

An implementation of parallel power flow calculation based on graph

partitioning algorithm

Wenkai Zhao
1
, Xinyan Fang

1
, Xu Dong

1
, Yuan Bi

2
 and Ying Wu

3

(1) Department of Electrical Engineering

Shanghai Jiaotong University

No.800, Dongchuan Road, Minhang District, Shanghai 200240

(2) East China Grid Company Limited

No.201, East Nanjing Road, Huangpu District, Shanghai 200002

(3) Electrical Energy Measurement Center

Shanghai Municipal Electric Power Company

No.1758, Tianshan Road, Changning District, Shanghai 200051

China

zwk602@sjtu.edu.cn http://www.sjtu.edu.cn

Abstract: - In coarse-grained parallelism, it is effective to partition the network into Bordered Block

Diagonal Form (BBDF) before subsequent parallel computation. An implementation of parallel power flow

calculation based on a novel graph partitioning algorithm, which transforms the admittance matrix into nested

BBDF (NBBDF)，is presented in this paper. In order to avoid excessive fill-ins during Gaussian elimination, a

vertex ordering scheme is discussed. Distributed file storage combined with task scheduling is proposed for

improving parallel efficiency. Testing results for grids with up to 5317 buses indicate that this proposed method

is able to bring superlinearity into parallel power flow calculation for large-scale power systems.

Key-Words: - Parallel power flow calculation, power systems, graph partitioning algorithm.

1 Introduction
With the advent of smart grid, a wide variety of

applications such as network restructuring, transient

stability analysis, state estimation, etc, are in urgent

need of the powerful computing capacity for on-line

monitoring and control in power systems. Thus, fast

power flow calculation is essential for large-scale

power systems with continually increasing amount

of bus bars on the basis of these functions.

In conjunction with the development of high-

performance computing environment, researches on

parallel computation in power systems mostly focus

on graph partitioning algorithms whose aim to find a

network made up of several even-sized subdivisions

connected by few tie-lines.

Graph partitioning algorithms originate from the

concept of Diakoptics, proposed by Gabriel Kron in

1963 [1]. It involves breaking a problem down into

some subproblems that can be solved independently

before being joined back together to attain a solution

to the whole problem. This sort of graph partitioning

has 2 criteria as:

1) Equal-sized partitions;

2) Few connections among partitions.

According to the partitions obtained, the system

matrix is rearranged by way of taking each partition

as a diagonal block and nodes adjacent to different

partitions as a boundary block. Thereby, the system

matrix has a structure of Bordered Block Diagonal

Form (BBDF).

Contour Tableau, prevailing in the 1970s, serves

to build BBDF system matrix through searching for

independent clusters coupled with bottleneck nodes.

A heuristic algorithm based on Contour Tableau

succeeds in transforming the system matrix into

BBDF [2]. However, its optimality in partitioning is

conditional upon the selection of each seed node.

Meanwhile, nodes of boundary block are not as few

as expected. Sequential Binary Partition (SBP) uses

a pseudo optimal ordering scheme after partitioning

for preserving the sparsity of BBDF matrix during

Gaussian elimination [3]. Nevertheless, there are no

good answers to the above two questions.

Nested Dissection, ancestor of multilevel graph

partitioning, has achieved high performance in

parallel electronic circuit simulation [4]. Albeit it is

superior to Contour Tableau in respect of balanced

partition size, the number of partitions is fixed to the

power of 2. Node merging method contracts vertices

to establish partitions, similar to the coarsening

stage in multilevel graph partitioning [5]. Relations

between starting nodes and their growing clusters

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Wenkai Zhao, Xinyan Fang, Xu Dong, Yuan Bi, Ying Wu

ISSN: 1109-2734 258 Issue 4, Volume 9, April 2010

place uncertainties in partitioning results like those

of Contour Tableau based algorithms.

K. W. Chan has proposed a factorization path

tree based partitioning algorithm, which restructures

the original path tree ahead of grouping branches [6].

This algorithm not only completes construction of

BBDF matrix, the post-partitioning ordering keeps

the number of fill-ins in the later elimination to a

minimum as well [7]. The pre-partitioning ordering,

which helps build a short and broad path tree before

partitioning, raises a question that partitions may be

not as good as anticipated without a well-organized

initial path tree.

Given that the partitioning time that most parallel

computations do not concern, if it takes long time to

partition the original network, the performance of

algorithm will be pulled down totally no matter how

effective the parallel computation is. To solve this

problem, multilevel graph partitioning is employed,

which operates within three phases as coarsening,

partitioning and refining [8]. It is the partitioning

phase, where the original graph has been contracted

significantly, that shortens the entire execution time.

Multilevel recursive bisection and multilevel k-way

partitioning satisfy criteria of graph partitioning and

operate in a short time [9]. Moreover, the refinement

with KL algorithm has contributed to fewer cut

edges between different partitions [10].

It is evident that increasing partition number will

enlarge the size of boundary block. Large boundary

block will hinder accelerating parallel computation,

because elimination of boundary block is the only

serial portion of parallel Gaussian elimination. One

way to avoid this situation is to partition the original

network recursively so as to obtain nested BBDF

(NBBDF) system matrix [11-13]. Unlike BBDF

matrix, task scheduling should be included in the

parallel computation of NBBDF matrix in that

assigning each block to an exclusive processor will

cost more processors than actually needed, followed

by possible low efficiency in parallelism.

A novel implementation of parallel power flow

calculation, based on a graph partitioning algorithm

which transforms the system matrix into NBBDF by

edge cut sets in a recursive way, is presented in this

paper. Different from common NBBDF partitioning

algorithms, the only relationship between blocks of

contiguous levels instead of any two levels reduces

data dependencies and communication overheads. In

view of the possible computational burden due to

excessive fill-ins in the matrix Gaussian elimination,

a sub-optimal vertex ordering scheme is employed

after partitioning. Additionally, both distributed file

storage and task scheduling are incorporated into the

implementation for reducing initialization time and

improving parallel efficiency. Experimental results

for grids of up to 5317 buses demonstrate that this

proposed approach is able to bring superlinearity

into parallel power flow computation for large-scale

power systems.

In next section, the general process for coarse-

grained parallel computation is briefly described as

well as principles underlying in a graph contraction

associated with the matrix Gaussian elimination. In

section 3, basic data structures used for NBBDF

partitioning with its implementation are interpreted

in detail. A vertex ordering scheme and distributed

file storage are illustrated in section 4. Section 5

discusses task scheduling with parallel Gaussian

elimination. Analysis to testing results is presented

in section 6. Conclusions are followed in section 7.

2 Parallel computing in power system
According to parallel transient stability analysis

and distributed state estimation [14-16], it is found

that the ordinary process for parallel computation in

power systems comprises four stages as portrayed in

figure 1.

Fig.1 Ordinary process of parallel computation in

power systems

� Modeling is responsible for establishing an

undirected graph representing the electric grid,

in which bus bars are indicated by vertices and

tie-lines or transformers connecting different

buses are represented by edges.

� Partitioning serves to separate the undirected

graph into several loosely-coupled equal-sized

subgraphs. The most common method is to use

vertex coloring, which assigns different colors

to vertices subordinating to different subgraphs.

� Preparing deals with data file deployment and

vertex ordering. Data file deployment can help

reduce initialization overheads before parallel

computation while vertex ordering is used for

preserving the sparsity of partitioned matrix.

� Computing is engaged in task assignment along

with parallel computation of partitioned matrix.

Task assignment attaches great importance to a

shared memory parallel architecture. Whatever,

it also full utilizes the processors available in a

distributed memory parallel architecture.

The solution of network equations in transient

stability analysis and that of least square in state

estimation have an identical formulation of solving

sparse system of equations given by equation (1).

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Wenkai Zhao, Xinyan Fang, Xu Dong, Yuan Bi, Ying Wu

ISSN: 1109-2734 259 Issue 4, Volume 9, April 2010

=Ax y (1)

A is a structurally symmetric matrix, x and y are

n-dimensional vectors.

The corresponding undirected graph G(V, E), in

which V and E denote vertex set and edge set

respectively, can be described as follows [3]:

1) Each vertex vi in V maps both xi in x and yi in

y in a bijective way;

2) Each edge eij = (vi, vj) in E represents the non-

zero element aij in A, where j > i.

The mapping from the system of equations to its

associated undigraph can be found in figure 2.

11
a

22
a

33
a

44
a

12
a

23
a

34
a

14a

12 14 1 1

21 22 23 2 2

32 33 34 3 3

41 43 44 4 4

11a a a x y

a a a x y

a a a x y

a a a x y

     
     
     =
     
     

    

Fig.2 Mapping from system of equations to an

undigraph

The coefficient matrix A is always referred to as

the adjacent matrix of graph.

When matrix A is processed by a direct method

such as Gaussian elimination, its undirected graph

contraction conforms to the following lemma.

Lemma 1: During graph contraction associated with

structurally symmetric matrix Gaussian elimination,

contracting vertex vk makes all vertices adjacent to

vk constitute a complete graph.

For instance, in figure 2, eliminating pivot a11 of

matrix means contracting vertex a11 in the undigraph,

which causes a22 and a44 contiguous as shown in

figure 3.

22a

33a44a

23a

34a

24a∆
12 14 1 1

22 23 24 2 2

32 33 34 3 3

42 43 44 4 4

11a a a x y

a a a x y

a a a x y

a a a x y

     
     ∆     =
     
     

∆     

Fig.3 Contracting vertex a11 in the undirected graph

3 Graph partitioning
The goal of effective partitioning is to divide the

original undigraph into several subgraphs satisfying

2 criteria of graph partitioning discussed in section 1.

Neither multilevel graph partitioning nor geographic

information based partitioning is able to acquire the

partitioned graph with BBD pattern directly, thus a

post-process should be added to partitioning before

parallel computation.

3.1 BBDF partitioning by an edge cut set
Before illustrating BBDF partitioning by an edge

cut set, a definition and a theorem are put forward

respectively in the following paragraphs.

Definition 1: In graph G(V, E), P and Q are non-

empty vertex sets, containing no same vertex. The

edge set [P, Q]G comprises all edges with one vertex

belonging to P and the other belonging to Q.

Specially, if P Q V+ = , namely Q P= , the edge set

,
G

P P   is called an edge cut of graph G(V, E).

Theorem 1: In the connected graph G(V, E), there

are n connected subgraphs Gi(Vi, Ei) satisfying

1

n

i

i

V V
=

=∪ and ()i jV V i jφ∀ = ≠∩ . The edge-induced

subgraph boundary boundary(,)G V ℑ , whose edge set ℑ is

the union of edge cuts [,]i i i GV Vξ = in terms of

1

n

i

i

ℑ ξ
=

=∪ , separates graph G(V, E) into n decoupled

subgraphs ' ' '(,)i i iG V E , in which '
boundaryi iV V V= − . All

these subgraphs ' ' '(,)i i iG V E are only connected to the

subgraph boundary boundary(,)G V ℑ as a result.

After converting the original graph to an NBDF

one by some kind of partitioning method [17], this

NBDF graph can be converted into a BBDF graph

according to theorem 1. For instance, the case in

figure 4 illustrates such conversion.

Fig.4 BBDF partitioning by an edge cut set

In figure 4, the original graph was partitioned

into 3 parts to begin with. White vertices in NBDF

graph are ones that belong to the boundary block of

BBDF graph.

The system matrix is then reordered by arranging

diagonal blocks in diagonal and a boundary block in

the lower right corner to obtain a structure of BBDF.

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Wenkai Zhao, Xinyan Fang, Xu Dong, Yuan Bi, Ying Wu

ISSN: 1109-2734 260 Issue 4, Volume 9, April 2010

If the boundary block of this BBDF matrix is

reordered by grouping those vertices connected to

an identical diagonal block together successively, it

is only a portion of boundary block not all that

connects to a diagonal block and one such portion

has only one corresponding diagonal block. This

property helps decrease communication overheads

and prevents conflicting operands on the same

element of the boundary block in parallel Gaussian

elimination.

Fig.5 Traditional BBDF matrix versus BBDF matrix

partitioned by an edge cut set

The differences between the traditional BBDF

matrix and the BBDF matrix partitioned by an edge

cut set can be found in figure 5.

3.2 Basic data structures
With the NBDF graph, basic data structures,

used to implement NBBDF partitioning, are defined

in the following tables. However, only abstract data

types are stated here in that the specific realization

depends on either the programming language or the

development environment or both.

Table 1 Vertex prototype

Property Type Remarks

ID Integer Unique identifier

Level Integer
Nested level of the block to

which this vertex belongs

Colors
Integer

array

Colors of the partition, from

which this vertex springs,

of all levels

AdjVs
Vertex

set

Vertices adjacent to this

vertex

BusInfo
User-

defined
Bus information

Table 2 Vertex set prototype

Property Type Remarks

Entry Vertex One vertex in this set

Table 3 Edge prototype

Property Type Remarks

ID Integer Unique identifier

V1 Vertex One incident vertex

V2 Vertex The other incident vertex

BranchInfo
User-

defined

Tie-line or transformer

information

Table 4 Edge set prototype

Property Type Remarks

Entry Edge One edge in this set

In order to give a detailed explanation for such

data structures, the case in figure 4 is taken into

account. The original graph has been converted into

a 1-nested BBDF graph, in which property Colors of

each vertex is a one-dimensional array with one

integer indicating color of the partition from which

this vertex came. Property Level of vertices in the

diagonal block is 1 while that of vertices in the

boundary block is 0. If a vertex in the BBDF graph

has Colors of {3} (symbol {} denotes an array) and

Level of 0, it means that this vertex is located in the

boundary block and connected to diagonal block 3.

3.3 NBBDF partitioning by edge cut sets
Advances in a wide variety of parallel issues in

power systems have proven the validity of primitive

BBDF partitioning [6, 7, and 14-18]. Whatever, new

challenges arise from the rapid growing electric grid.

On one hand, more partitions will bring more edges

into the edge cut set, followed by a larger boundary

block. On the other hand, computation overheads in

each diagonal block are considerable due to fewer

partitions. As a result, partitioning the network in a

recursive way to gain a system matrix with NBBDF

is a viable method.

If NBBDF partitioning is just a recursive way of

the primitive BBDF partitioning as stated in [18]

and [19], it embraces an underlying risk in itself as

the boundary block of level k is connected to all

boundary blocks of level k-1 to level 0. In other

words, a boundary block has to communicate with

boundary blocks of all lower levels in the parallel

execution, which introduces great communications

volume and renders parallel programming complex.

Besides, synchronization is another problem needed

concern.

A NBBDF partitioning method, which is derived

from the BBDF partitioning by an edge cut set, is

proposed to solve these problems. The distinction

between this method and conventional ones is that

boundary blocks of level k are connected to those of

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Wenkai Zhao, Xinyan Fang, Xu Dong, Yuan Bi, Ying Wu

ISSN: 1109-2734 261 Issue 4, Volume 9, April 2010

level k-1 and k+1 only. This character can be found

in the associated NBBDF matrix shown in figure 6.

Level k

Level k+1

Level k+1

Level k+1

Fig.6 NBBDF matrix partitioned by edge cut sets

The recursive procedure of NBBDF partitioning

by edge cut sets is described as follows.

Firstly, partitioning the diagonal block of level 0,

which is a NBDF graph actually, into a BBDF graph

partitioned by an edge cut set. And, the number of

diagonal blocks is ,k pn , where 0k = and 1p = .

Secondly, assuming the original graph has been

divided into k nested levels. Then, the pth diagonal

block of level k-1 is partitioned into ,k pn diagonal

blocks and one boundary block bb bb bb
, , ,(,)k p k p k pG V E .

Meanwhile, there are 1,k in + parts, which do not

contain any common vertex, in each diagonal block
db db db
, , ,(,)i i i
k p k p k pG V E (,1,2, , k pi n= ⋯).

Upon that, the NBBDF partitioning algorithm is

operated in a recursive way as explained below.

1) Combining vertex set db
,
i

k pV of the ith diagonal

block db db db
, , ,(,)i i i
k p k p k pG V E with vertex set bb

,k pV of the

boundary block bb bb bb
, , ,(,)k p k p k pG V E to form an induced

subgraph , , ,(,)i i i
k p k p k pG V E , where db bb

, , ,
i i
k p k p k pV V V= ∪ ;

2) Known by the assumption, there are 1, 1k in + +

parts containing different vertices in the induced

subgraph , , ,(,)i i i
k p k p k pG V E for db bb

, ,
i

k p k pV V φ=∩ . By way

of theorem 1, partitioning subgraph , , ,(,)i i i
k p k p k pG V E

into 1, 1k in + + decoupled subgraphs ' ' '(,)j j jG V E and

one edge-induced subgraph bb bb(,)G V ℑ ;

3) Excluding a subgraph, which is induced by
bb
,k pV of boundary block bb bb bb

, , ,(,)k p k p k pG V E , from these

1, 1k in + + decoupled subgraphs ' ' '(,)j j jG V E , then the

rest 1,k in + decoupled subgraphs ' ' '(,)j j jG V E are level

k+1 diagonal blocks db db db

1, 1, 1,(,)j j j

k i k i k iG V E+ + + of diagonal

block db db db
, , ,(,)i i i
k p k p k pG V E , where 1,1,2, , k ij n += ⋯ ;

4) Excluding vertices, which belong to boundary

block bb bb bb
, , ,(,)k p k p k pG V E , from edge-induced subgraph

bb bb(,)G V ℑ , then the rest vertex-induced subgraph is

the level k+1 boundary block bb bb bb

1, 1, 1,(,)k i k i k iG V E+ + + of

the ith diagonal block db db db
, , ,(,)i i i
k p k p k pG V E satisfying

{ }bb bb

1, bb ,&k i k pV v v V v V+ = ∈ ∉ .

After the original graph has been partitioned into

a 1-nested BBDF graph in figure 4, which includes

0,1 3n = diagonal blocks, diagonal block 2 serves as

db2 db2 db2

0,1 0,1 0,1(,)G V E , where there are 1,2 2n = parts with

no common vertex. Utilizing the above method to

partition diagonal block 2 of the BBDF graph in

figure 4, the process is demonstrated in figure 7.

Fig.7 NBBDF partitioning by edge cut sets

First of all, combining DB 2 with BB to get the

induced subgraph 2 2 2

0,1 0,1 0,1(,)G V E . Next, according to

theorem 1, partitioning subgraph 2 2 2

0,1 0,1 0,1(,)G V E into

1,2 1 3n + = decoupled subgraphs ' ' '(,)j j jG V E and one

edge-induced subgraph bb bb(,)G V ℑ . Vertices of the

3 decoupled subgraphs ' ' '(,)j j jG V E are black nodes

in part 1, black nodes in part 2 and the bottom 3

black nodes in BB respectively. Vertices of edge-

induced subgraph bb bb(,)G V ℑ are white nodes in DB

2 and the top 2 nodes in BB. Furthermore, excluding

subgraph ' ' '(,)j j jG V E , which contains 3 black nodes

in BB, leaves two diagonal blocks of level 1 as db 1

and db 2. At last, excluding 2 black nodes in BB

from edge-induced subgraph bb bb(,)G V ℑ leaves the

boundary block bb of level 1.

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Wenkai Zhao, Xinyan Fang, Xu Dong, Yuan Bi, Ying Wu

ISSN: 1109-2734 262 Issue 4, Volume 9, April 2010

3.4 Implementation of NBBDF partitioning
NBBDF partitioning is a recursive method from

outside to inside, that is, the outermost is level 0 and

the innermost is level N if the original graph has

taken an N-nested partitioning.

In an NBBDF graph, blocks, whether diagonal or

boundary, are referred to as boundary blocks for the

reason that a diagonal block of level k is also a

boundary block of level k+1.

NBBDF partitioning starts

Establishing the original graph representing

the electric grid

Determining the number of nested-levels

Current nested-level

NestedLevels

0i =

i NestedLevels<

Picking first edge from the edge sete

exists

Taking vertex and vertex of edge1v 2v

Yes

1. [] 2. []v Colors i v Colors i==

Accomplishing nested-partitioning on the

original graph by some heuristic algorirhm

Making for all verticesLevel NestedLevels=

1 2BI BI NestedLevels== ==

1 1. ; 2 2.BI v Level BI v Level= =

Yes

(1) & (2)BI NestedLevels BI i== ==

No

(2) & (1)BI NestedLevels BI i== ==

No

No

No
Yes

Yes

Yes

1BI NestedLevels==

Yes

No

1.v Level i=

2BI NestedLevels==

Yes

2.v Level i=

No

Removing edge from the edge set

Yes

Picking next edge from the edge set

No 1i i= +

End

e

e

e

e

Fig.8 Flowchart of NBBDF partitioning by edge cut

sets

The implementation of NBBDF partitioning by

edge cut sets is illustrated in detail in figure 8, in

which a flowchart involves some fundamental data

structures described in section 3.2.

According to this flowchart, it is found that the

computational complexity is less than N*E, where N

is the nested-level number and E is the edge number.

Generally, N is not more than 4 for power systems,

that is, the complexity of NBBDF partitioning is

proportional to the number of branches. Therefore,

NBBDF partitioning is comparable with multilevel

graph partitioning in speed.

There are 2 characteristics for vertices in the

NBBDF graph partitioned by edge cut sets as:

1) In array Colors of a vertex, first Level-1

integers indicate colors of the block this vertex

belongs to while first Level integers indicate colors

of the block this vertex is connected to.

2) Vertices in the vertex set AdjVs of a vertex,

whose property Level equals k, can have property

Level of k-1 or k+1 only.

The first one is helpful in the late vertex ordering

process, and the second one ensures the hierarchical

structure of distributed file storage.

4 Preparing for parallel computing
In accordance with the NBBDF graph obtained,

distributed file storage is employed to take on the

task of reducing initialization overheads in parallel

computation. In order to keep fill-ins of matrix

Gaussian elimination to a low level, a sub-optimal

vertex ordering scheme is also adopted.

4.1 Vertex ordering of NBBDF graph
Parallel Gaussian elimination of NBBDF matrix

is operated on boundary blocks of each level in turn.

Thereby, renumbering nodes in each corresponding

submatrix is a key point for preserving the sparsity

of the entire NBBDF matrix.

Node renumbering for a matrix corresponds to

vertex ordering for a graph, which is known as a

non-polynomial complete problem [3]. This is the

reason why our vertex ordering scheme is called

sub-optimal instead of optimal.

Theorem 2: In the connected graph G(V, E), there is

a connected subgraph Gc(Vc, Ec). Vertices, which

belong to V-Vc and are adjacent to graph Gc(Vc, Ec),

constitutes a complete graph after graph Gc(Vc, Ec)

is eliminated from graph G(V, E).

Theorem 2 points out that no matter what orders

vertices take in a diagonal block, as long as it is a

connected diagonal block, vertices adjacent to it are

connected with each other in the boundary block

after it is eliminated. In other words, extra fill-ins

before the process of boundary block elimination

are predetermined and have nothing to do with the

vertex order of any diagonal block.

In the NBBDF graph partitioned by edge cut sets,

boundary blocks of level k are only connected to

those of level k-1 and level k+1. To an NBBDF

graph with the deepest level of N, its vertex ordering

is given below.

1) In a boundary block bb bb bb
, , ,(,)k p k p k pG V E of level k,

where 0,1, ,k N= ⋯ , appending extra edges on those

vertices connected to the same diagonal block as to

make them connected with each other;

2) Transferring to stage 3 when 0k = . Otherwise,

locating the boundary block bb bb bb
1, 1, 1,(,)k q k q k qG V E− − − of

level k-1, to which bb bb bb
, , ,(,)k p k p k pG V E is connected.

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Wenkai Zhao, Xinyan Fang, Xu Dong, Yuan Bi, Ying Wu

ISSN: 1109-2734 263 Issue 4, Volume 9, April 2010

Combining bb
1,k qV − with bb

,k pV to form a vertex-induced

subgraph ex ex ex
, , ,(,)k p k p k pG V E ;

3) Exploiting the vertex ordering method in [20],

called simplified Tinney 3 scheme, to order vertices

in subgraph ex ex ex
, , ,(,)k p k p k pG V E ;

4) Returning to stage 3 unless all vertices, which

sprang from bb bb bb
, , ,(,)k p k p k pG V E , have been sorted in

subgraph ex ex ex
, , ,(,)k p k p k pG V E .

Both theorem 2 and the foregoing procedure

reveal that a boundary block of level k has no need

to wait for its descendants to finish their jobs before

starting its own vertex ordering. As a result, vertex

ordering of the NBBDF graph can be parallelized

effortlessly.

4.2 Distributed file storage
The overall performance of parallel power flow

calculation is not only subject to parallel computing

as Gaussian elimination, however, the formulation

of Jacobian matrix should be taken into account

because loading data from files, which contains the

entire system, is time-consuming, especially when

the system is quite large.

Moreover, the NBBDF graph partitioned by edge

cut sets has an inherent property as boundary blocks

of level k are only connected to those of level k-1

and k+1. Therefore, distributed data files can be

deployed in the following way.

For a boundary block of level k, there are four

data files available as Local, Inner, Outer and BS.

� File Local stores buses and branches of this

boundary block;

� File Inner stores buses and branches, which are

related to this boundary block, of level k+1

boundary blocks;

� File Outer stores buses and branches, which are

linked to this boundary block, of level k-1

boundary blocks;

� File BS stores slack nodes and corresponding

branches connected to this boundary block.

Figure 9 displays the structure of distributed file

storage.

⋯

⋯⋯

⋰ ⋱ ⋰ ⋱

⋯ ⋯

Fig.9 Distributed file storage in a hierarchical way

As the structure of grid is ongoing changing, for

example, adding or dropping some branches, several

cases are discussed below.

1) Buses (including the new one), which are

connected by a branch, resident in an identical

boundary block. It is the file Local of this boundary

block that needs to be updated only;

2) Buses, which are connected by a branch,

resident in different boundary blocks, of which one

is level k block and the other is level k+1 block.

Both the file Outer of level k+1 block and the file

Inner of level k block need to be updated;

3) Buses, which are connected by a branch,

resident in different boundary blocks that are not

adjacent to each other and named level i block and

level j block respectively. These two buses should

be put into the first outer level boundary block

preceding both level i block and level j block. And

four files of all boundary blocks along 2 paths from

the first outer level to level i and to level j need to

be updated simultaneously.

4.3 Mapping tables
One process is assigned to one boundary block to

complete initialization and computation. Here, one

process doesn’t mean one processor since it will

take more processors than actually needed.

Every process reads these 4 data files to form 4

corresponding vertex sets as InnerVs, LocalVs,

OuterVs and BSVs. Identical with section 3.2, some

fundamental data structures, which are defined in

the following tables, are used within the processes.

Table 5 Process prototype

Property Type Remarks

ParentID Integer
Unique identifier of

its parent process

ChildProcCount Integer
Number of its child

processes

ChildProcIDs
Integer

array

IDs of its child

processes

TableLFI
Mapping

table

Mapping vertices in

InnerVs of its parent

process to vertices in

LocalVs

TableOFL
Mapping

table

Mapping vertices in

LocalVs of its parent

process to vertices in

OuterVs

TableLTO
Mapping

table

Mapping vertices in

LocalVs to vertices

in OuterVs of its

child processes

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Wenkai Zhao, Xinyan Fang, Xu Dong, Yuan Bi, Ying Wu

ISSN: 1109-2734 264 Issue 4, Volume 9, April 2010

Table 6 Mapping table prototype

Property Type Remarks

Entry
Mapping table

entry

One mapping in this

table

Table 7 Mapping table entry prototype

Property Type Remarks

ProcID Integer Mapping process ID

Value Integer Mapping value

For an NBBDF graph partitioned by edge cut

sets, three mapping tables as TableLFI, TableOFL

and TableLTO in table 5 are explained in figure 10,

where dashed frames represent processes and solid

frames represent nested levels.

Each process has 3 mapping tables except those

corresponding to innermost and outermost boundary

blocks.

Fig.10 Mapping tables for an NBBDF graph

4.4 Parallel vertex ordering of NBBDF graph
A parallel implementation can be inferred from

the procedure of vertex ordering given in section 4.1.

Nevertheless, according to theorem 2, considering a

situation where there are unconnected portions in a

boundary block, in other words, this boundary block

is not a connected graph, thus appending extra edges

on vertices which are connected to this unconnected

boundary block is invalid.

To solve this problem, the implementation of

parallel vertex ordering of NBBDF graph, depicted

in figure 11, has employed vertex coloring approach.

Through vertex coloring method, vertices belonging

to different connected components are designated

different colors in the vertex set LocalVs of a

process. After that, a parent process receives vertex

colors from its child processes to update the color

information of its own vertex set InnerVs.

Vertex ordering starts

Coloring vertices in LocalVs

Sending color information of LocalVs to

parent process

Having child processes Yes

No

Having parent process Yes

No

Appending extra edges based on color

information of InnerVs

Sending vertex orders of LocalVs and

InnerVs to child processes

Sending vertex orders of OuterVs to parent

process

Having child processes Yes

No

Having parent process Yes

Having child processes Yes

No

No

Vertex ordering by simplified Tinney 3

End

Receiving vertex colors from child

processes to update InnerVs

Receiving vertex orders of LocalVs and

InnerVs from parent process to establish

TableOFL and TableLFI respectively

Receiving vertex orders of OuterVs from

child processes to establish TableLTO

Fig.11 Parallel vertex ordering of NBBDF graph

5 Parallel computing
This section is separated into two parts with

respect to parallel power flow calculation for large-

scale power systems. For one thing, task scheduling

is illustrated for achieving high parallel efficiency.

For another thing, attention is paid to the iterative

procedure of parallel power flow calculation.

5.1 Task scheduling
Whether in the BBDF or NBBDF graph, it is

evident that blocks of different levels are calculated

in sequence. To full utilize processors available,

computational tasks should be scheduled to increase

the overall parallelism degree.

Conventional methods for task scheduling rely

on a task graph, which gives precedence relations

between tasks [12, 21]. In the NBBDF graph, a task

is a running process which reads 4 data files and

commits corresponding computation. Thus, the task

graph is identical with distributed files in structure

as shown in figure 9.

For parallel power flow calculation with an

NBBDF system matrix, task scheduling is operated

in a bottom-to-up manner as described below.

1) Assigning each bottom task in the task graph

to different processors successively;

2) If this level is level 0, then quitting;

3) Searching for a group of tasks having a same

parent task which is assigned to no processor yet;

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Wenkai Zhao, Xinyan Fang, Xu Dong, Yuan Bi, Ying Wu

ISSN: 1109-2734 265 Issue 4, Volume 9, April 2010

4) Assigning this parent task to the processor

which contains the task with heaviest computing

loads in this group;

5) If there are such groups of tasks remaining on

this level, going back to stage 3. Otherwise, moving

up one level along the task graph and returning to

stage 2.

In stage 4, a task with heaviest computing loads

essentially coincides with a boundary block with

most vertices.

The reason why assignes a task together with its

heaviest-load child task to the same processor is that

smaller boundary block needs less communication

during parallel computation. Consequently, this task

scheduling scheme can decrease communication

overheads to a great extent and improve the entire

parallel efficiency of power flow calculation.

5.2 Parallel power flow calculation
In parallel power flow calculation, each process

deals with one boundary block of NBBDF graph

and reads 4 data files as Inner, Local, Outer and BS

to carry out initialization before iterations.

Also, parallel power flow calculation is running

in a recursive way. Considering a process dealing

with a level k boundary block, whose parent process

deals with a related boundary block of level k-1 and

child processes deal with related boundary blocks of

level k+1, the iterative procedure is stated as follows.

1) Updating Jacobian matrix

Jacobian matrix is formulated via electrical datas

in Inner, Local, Outer and BS, which is expressed

by equation (2).

11 12 1 1

21 2

     
=     
    

J J x y

J 0 x 0
 (2)

Referring to the NBBDF matrix in figure 6, 11J

is the corresponding matrix of a level k boundary

block, 12J and 21J are incidence matrices relating

the level k boundary block to the level k-1 boundary

block. Vector 1x records voltage deviations of buses

in the level k boundary block. Vector 2x records

voltage deviations of related buses in the level k-1

boundary block. Vector 1y records power deviations

of buses in the level k boundary block.

2) Forward substitution

It is not until all child processes have completed

their forward substitutions that forward substitution

of current process can commence. The preparation

for forward substitution is displayed in figure 12.

11Ĵ

⋱

⋱

⋱

⋱

⋱

⋱

12J

⋱

⋱

⋱

21J

Level k-1

Level k

⋱

⋱

11Ĵ

21J
⋱

⋱

⋱

⋱

⋱

12J

Level k-1

1ŷ
1ŷ

⋱

Level k

Level k

Fig.12 Preparing for forward substitution of current

process

Matrix 11∆J and vector 1∆y , which are made up

of elements received from all child processes, are

used to update matrix 11J and vector 1y respectively.

11 11 11

1 1 1

ˆ

ˆ

= + ∆

= + ∆

J J J

y y y
 (3)

Applying forward substitution to equation (2),

equation (4) is given below.

11 12 1 1

22 2 2

     
=     ∆ ∆     

U U x z

0 J x y
 (4)

Equation (4) is based on equation (5) and

equation (6).

11 11 12 11 12

21 22 22 21

ˆ    
=     ∆     

L 0 U U J J

L I 0 J J 0
 (5)

11 1 1

21 22 2

ˆ     
=     ∆     

L 0 z y

L I y 0
 (6)

Here, 22 21 12∆ = − ×J L U and 2 21 1∆ = − ×y L z .

⋱

⋱

11Ĵ

21J
⋱

⋱

⋱

⋱

⋱

12J

0

⋱

11Ĵ 12J

21J

1ŷ

1ŷ

0 0

11U
12
U 1z

2∆y
22∆J

⋱

⋱

⋱

⋱

⋱

⋱

⋱

⋱⋱

11U 12U 1z

Fig.13 Forward substitution of current process

If there is a parent process, current process has to

send elements of 22∆J and 2∆y to its parent process

for filling 11∆J and 1∆y respectively. The procedure

is displayed in figure 13.

3) Backward substitution

After updating vector 2x by elements received

from parent process, current process does backward

substitution to equation (4) to solve vector 1x .

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Wenkai Zhao, Xinyan Fang, Xu Dong, Yuan Bi, Ying Wu

ISSN: 1109-2734 266 Issue 4, Volume 9, April 2010

[] [] []1

1 11 1 12 2

−
= − ×x U z U x (7)

Here, 2 =x 0 if there is no parent process.

If there are child processes, current process has

to send elements of 1x to its child processes for

updating vector 2x .

4) Updating voltage vectors

Vector 0x records voltage deviations of related

buses in level k+1 boundary blocks.

If there is a parent process, current process has to

send corresponding elements of 1x to its parent

process for updating 0x .

Voltage vectors of vertices in InnerVs, LocalVs

and OuterVs are updated by 0x , 1x , 2x respectively.

5) Convergence testing

Vector 1y is calculated by the voltage vector of

LocalVs just obtained in stage 4. Current process

exchanges the maximum 1 ∞
y of 1y with others,

and acquires the maximum max
∞

y of all 1 ∞
y .

When the maximum max
∞

y is less than the

required precision, parallel power flow calculation

exits with a convergent result.

6 Experimental results
There is a use-case that three power systems

described in table 8 are used to investigate the

efficiency of parallel power flow calculation which

is based on NBBDF partitioning through edge cut

sets. The programming language is C++ for NBBDF

partitioning and parallel power flow calculation.

The network environment is a LAN with bandwidth

of 1000 Mbps. Taking account of collisions detected

in Ethernet, the utility ratio of LAN is presumed to

be 10% at least under light or no communication

load, that is to say, the actual bandwidth is not less

than 100 Mbps. In this distributed memory parallel

architecture, each processor has a 1.8 GHz CPU and

1 GB memory individually.

Table 8 Three power systems for testing

System Bus No Line No Transformer No

Case 1 300 304 107

Case 2 2806 1652 2305

Case 3 5317 3890 3275

In table 8, the first case is a standard grid model

of IEEE while the following two are real electric

grids in East China.

6.1 NBBDF partitioning
Before NBBDF partitioning, initial areas of grids

should be given. Although geographic information

based partitioning is an intuitional and convenient

way to create few cut edges, the computational load

imbalance among processors will influence parallel

efficiency ultimately. Multilevel graph partitioning

is used to determine initial areas of grids for the

reason that it is superior to geographic information

based partitioning in balancing computational loads

Table 9 Initial areas of three electric grids

System
Area code Vertex number

Level 1 Level 2 PV PQ Total

Case 1

1
1 9 41 50

2 9 40 49

2
1 13 37 50

2 16 32 48

3
1 6 45 51

2 15 36 51

Case 2

1
1 33 427 460

2 54 433 487

2
1 59 397 456

2 57 416 473

3
1 75 402 477

2 56 396 452

Case 3

1
1 34 828 862

2 104 738 842

2
1 83 796 879

2 121 812 933

3
1 89 785 874

2 33 893 926

Table 10 Boundary blocks of three electric grids

after 2-nested BBDF partitioning

Level Boundary block
Vertex number

Case 1 Case 2 Case 3

0 - 24 52 33

1

1 35 27 54

2 16 61 45

3 17 95 29

2

11 27 436 830

12 24 480 805

21 33 436 850

22 43 409 905

31 35 429 862

32 45 380 903

Initial areas of three cases by multilevel graph

partitioning are presented in table 9. In the original

graph representing the electric grid, those vertices

corresponding to slack nodes are not included in that

voltages of slack nodes keep unchanged during the

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Wenkai Zhao, Xinyan Fang, Xu Dong, Yuan Bi, Ying Wu

ISSN: 1109-2734 267 Issue 4, Volume 9, April 2010

calculation and those vertices need not participate in

the iterative procedure. Here, there is only one slack

node in each grid for testing.

After 2-nested BBDF partitioning to three grids,

boundary blocks of all levels are shown in table 10.

In this table, the first two columns correspond to

property Level and property Colors of vertices in all

boundary blocks respectively.

Fig.14 Admittance matrix of case 3 with NBBDF

The NBBDF system matrix of case 3 is exhibited

in figure 14. It is evident that there is no connection

between boundary blocks of non-contiguous levels.

This conclusion coincides fully with the character of

NBBDF partitioning by edge cut sets.

6.2 Partitioning performance assessment
The proposed NBBDF partitioning algorithm is

compared with multilevel k-way partitioning in

terms of a) runtime, b) cut-edge number and c) extra

edges supplemented during the graph contraction to

investigate its partitioning performance. Metis [22],

a graph partitioning software package, is used to

realize multilevel k-way partitioning, where k equals

6 to satisfy the same number of processors with

NBBDF partitioning.

Comparison results are demonstrated in figure 15,

in which the baseline represents results of multilevel

k-way partitioning and bars represent ratios of

results of NBBDF partitioning to those of multilevel

k-way partitioning.

For three cases, runtimes of NBBDF partitioning

are less than those of multilevel k-way partitioning.

This is because computational complexities of these

two methods are ()o E , where E is the edge count.

Furthermore, multilevel k-way partitioning involves

initial partitioning and refining which increase time

overheads to the whole partitioning while NBBDF

partitioning has to do nothing but traverse all edges.

Fig.15 Performance of NBBDF partitioning by edge

cut sets relative to that of multilevel k-way

partitioning for three cases

In figure 15, it is found that cut edges of NBBDF

partitioning are a bit more, particularly in case 1,

than multilevel k-way partitioning. This is because

cut edges among partitions are increasing as the

partition number grows. Meanwhile, IEEE grid of

case 1 is a strongly connected network, whereas real

grids are loosely coupled among various geographic

domains. In addition, the increase of nested levels is

another factor for additional cut edges.

Table 11 Fill-ins in one iteration of Jacobian matrix

Gaussian elimination

Partitioning
Fill-ins

Case 1 Case 2 Case 3

NBBDF

Level 0 124 368 198

Level 1 1200 1696 952

Level 2 1084 4672 19162

Total 2408 6736 20312

Multilevel

k-way

Level 0 3008 2896 4216

Level 1 7918 117072 427078

Total 10926 119968 431294

Matrix fill-ins during Gaussian elimination are

proportional to extra edges in the graph contraction.

For three cases, the fact that extra edges of NBBDF

partitioning are significantly fewer than multilevel

k-way method justifies a good effect of Tinney 3

scheme applied in the vertex ordering procedure. In

table 11, fill-ins in one iteration of Jacobian matrix

Gaussian elimination substantiate the effectiveness

of vertex ordering to NBBDF graph as well.

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Wenkai Zhao, Xinyan Fang, Xu Dong, Yuan Bi, Ying Wu

ISSN: 1109-2734 268 Issue 4, Volume 9, April 2010

6.3 Parallel performance evaluation
Aside from two parallel power flow calculations

based on NBBDF and multilevel k-way partitioning,

serial power flow calculation is involved in parallel

performance evaluation. Particular attention is paid

to one iteration of Gaussian elimination in order to

investigate the efficiency of parallel power flow

calculation in detail.

For further explanation, some symbols are given

below, where parallel Gaussian elimination is based

on NBBDF partitioning.

� serialT - runtime of one iteration of serial

Gaussian elimination;

� parallelT - runtime of one iteration of parallel

Gaussian elimination;

� ComQ - communications volume in one iteration

of parallel Gaussian elimination;

� ComT - communication time in one iteration of

parallel Gaussian elimination;

� operandsT - serial computation time of one

iteration of parallel Gaussian elimination in one

processor;

� StepsT - parallel computation time of one

iteration of parallel Gaussian elimination in

more than one processor;

� pλ - average parallelism degree;

� pS - speedup ratio;

� pE - parallel efficiency;

� p - number of processors;

� IN - iterations of Gaussian elimination;

� sT - runtime of serial power flow calculation;

� pT - runtime of parallel power flow

calculation based on NBBDF partitioning.

Definition 2: To an algorithm, average parallelism

degree is the quotient of total operands divided by

the number of steps.

In a parallel algorithm, whether operands or

steps are proportional to the execution time which

includes no communication time. Hence, oprandsT is

responsible for operands and StepsT is for steps.

Following equations are presented for revelation

about relations of these symbols.

operands operands

p

Steps Parallel Com

T T

T T T
λ = =

−
 (8)

serial
p

Parallel

T
S

T
= (9)

p

p

S
E

p
= (10)

A parallel algorithm is recognized as superlinear

one when p 1E > .

Upon the presumption of light-loaded LAN with

bandwidth of 100 Mbps at least, ComT is directly

proportional to ComQ . Communication statistics in

one iteration of parallel Gaussian elimination are

listed in table 12.

Table 12 Communication overheads in one iteration

of parallel Gaussian elimination

System ComQ /kb Bandwidth/Mbps ComT /ms

Case 1 43.80 100 0.4380

Case 2 88.98 100 0.8898

Case 3 180.71 100 1.8071

In parallel Gaussian elimination, it is the forward

substitution, in which elements of updating matrix

22∆J need to be sent, that dominates the whole

communication. Moreover, the number of vertices

of any level boundary block places an upper limit on

the size of the updating matrix 22∆J under N-nested

BBDF partitioning.

According to table 10, for three cases, sums of

vertices of level 1 and level 0 boundary blocks are

92, 235 and 161 respectively. Thus, there is least

communications volume in case 1 for its smallest

sum. The reason for more communications volume

of case 3 than case 2 is that there are nearly double

cut edges in case 3 than those of case 2.

Average parallelism degrees are listed in table 13,

followed by speedup ratios and parallel efficiencies

in table 14. As a result of similar task graphs, each

case has been assigned six processors, that is, 6p =

for all cases.

Table 13 Average parallelism degrees in one

iteration of parallel Gaussian elimination

System operandsT /ms StepsT /ms pλ

Case 1 4.1260 1.1867 3.4769

Case 2 38.1378 7.8315 4.8698

Case 3 109.0773 20.1700 5.4079

Table 14 Speedup ratios and parallel efficiencies in

one iteration of parallel Gaussian elimination

System serialT /ms parallelT /ms pS pE

Case 1 5.1303 1.6247 3.1577 0.5263

Case 2 50.0430 8.7213 5.7380 0.9563

Case 3 134.2626 21.9771 6.1092 1.0182

According to table 13 and table 14, it is telling

that average parallelism degrees along with speedup

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Wenkai Zhao, Xinyan Fang, Xu Dong, Yuan Bi, Ying Wu

ISSN: 1109-2734 269 Issue 4, Volume 9, April 2010

ratios are increasing as the system scale grows. And,

the parallel efficiency surpasses 100% in case 3.

There are three causes for this superlinearity. The

first one is that sum of consuming times in updating

partial Jacobian matrices in parallel processors is

smaller than that of updating the integrated Jacobian

matrix in one processor. The second reason is that

manipulating non-zero elements of a large matrix,

like inserting or deleting one, has to rearrange more

non-zero elements than those of several submatrices

which make up this large matrix if Compressed Row

Storge (CRS) has been adopted. The third cause is a

large computation-communication ratio denoted by

the quotient of the computation time divided by the

communication time as shown in equation (11).

Steps

Com

T

T
χ = (11)

Where, χ is the computation-communication ratio.

The first two causes do well in explaining why

operands serialT T< for three cases. Besides, increasing

computation-communication ratios that are inferred

from table 12 and table 13 by virtue of equation (11)

lend evidence to the third cause.

Fig.16 Parallel efficiencies in one iteration of

Gaussian elimination under different partitioning

algorithms

The comparison of parallel efficiencies between

proposed NBBDF partitioning and multilevel k-way

partitioning are shown in figure 16. Multilevel k-

way partitioning uses centralized file storage. In this

figure, it is found that there is no way of achieving

superlinearity without distributed file storage no

matter how efficient the partitioning method is.

Table 15 lists the performance of parallel power

flow calculation including loading data from files.

Table 15 Performances of parallel power flow

calculation under 2-nested BBDF partitioning

System IN sT /s pT /s pS pE

Case 1 6 0.0468 0.0129 3.6279 0.6047

Case 2 7 1.4042 0.2178 6.4472 1.0745

Case 3 7 5.3810 0.7389 7.2824 1.2137

By contrast with table 14, the parallel efficiency

has made greater progress than that in one iteration

of parallel Gaussian elimination. Furthermore, its

growing rate has also kept pace with the expanding

electric grid. In case 3, the growing rate of parallel

efficiency reaches up to 19.6%. This achievement is

attributed primarily to distributed file storage, which

decreases loading time, especially the topological

analysis of the grid, to a great extent. Thereby, the

total computation time has declined.

7 Conclusion
A new partitioning algorithm based, which is

engaged in transforming system matrices of power

grids into NBBDF, parallel power flow calculation

is presented in this paper. Features distinguishing

the proposed method from other algorithms are

concluded below.

1) Partitioning the original graph into NBBDF by

edge cut sets in a recursive way cuts off relations

between boundary blocks of non-contiguous levels,

and improves average parallelism degree as a result;

2) In order to bring as few fill-ins as possible into

the matrix Gaussian elimination, a Tinney 3 based

vertex ordering scheme together with its parallel

implementation is employed after partitioning.

3) The problem of time-consuming initialization

before starting parallel computing is solved by way

of distributed file storage that provides a task graph

for task scheduling.

4) Aiming at full utilizing processors available,

tasks are assigned to running processors in terms of

precedence relations in the task graph. At this point,

the detailed implementation of parallel power flow

calculation is given.

Final experimental results for three power grids

imply that the proposed method not only gains high

performance, what’s more, it is able to contribute to

superlinearity in large-scale grids.

In the future research, this partitioning method

should be investigated in various applications of

power systems such as stability analysis of voltages,

dynamic stability computation and so forth.

References:

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Wenkai Zhao, Xinyan Fang, Xu Dong, Yuan Bi, Ying Wu

ISSN: 1109-2734 270 Issue 4, Volume 9, April 2010

[1] G. Kron, Diakoptics: The piecewise solution of

large scale systems, MacDonald, 1963.

[2] A. Sangiovanni-Vincentelli, L. K. Chen, and L.

Chua, An efficient heuristic cluster algorithm

for tearing large-scale networks, IEEE Trans.

on Circuits and Systems, Vol.24, No.12, 1977,

pp. 709-717.

[3] E. C. Ogbuobiri, W. F. Tinney, and J. W.

Walker, Sparsity-directed decomposition for

Gaussian elimination on matrices, IEEE Trans.

on Power Apparatus and Systems, Vol.89, No.1,

1970, pp. 141-150.

[4] C. P. Yuan, R. Lucas, P. Chan, et al, Parallel

electronic circuit simulation on the IPSC

system, IEEE Custom Integrated Circuits

Conference, 1988, pp. 6.5.1-6.5.4.

[5] N. Frohlich, V. Glockel, and J. Fleischmann, A

new partitioning method for parallel simulation

of VLSI circuits on transistor level, Design,

Automation and Test in Europe Conference and

Exhibition, 2000, pp. 1-6.

[6] K. W. Chan, A. R. Daniels, R. W. Dunn, et al,

A partitioning algorithm for parallel processing

of large power systems network equations, IEE

2nd International Conference on Advances in

Power System Control, Operation and

Management, 1993, pp. 893-898.

[7] K. W. Chan, R. W. Dunn, and A. R. Daniels,

Efficient heuristic partitioning algorithm for

parallel processing of large power systems

network equations, IEE Proc.-Generation,

Transmission and Distribution, Vol.142, No.6,

1995, pp. 625-630.

[8] B. Hendrickson, and R. Leland, A multilevel

algorithm for partitioning graphs, ACM/IEEE

Supercomputing Conference, 1995, pp. 1-14.

[9] G. Karypis, and V. Kumar, Multilevel k-way

partitioning scheme for irregular graphs,

Journal of Parallel and Distributed Computing,

Vol.48, No.1, 1998, pp. 96-129.

[10] B. W. Kernighan, and S. Lin, An efficient

heuristic procedure for partitioning graphs, Bell

System Technical Journal, Vol.49, No.2, 1970,

pp. 291-307.

[11] M. C. Chang, and I. N. Hajj, iPRIDE a parallel

integrated circuit simulator using direct method,

IEEE International Conference on Computer-

Aided Design, 1988, pp. 304-307.

[12] C. C. Chen, and Y. H. Hu, Parallel LU

factorization for circuit simulation on an

MIMD computer, IEEE International

Conference on Computer Design: VLSI in

Computers and Processors, 1988, pp. 129-132.

[13] P. Y. Chung, and I. N. Hajj, Parallel solution of

sparse linear systems on a vector

multiprocessor computer, IEEE International

Symposium on Circuits and Systems, 1990, pp.

1577-1580.

[14] J. Shu, W. Xue, and W. M. Zheng, A parallel

transient stability simulation for power systems,

IEEE Transactions on Power Systems, Vol.20,

No.4, 2005, pp. 1709-1717.

[15] K. W. Chan, R. C. Dai, and C. H. Cheung, A

coarse grain parallel solution method for

solving large set of power systems network

equations, International Conference on Power

System Technology, Vol.4, 2002, pp. 2640-

2644.

[16] Y. Li, X. X. Zhou, and J. Y. Zhou, A new

algorithm for distributed power system state

estimation based on PMUs, International

Conference on Power System Technology,

2006, pp. 1-6.

[17] M. H. M. Vale, D. M. Falcao, and E.

Kaszkurewicz, Electrical power network

decomposition for parallel computations, IEEE

International Symposium on Circuits and

Systems, 1992, pp. 2761-2764.

[18] A. I. Zecevic, and D. D. Siljak, Balanced

decompositions of sparse systems for

multilevel parallel processing, IEEE Trans. on

Circuits and Systems I: Fundamental Theory

and Applications, Vol.41, No.3, 1994, pp. 220-

233.

[19] M. Vlach, LU decomposition and forward-

backward substitution of recursive bordered

block diagonal matrices, Electronic Circuits

and Systems, Vol.132, No.1, 1985, pp.24-31.

[20] R. Berry, An optimal ordering of electronic

circuit equations for a sparse matrix solution,

IEEE Trans. on Circuits Theory, Vol.18, No.1,

1971, pp. 40-50.

[21] K. W. Chan, Parallel algorithms for direct

solution of large sparse power system matrix

equations, IEE Proc.-Generation, Transmission

and Distribution, Vol.148, No.6, 2001, pp. 615-

622.

[22] G. Karypis, METIS: A software package for

partitioning unstructured graphs, partitioning

meshes, and computing fill-reducing orderings

of sparse matrices, http://www. cs.umn.edu/˜
karypis, 1998.

Appendix:

Proof of Theorem 1: According to theorem 1, the

original graph (,)G V E has been partitioned into n

independent subgraphs ' ' '(,)i i iG V E and one subgraph

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Wenkai Zhao, Xinyan Fang, Xu Dong, Yuan Bi, Ying Wu

ISSN: 1109-2734 271 Issue 4, Volume 9, April 2010

boundary boundary(,)G V ℑ that is related to each ' ' '(,)i i iG V E .

This substantiation involves two respects.

a) Independency

Assuming that there are two subgraphs ' ' '(,)i i iG V E

and ' ' '(,)j j jG V E which are connected with each other,

thus, there is one edge (,)kl k le v v= at least satisfying

{ }' '(,) &kl k l k i l je v v v V v V= ∈ ∈ and V ,Vkl i i G
e  ∉   .

Owing to i jV V φ=∩ , '

i iV V⊂ and '
j jV V⊂ , it is

inferred that ' '
i jV V φ=∩ and '

l i iv V V∉ ⊂ . Given that

'

k i iv V V∈ ⊂ , it is concluded that V ,Vkl i i G
e  ∈   ,

which is contradictory to V ,Vkl i i G
e  ∉   and renders

this assumption invalid.

b) Connectivity

Assuming that there is an independent subgraph
' ' '(,)i i iG V E not connected with boundary boundary(,)G V ℑ ,

there is no edge { }'

boundary(,) &kl k l k i le v v v V v V= ∈ ∈

accordingly.

As (,)G V E is a connected graph, the edge cut

[,]i i i GV Vξ = of subgraph iG is not empty. boundaryG

is the edge-induced subgraph of [,]i i i GV Vξ = , hence,

boundaryiV V φ≠∩ .

No such edge { }'

boundary(,) &kl k l k i le v v v V v V= ∈ ∈

means that there is no edge (,)kj k je v v= satisfying

'

k i iv V V∈ ⊂ and boundaryj iv V V∈ ∩ . As a result, initial

subgraph (,)i i iG V E is disconnected, which violates

the precondition in theorem 1. So this assumption is

unjustifiable.

Proof of Theorem 2: This substantiation is carried

out in a recursive way.

First, there are k vertices in connected subgraph

(,)c c cG V E . According to lemma 1, this theorem is

reasonable when 1k = .

Presuming this theorem is tenable when k i≤ ,

two cases have to be considered when 1k i= + , and

1iv + is a vertex which is contracted last in (,)c c cG V E .

a) 1iv + is a cut vertex.

There are two vertex sets 1S and 2S , which are

vertex sets of two connected components, satisfying

1 2 1c iV S S v += ∪ ∪ . In figure A1, 0A , 1A and 2A are

adjacent vertex sets of 1iv + , 1S and 2S respectively.

According to the presumption, vertices consisted

of 1iv + and vertices in 1 2A A∪ are connected with

each other after 1S and 2S have been contracted.

Then, the subgraph 0 1 2A A A A= ∪ ∪ , induced from

adjacent vertices of (,)c c cG V E , is a complete graph

after 1iv + has been contracted according to lemma 1.

Hence, this theorem is proven.

1S 2S

1A 2A

0A

(),c c cG V E

1iv +

Fig. A1 1iv + is a cut vertex

b) 1iv + isn’t a cut vertex.

1S , which is a vertex set of rest vertices, satisfies

1 1c iV S v += ∪ . In figure A2, 0A and 1A are adjacent

vertex sets of 1iv + and 1S respectively.

According to the presumption, vertices consisted

of 1iv + and vertices in 1A are connected with each

other after 1S has been contracted. Similar to case a),

the subgraph 0 1A A A= ∪ , induced from adjacent

vertices of (,)c c cG V E , is a complete graph after 1iv +

has been contracted according to lemma 1. Thereby,

this theorem is justified.

1S

1A 0A

(),c c cG V E

1iv +

Fig. A2 1iv + is a non-cut vertex

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Wenkai Zhao, Xinyan Fang, Xu Dong, Yuan Bi, Ying Wu

ISSN: 1109-2734 272 Issue 4, Volume 9, April 2010

