies the aberrations we use the Siedel 

field aberration formula: 
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klmW  are the wave aberration coefficients for the 

various terms of modes, h is the height of the object 

and ,r θ  are the polar coordinate in the pupil plane, 

2r                         Defocus, 
4r                         Spherical Aberration, 

( )θcos
3

hr            Coma, 

( )θ222 cosrh        Astigmatism,   

22rh                     Field Curvature, 

( )θcos
3
rh            Distortion. 

These Seidel aberrations formula represents 
orthogonal polynomials which have the next 
properties: field aberrations describe the wavefront 

for a single object point as a function of pupil 

coordinates (x,y) and field height h. The aberrations 

are described functionally as a linear combination of 
polynomials. Point aberrations depend only on pupil 
coordinates and each polynomial term represents a 

single aberration. The aberration polynomial may be 
extended to higher order; these are all the terms to 

fourth order. Ray aberrations are described by a 

polynomial one order lower than the corresponding 
wave aberrations [4,10,18]. 

The design variables are the two surface 

curvatures. The defect functions [10] are power and 

coma. The wavefront errors introduced are given by 

power 020W  and coma 131W  
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λ  - the wave length,  
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2.3.2   Aberrations correction 
We have the mathematical relation that describes the 
optical design which implies Seidel aberrations [4, 

10,18]. The defect vector f is a set of m functions 
i

f  

that depend on a set on n variables. The function is 

of the type:                                                                    

                              ff t ⋅=2σ                             (12) 

A is a )( mn× matrix of first derivatives: 
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and s are changes in the variables from the current 

design. The gradient g is a )1( ×n  vector given by:                                                                                                     
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Method of Least Squares 

)( 0 AsfAg t +=  

AsAgg
t+= 0  

AAC t=  

               00 =+ Csg  

is a set of simultaneous linear equations known as 
the normal equations of least-squares. Providing that 

the matrix C is not singular, these equations can 
always be solved, and the formal solution s may be 

written: 

0
1gCs −−=

.                         (15) 

The basic idea of the damped least-squares is to start 

with the basic equation for the least squares 

condition. 0g is the gradient at the starting point and 

augment the diagonal of the matrix C by the addition 
or factoring of a damping coefficient. Modifications 

of the form pcii +  for example, are called additive 

damping [10]. In the case of additive damping, the 
equation for the damped least-squares solution 

reduces to: 

                            00 =++ Cspsg .                     (16)                    

As the damping factor p increases, the third term in 
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the equation above becomes small and the solution 
vector becomes parallel to the gradient vector.                                                                                                                            

        0

1
g

p
s −= .                           (17) 

 
                                                                                                                                     

2.3.3   Calculus example 
Make the lens focal length 20mm with an f/2 

aperture (
ay  = 5mm). Let the half field angle 

cu  be 

0.1 (5.73◦) and the wavelength be 0.55µm. Let the 

glass index of refraction gn  be 1.5 and we assume 

the object is at infinity (M = 1). To solve this 
problem we must solve the equation system: 
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                  a                                                 b 

Fig. 4 The lens design, a) the MTF on Cartesian 

scale, b) the PSF on logarithmic scale 

 

 

2.4  The graded index fiber 
During the radiation propagation trough the optical 
fiber it supports two types of dispersions: material 

dispersion and modal dispersion. Happily, due to 

type of fiber that we use the modal dispersion is not 

important. A graded-index fiber is an optical fiber 

whose core has a refractive index that decreases 

with increasing radial distance from the fiber axis 

[9,12,13]. The index profile is very nearly parabolic. 

The advantage of the graded-index is the 

considerable decrease in modal dispersion ensuring 

a constant propagation velocity for all light rays  

We are interested to see what happens to a pulse 

that propagates trough a graded index fiber [9,12]. 

We use the beam propagation method and we 

assume the graded index medium has a refractive 

index variation of the form [9,12]: 

              ( )[ ]yxnyxn ,1),( 0 ∆+= .                      (18) 

0n is the intrinsic refractive index of the medium, 

n(x,y) is the medium index of refraction in the 

location (x,y), 

( )yx,∆  is the variation of n(x,y). 

In reference [12] is presented a beautiful 

demonstration in which a plane wave propagates 

trough a graded index fiber. After the plane wave is 

substitute in the wave equation, the equation is 

solved and the results are the Hermite Gaussian 

polynomials. Since we have total mathematical 

compatibility the only concern should be related to 

propagation to the refractive index. Due to the 

periodic focusing by the graded index distribution 

the Gaussian pulse does not deform as it propagates 

through the fiber. This means that the Gaussian 

spatial confining of the light wave is preserved as 

the light propagates through the fiber. So the fiber 

preserves the spatial resolution of the original 

Gaussian pulse. At the output of the fiber the light is 

projected on the CMOS.  

 

 

2.5   The CMOS MTF 
The sharpness of a photographic imaging system or 

of a component of the system (the lens and the 

optical part of CMOS) is characterized by the MTF, 

also known as spatial frequency response. The 

CMOS optical part is characterized by its afferent 

MTF. The contrast in an image can be characterized 

by the modulation [4,7,14,15] 
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−
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where maxs  and mins   are the maximum and 

minimum pixel values over the image. Note that: 

10 ≤≤ M . 

    Let the input signal to an image sensor be a 1D 

sinusoidal monochromatic photon flux: 

                     [ ])2cos(1),( 0 fxFfxF π+=              (20) 

for  0 Nyquistf f≤ ≤ .     

The sensor modulation transfer function is defined 

as: 

                        ( )
( )
( )fM

fM
fMTF

in

out=                      (21)                                     

from the definition of the input signal, 1=inM .  

MTF is difficult to find analytically and is typically 

determined experimentally. For the beginning we 

made a 1D analysis for simplicity and at the end we 

generalize the results to 2D model, which we will 

use in our analyses. 

    By making several simplifying assumptions, the 

sensor can be modeled as a 1D linear space-invariant 

system with impulse response h(x) that is real, 

nonnegative, and even. In this case the transfer 

function: 

                           ( ) ( )[ ]xhFfH =                          (22) 

is real and even, and the signal at x is: 
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( ) ( ) ( )xhfxFxS ∗= ,  

( ) [ ] ( )xhfxFxS ∗+= )2cos(10 π  

               ( ) ( ) ( )[ ])2cos(00 fxfHHFxS π+=         (23) 

therefore: 

( ) ( )[ ]fHHFS += 00max  

    ( ) ( )[ ]fHHFS −= 00min  

and the sensor MTF is given by: 

                            ( )
( )
( )0H

fH
fMTF =                     (24) 

We consider a 1-D doubly infinite image sensor. 

 

    
    Fig. 5 The CMOS sensor model 

 

L- quasi neutral region 

dL - depletion depth 

w- aperture length 
p- pixel size 
    To model the sensor’s response as a linear space-

invariant system, we assume n+/p-sub photodiode 

with very shallow junction depth, and therefore we 

can neglect generation in the isolated n+ regions and 
only consider generation in the depletion and p-type 
quasi-neutral regions. We assume a uniform 

depletion region (from −∞  to ∞ ) [4,7]. The 
monochromatic input photon flux F(x) to the pixel 

current iph(x) can be represented by the linear space 

invariant system (Fig. 6). iph(x) is sampled at regular 
intervals p to get the pixels photocurrents. 
 

 
Fig. 6 The process of photogeneration and 

 integration 
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d(x) is the (spatial) impulse response corresponding 

to the conversion from photon flux to photocurrent 

density, and we assume a square photodetector. The 

impulse response of the system is thus given by its 

Fourier transform (transfer function) [14,15] 
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and its Fourier transform (transfer function) is given 

by: 

                    ( ) ( ) ( )fcfDfH ωω sin2=                 (27) 

note that: 

( ) ( )λnD =0 , 

( )λn - spectral response. 

By definition: the spectral response is a fraction of 
photon flux that contributes to photocurrents as a 

function of wave length. So D(f) can be viewed as a 

generalized spectral response (function of spatial 

frequency as well as wavelength). 

After some calculus we get D(f) as: 
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                      ( ) ( ) ( )wfcwfDfH sin
2=               (28) 

the modulation transfer functions for 
p

f
2

1
≤   is: 
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0D

D f
 is called the diffusion MTF and ( )wfcsin  is 

called the geometric MTF. 

Consequently, we have: 

              geometricdiffuCMOS MTFMTFMTF ⋅= sin      (30) 

But in our analyses we use 2D signals (image) so we 

must generalize 1D case to 2D case. We know that 

we have square aperture at each photodiode with 

length w; so the analyses is made in Cartesian 

coordinate and we must generalize in x-y coordinate 

MTF(f) and we have:  

                       ( )
( )

( )0

,
,

H

ffH
ffMTF

yx

yx =             (31) 

( ) ( )
( ) ( )yx

ff

yx wfcwfcw
D

D
ffMTF
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sinsin, 2

0

,
=  

x
f - spatial frequency on x direction 

yf - spatial frequency on y direction 

Spatial frequency (lines/mm) is defined as the rate of 

repetition of a particular pattern in unit distance. It is 

indispensable in quantitatively describing the 

resolution power of a lens. The first level in a 

CMOS image sensor is a lens which focuses the 

light on each pixel photodiode. 
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a                                               b                                                                                                     

Fig. 7 a) the  MTF of the CMOS, b) the PSF of the 

CMOS 

 

Diffusion MTF decreases with the wavelength. The 

reason is that the quasi-neutral region is the first 

region of absorption, and therefore photogenerated 

carriers due to lower wavelength photons (which are 

absorbed closer to the surface) experience more 

diffusion than those generated by higher 

wavelengths. 

 

 

2.6    The electrical system analysis 
The input signal is projected on the image sensor 
using the imaging optics. An area image sensor 

consists of an array of pixels, each containing a 

photodetector that converts incident light into 

photocurrent and some of the readout circuits needed 

to convert the photocurrent into electric charges or 

voltage and to read it off the array. One of the most 

popular types of photodetectors are the photodiodes. 

We use n+/p-sub photodiode with very shallow 

junction depth (section 2.5). The photodiodes are 

semiconductor devices responsive with capture of 

photons. They absorb photons and convert them in 

to electrons. The collected photons increase the 

voltage across the photodiode, proportional with the 

incident photon flux. The photodiodes should have 

goods fill factor and quantum efficiencies [1,4,5,7].   

In our paper the CMOS image sensor consists of 

a n m× , PPS (passive pixels) array. They are based 

on photodiodes without internal amplification. In 

these devices each pixel consists of a photodiode and 

a transistor in order to connect it to a readout 

structure. Then, after addressing the pixel by 

opening the row-select transistor, the pixel is reset 
along the bit line. The readout is performed one row 

at a time. At the end of integration, charge is read 

out via the column charge to voltage amplifiers. The 

amplifiers and the photodiodes in the row are then 

reset before the next row readout commences. The 

main advantage of PPS is its small pixel size. In 

spite of the small pixel size capability and a large fill 

factor, they suffer from low sensitivity and high 

noise due to the large column’s capacitance with 

respect to the pixel’s one [1,4,5,7]. 

 
Fig. 8 A schematic of a passive pixel sensor  

 

Photoelectronic noise is due to the statistical 

nature of light and of the photoelectronic conversion 

process that take place in image sensors. At low light 

levels, were the effect is relative severe, 

photoelectronic noise is often modeled as random 
with Poisson density function [2,3]. Noises corrupt 

the utile signals and represent an additive process. 

                    .FPNPoisson NNN +=                         (32) 

 

 

2.6.1   The photon shot noise 
Image noise is a random, usually unwanted, 

variation in brightness or color information in an 

image. In a CMOS sensor image noise can originate 

in electronic noise in the input device sensor and 

circuitry, or in the unavoidable shot noise of an ideal 

photon detector. Image noise is most apparent in 

image regions with low signal level, such as shadow 

regions or underexposed images. In this paper we 

focus our attention on the photon shot noise 

produced by the input captured photons which are 

transformed in to charges.  Shot Noise is associated 
with the random arrival of photons at any 

detector. The lower the light levels the smaller the 

number of photons which reach our detector per unit 

of time. As a consequence there will not be a 

continuous illumination but a bombardment by 

single photons and the image will appear granulose. 

The signal intensity, i.e. the number of arriving 

photons per unit of time, is stochastic and can be 

described by an average value and the appropriate 

fluctuations. The photon shot noise has the Poisson 

distribution [2,3,8] 

 ( )
!

,
k

e
kP

kλ
λ

λ−

=                         (33) 

nk ÷= 1 , n is a non-negative integer, 

λ  is a positive real number. 

We are interested about photon shot noise effect in 

the low illuminated image’s parts. 
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2.6.2   The fixed pattern noise  
In a CMOS image sensors the noise source can be 
divided into temporal noises and FPN (Fixed Pattern 

Noise). In this paper we use only the FPN and do not 

treat temporal noises. We analyze the FPN specific 

to CMOS PPS (passive pixel sensor) [1,4,5,7]. In a 
perfect image sensor, each pixel should have the 
same output when the same input is applied, but in 

current image sensors the output of each sensor is 
different. The FPN is defined as the pixel-to-pixel 

output variation under uniform illumination due to 

device and interconnect mismatches across the 
image sensor array. These variations cause two types 
of FPN: the offset FPN, which is independent of 

pixel signal, and the gain FPN or photo response non 

uniformity, which increases with signal level. Offset 
FPN is fixed from frame to frame but varies from 

one sensor array to another. The most serious 

additional source of FPN is the column FPN 
introduced by the column amplifiers [1,5,6]. In 
general PPS has FPN, because PPS has very large 

operational amplifier offset at each column. Such 
FPN can cause visually objectionable streaks in the 

image. Offset FPN caused by the readout devices 

can be reduced by CDS (correlated double 
sampling). Each pixel output is readout twice, once 
right after reset and a second time at the end of the 

integration. The sample after reset is then subtracted 

from the one after integration.  
For a more detailed explanation, check out the 

paper by Abbas El Gammal that is listed in the 

reference section [6].  In this paper we focus our 
attention in FPN effects on image quality and we do 
not compute the FPN, we accept the noises as they 

are presented in references [6].  

    

 

       a                                              b 
Fig. 9 PPS FPN a) PPS FPN without CDS, b) PPS 

FPN with CDS 

 

 

2.6.3   The analog to digital conversion 
The analog to digital conversion is the last block of 

the analog signal processing circuits in the CMOS 
image sensor. In order to convert the analog signal in 

to digital signal we compute the: analog to digital 

curve, the voltage swing and the number of bits. The 
quality of the converted image is good and the image 
seams to be unaffected by the conversion [1,4,5]. 

 

 

3   The image reconstruction 
At the output of the optical part the image is blurred 
as a result of its propagation trough the optical 
system and also present shape’s deformations due to 

aberrations. In order to recover the image resolution 
we need to sharp the image [2,3,8], using a 

Laplacian filter. At the output of the electrical part 

the image is corrupted by the combined noise. In 

order to reduce the FPN we use a frequencies 
amplitude filter to block the spikes spectrum of the 

FPN, and also we use a bilateral filter in order to 

reduce the photon shot noise [16,17].      

 

 

3.1   The image sharpening 
In order to correct the blur and to preserve the 

impression of depth, clarity and fine details we have 

to sharp the image using a Laplacian filter [2,3,8]. A 
Laplace filter is a 3x3 pixel mask  
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In order to restore the blurred image we subtract the 
Laplacian image from the original image.   
 

 

3.2   The amplitude filter  
The FPN is introduced by the sensor’s column 
amplifiers and consists of vertical stripes with 
different amplitudes and periods. Such type of noise 

in the Fourier plane produces a set of spikes periodic 

orientate. A procedure to remove this kind of noise 
is to make a transmittance mask in Fourier 2D 

logarithm plane. The first step is to block the 

principal components of the noise pattern. This 
block can be done by placing a band stop filter 

H(u,v) in the location of each spike [8,12,13,16]. If 

H(u,v) is constructed to block only components 

associated with the noise pattern, it fallows that the 
Fourier transform of the pattern is given by the 

relation [16]: 

                ( ) ( ) ( )[ ]vuGvuHvuP ,log,, =                 (35) 

where G(u,v) is Fourier transform of the corrupted 

image g(x,y). 

After a particular filter has been set, the 

corresponding pattern in the spatial domain is 
obtained making the inverse Fourier transform: 

                   p(x,y) =F{exp[P(u,v)]}.                     (36) 
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3.3   The bilateral filter 
In order to reduce the random noise effect we use a 

bilateral filter. It extends the concept of Gaussian 

smoothing by weighting the filter coefficients with 

their corresponding relative pixel intensities. Pixels 
that are very different in intensity from the central 

pixel are weighted less even though they may be in 

close proximity to the central pixel. This is 
effectively a convolution with a non-linear Gaussian 

filter, with weights based on pixel intensities. This is 

applied as two Gaussian filters at a localized pixel 
neighborhood, one in the spatial domain, named the 
domain filter, and one in the intensity domain, 

named the range filter [17]. 

 
 

4   The simulation results 
In this paper we imagine the 00TEM  laser pulse 

propagation trough the proposed image acquisition 

system. We assume that we have a confocal 

resonator which generates the Gaussian pulse. In 
order not to spread too much we focus the pulse 
(Fig. 10, a)), in to a graded index fiber using a lens 

(Fig. 10, b)). Due to the fiber characteristics, the 

Gaussian spatial confining of the light wave is 
preserved as the light propagates through the fiber. 

Consequently the fiber preserves the spatial 

resolution of the original Gaussian pulse. At the 
output of the fiber the radiation is projected on a 

CMOS image acquisition sensor. The sensor has an 

optical part which is characterized by its PSF; the 

output image can be seen in Fig. 11 a). At the end of 
the optical part we use the Laplace sharpening filter 

in order to correct the blur of the Gaussian pulse 
(Fig. 11, b)), which was produced during the 
radiation propagation trough the optical system. We 

are interest to preserve the pulse shape during its 

propagation trough the system and for our purpose a 
black and white analysis should be enough. 

Consequently we can use a sensor that don’t Bayer 

sample and interpolate the input signal and also the 
signal luminosity is considered to be good enough. 
Having those aspects set, we focus our attention to 

the noises. We simulate the photon shot noise and 

the FPN afferent to a CMOS PPS, and the noises 
combination represent an additive process (Fig. 12, 

a)). Finally the analog signal is converted into 
digital signal. During the signal propagation through 
the electrical part of the CMOS sensor, its 

characteristics are degraded by noises. In order to 

recover the image characteristics we use an 

amplitude filter and a bilateral filter (Fig. 12, b)). To 
better understand the simulation effect, in Fig. 13 we 
have a 3D spatial representation of the original 

image and the recovered image. Due to the modest 
quality of the lens, we see that the final image (Fig. 
13 b)) is degraded by the aberrations. As a 

consequence of this fact the pulse is a little 

attenuated in amplitude and widen at the base. The 

noises can be rejected by the proposed filters’ 
combination. 

    

 
                    a                                             b 

Fig. 10 a) the Gaussian pulse, b) the Gaussian pulse 
at the lens output 

 

 
                    a                                             b 

Fig. 11 a) the Gaussian pulse at the output of the 

CMOS optical part, b) the sharp image 
 

 
                     a                                             b 

Fig. 12 a) the noisy image at the output of the 
electrical part, b) the recovered image 

 

 
                a                                              b 
Fig. 13 a) the original pulse, b) the recovered pulse 
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Conclusions 
In this paper we simulate the 00TEM  confocal laser 

pulse propagation trough an image acquisition 
system. We simulated the image characteristics at 

the output of each block from our system 

configuration. The purpose of this paper was to put 

to work together, in the same system, optical and 
electrical components and to recover the degraded 

signal. The simulation algorithm works in real time; 
many other configurations can be done using other 
different optical and electrical components. Also we 

can combine in different ways the aberrations and 

noises obtaining other simulations which can be 
done using our proposed image capture system.    
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