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Abstract: - In coarse-grained parallelism, it is effective to partition the network into Bordered Block 

Diagonal Form (BBDF) before subsequent parallel computation. An implementation of parallel power flow 

calculation based on a novel graph partitioning algorithm, which transforms the admittance matrix into nested 

BBDF (NBBDF)，is presented in this paper. In order to avoid excessive fill-ins during Gaussian elimination, a 

vertex ordering scheme is discussed. Distributed file storage combined with task scheduling is proposed for 

improving parallel efficiency. Testing results for grids with up to 5317 buses indicate that this proposed method 

is able to bring superlinearity into parallel power flow calculation for large-scale power systems. 
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1 Introduction 
With the advent of smart grid, a wide variety of 

applications such as network restructuring, transient 

stability analysis, state estimation, etc, are in urgent 

need of the powerful computing capacity for on-line 

monitoring and control in power systems. Thus, fast 

power flow calculation is essential for large-scale 

power systems with continually increasing amount 

of bus bars on the basis of these functions. 

In conjunction with the development of high-

performance computing environment, researches on 

parallel computation in power systems mostly focus 

on graph partitioning algorithms whose aim to find a 

network made up of several even-sized subdivisions 

connected by few tie-lines. 

Graph partitioning algorithms originate from the 

concept of Diakoptics, proposed by Gabriel Kron in 

1963 [1]. It involves breaking a problem down into 

some subproblems that can be solved independently 

before being joined back together to attain a solution 

to the whole problem. This sort of graph partitioning 

has 2 criteria as: 

1) Equal-sized partitions; 

2) Few connections among partitions. 

According to the partitions obtained, the system 

matrix is rearranged by way of taking each partition 

as a diagonal block and nodes adjacent to different 

partitions as a boundary block. Thereby, the system 

matrix has a structure of Bordered Block Diagonal 

Form (BBDF). 

Contour Tableau, prevailing in the 1970s, serves 

to build BBDF system matrix through searching for 

independent clusters coupled with bottleneck nodes. 

A heuristic algorithm based on Contour Tableau 

succeeds in transforming the system matrix into 

BBDF [2]. However, its optimality in partitioning is 

conditional upon the selection of each seed node. 

Meanwhile, nodes of boundary block are not as few 

as expected. Sequential Binary Partition (SBP) uses 

a pseudo optimal ordering scheme after partitioning 

for preserving the sparsity of BBDF matrix during 

Gaussian elimination [3]. Nevertheless, there are no 

good answers to the above two questions. 

Nested Dissection, ancestor of multilevel graph 

partitioning, has achieved high performance in 

parallel electronic circuit simulation [4]. Albeit it is 

superior to Contour Tableau in respect of balanced 

partition size, the number of partitions is fixed to the 

power of 2. Node merging method contracts vertices 

to establish partitions, similar to the coarsening 

stage in multilevel graph partitioning [5]. Relations 

between starting nodes and their growing clusters 
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place uncertainties in partitioning results like those 

of Contour Tableau based algorithms. 

K. W. Chan has proposed a factorization path 

tree based partitioning algorithm, which restructures 

the original path tree ahead of grouping branches [6]. 

This algorithm not only completes construction of 

BBDF matrix, the post-partitioning ordering keeps 

the number of fill-ins in the later elimination to a 

minimum as well [7]. The pre-partitioning ordering, 

which helps build a short and broad path tree before 

partitioning, raises a question that partitions may be 

not as good as anticipated without a well-organized 

initial path tree. 

Given that the partitioning time that most parallel 

computations do not concern, if it takes long time to 

partition the original network, the performance of 

algorithm will be pulled down totally no matter how 

effective the parallel computation is. To solve this 

problem, multilevel graph partitioning is employed, 

which operates within three phases as coarsening, 

partitioning and refining [8]. It is the partitioning 

phase, where the original graph has been contracted 

significantly, that shortens the entire execution time. 

Multilevel recursive bisection and multilevel k-way 

partitioning satisfy criteria of graph partitioning and 

operate in a short time [9]. Moreover, the refinement 

with KL algorithm has contributed to fewer cut 

edges between different partitions [10]. 

It is evident that increasing partition number will 

enlarge the size of boundary block. Large boundary 

block will hinder accelerating parallel computation, 

because elimination of boundary block is the only 

serial portion of parallel Gaussian elimination. One 

way to avoid this situation is to partition the original 

network recursively so as to obtain nested BBDF 

(NBBDF) system matrix [11-13]. Unlike BBDF 

matrix, task scheduling should be included in the 

parallel computation of NBBDF matrix in that 

assigning each block to an exclusive processor will 

cost more processors than actually needed, followed 

by possible low efficiency in parallelism. 

A novel implementation of parallel power flow 

calculation, based on a graph partitioning algorithm 

which transforms the system matrix into NBBDF by 

edge cut sets in a recursive way, is presented in this 

paper. Different from common NBBDF partitioning 

algorithms, the only relationship between blocks of 

contiguous levels instead of any two levels reduces 

data dependencies and communication overheads. In 

view of the possible computational burden due to 

excessive fill-ins in the matrix Gaussian elimination, 

a sub-optimal vertex ordering scheme is employed 

after partitioning. Additionally, both distributed file 

storage and task scheduling are incorporated into the 

implementation for reducing initialization time and 

improving parallel efficiency. Experimental results 

for grids of up to 5317 buses demonstrate that this 

proposed approach is able to bring superlinearity 

into parallel power flow computation for large-scale 

power systems. 

In next section, the general process for coarse-

grained parallel computation is briefly described as 

well as principles underlying in a graph contraction 

associated with the matrix Gaussian elimination. In 

section 3, basic data structures used for NBBDF 

partitioning with its implementation are interpreted 

in detail. A vertex ordering scheme and distributed 

file storage are illustrated in section 4. Section 5 

discusses task scheduling with parallel Gaussian 

elimination. Analysis to testing results is presented 

in section 6. Conclusions are followed in section 7. 

 

 

2 Parallel computing in power system 
According to parallel transient stability analysis 

and distributed state estimation [14-16], it is found 

that the ordinary process for parallel computation in 

power systems comprises four stages as portrayed in 

figure 1. 

 

 
Fig.1 Ordinary process of parallel computation in 

power systems 

 

� Modeling is responsible for establishing an 

undirected graph representing the electric grid, 

in which bus bars are indicated by vertices and 

tie-lines or transformers connecting different 

buses are represented by edges. 

� Partitioning serves to separate the undirected 

graph into several loosely-coupled equal-sized 

subgraphs. The most common method is to use 

vertex coloring, which assigns different colors 

to vertices subordinating to different subgraphs. 

� Preparing deals with data file deployment and 

vertex ordering. Data file deployment can help 

reduce initialization overheads before parallel 

computation while vertex ordering is used for 

preserving the sparsity of partitioned matrix. 

� Computing is engaged in task assignment along 

with parallel computation of partitioned matrix. 

Task assignment attaches great importance to a 

shared memory parallel architecture. Whatever, 

it also full utilizes the processors available in a 

distributed memory parallel architecture. 

The solution of network equations in transient 

stability analysis and that of least square in state 

estimation have an identical formulation of solving 

sparse system of equations given by equation (1). 
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=Ax y     (1) 

A is a structurally symmetric matrix, x and y are 

n-dimensional vectors. 

The corresponding undirected graph G(V, E), in 

which V and E denote vertex set and edge set 

respectively, can be described as follows [3]: 

1) Each vertex vi in V maps both xi in x and yi in 

y in a bijective way; 

2) Each edge eij = (vi, vj) in E represents the non-

zero element aij in A, where j > i. 

The mapping from the system of equations to its 

associated undigraph can be found in figure 2. 
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Fig.2 Mapping from system of equations to an 

undigraph 

 

The coefficient matrix A is always referred to as 

the adjacent matrix of graph.  

When matrix A is processed by a direct method 

such as Gaussian elimination, its undirected graph 

contraction conforms to the following lemma. 

Lemma 1: During graph contraction associated with 

structurally symmetric matrix Gaussian elimination, 

contracting vertex vk makes all vertices adjacent to 

vk constitute a complete graph. 

For instance, in figure 2, eliminating pivot a11 of 

matrix means contracting vertex a11 in the undigraph, 

which causes a22 and a44 contiguous as shown in 

figure 3. 
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Fig.3 Contracting vertex a11 in the undirected graph 

 

 

3 Graph partitioning 
The goal of effective partitioning is to divide the 

original undigraph into several subgraphs satisfying 

2 criteria of graph partitioning discussed in section 1. 

Neither multilevel graph partitioning nor geographic 

information based partitioning is able to acquire the 

partitioned graph with BBD pattern directly, thus a 

post-process should be added to partitioning before 

parallel computation. 

 

 

3.1 BBDF partitioning by an edge cut set 
Before illustrating BBDF partitioning by an edge 

cut set, a definition and a theorem are put forward 

respectively in the following paragraphs. 

Definition 1: In graph G(V, E), P and Q are non-

empty vertex sets, containing no same vertex. The 

edge set [P, Q]G comprises all edges with one vertex 

belonging to P and the other belonging to Q. 

Specially, if P Q V+ = , namely Q P= , the edge set 

,
G

P P    is called an edge cut of graph G(V, E). 

Theorem 1: In the connected graph G(V, E), there 

are n connected subgraphs Gi(Vi, Ei) satisfying 

1

n

i

i

V V
=

=∪  and ( )i jV V i jφ∀ = ≠∩ . The edge-induced 

subgraph boundary boundary( , )G V ℑ , whose edge set ℑ  is 

the union of edge cuts [ , ]i i i GV Vξ =  in terms of 

1

n

i

i

ℑ ξ
=

=∪ , separates graph G(V, E) into n decoupled 

subgraphs ' ' '( , )i i iG V E , in which '
boundaryi iV V V= − . All 

these subgraphs ' ' '( , )i i iG V E  are only connected to the 

subgraph boundary boundary( , )G V ℑ  as a result. 

After converting the original graph to an NBDF 

one by some kind of partitioning method [17], this 

NBDF graph can be converted into a BBDF graph 

according to theorem 1. For instance, the case in 

figure 4 illustrates such conversion. 

 

 
Fig.4 BBDF partitioning by an edge cut set 

 

In figure 4, the original graph was partitioned 

into 3 parts to begin with. White vertices in NBDF 

graph are ones that belong to the boundary block of 

BBDF graph. 

The system matrix is then reordered by arranging 

diagonal blocks in diagonal and a boundary block in 

the lower right corner to obtain a structure of BBDF. 
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If the boundary block of this BBDF matrix is 

reordered by grouping those vertices connected to 

an identical diagonal block together successively, it 

is only a portion of boundary block not all that 

connects to a diagonal block and one such portion 

has only one corresponding diagonal block. This 

property helps decrease communication overheads 

and prevents conflicting operands on the same 

element of the boundary block in parallel Gaussian 

elimination. 

 

 
Fig.5 Traditional BBDF matrix versus BBDF matrix 

partitioned by an edge cut set 

 

The differences between the traditional BBDF 

matrix and the BBDF matrix partitioned by an edge 

cut set can be found in figure 5. 

 

 

3.2 Basic data structures 
With the NBDF graph, basic data structures, 

used to implement NBBDF partitioning, are defined 

in the following tables. However, only abstract data 

types are stated here in that the specific realization 

depends on either the programming language or the 

development environment or both. 

 

Table 1 Vertex prototype 

Property Type Remarks 

ID Integer Unique identifier 

Level Integer 
Nested level of the block to 

which this vertex belongs 

Colors 
Integer 

array 

Colors of the partition, from 

which this vertex springs, 

of all levels 

AdjVs 
Vertex 

set 

Vertices adjacent to this 

vertex 

BusInfo 
User-

defined 
Bus information 

 

Table 2 Vertex set prototype 

Property Type Remarks 

Entry Vertex One vertex in this set 

Table 3 Edge prototype 

Property Type Remarks 

ID Integer Unique identifier 

V1 Vertex One incident vertex 

V2 Vertex The other incident vertex 

BranchInfo 
User-

defined 

Tie-line or transformer 

information 

 

Table 4 Edge set prototype 

Property Type Remarks 

Entry Edge One edge in this set 

 

In order to give a detailed explanation for such 

data structures, the case in figure 4 is taken into 

account. The original graph has been converted into 

a 1-nested BBDF graph, in which property Colors of 

each vertex is a one-dimensional array with one 

integer indicating color of the partition from which 

this vertex came. Property Level of vertices in the 

diagonal block is 1 while that of vertices in the 

boundary block is 0. If a vertex in the BBDF graph 

has Colors of {3} (symbol {} denotes an array) and 

Level of 0, it means that this vertex is located in the 

boundary block and connected to diagonal block 3. 

 

 

3.3 NBBDF partitioning by edge cut sets 
Advances in a wide variety of parallel issues in 

power systems have proven the validity of primitive 

BBDF partitioning [6, 7, and 14-18]. Whatever, new 

challenges arise from the rapid growing electric grid. 

On one hand, more partitions will bring more edges 

into the edge cut set, followed by a larger boundary 

block. On the other hand, computation overheads in 

each diagonal block are considerable due to fewer 

partitions. As a result, partitioning the network in a 

recursive way to gain a system matrix with NBBDF 

is a viable method. 

If NBBDF partitioning is just a recursive way of 

the primitive BBDF partitioning as stated in [18] 

and [19], it embraces an underlying risk in itself as 

the boundary block of level k is connected to all 

boundary blocks of level k-1 to level 0. In other 

words, a boundary block has to communicate with 

boundary blocks of all lower levels in the parallel 

execution, which introduces great communications 

volume and renders parallel programming complex. 

Besides, synchronization is another problem needed 

concern. 

A NBBDF partitioning method, which is derived 

from the BBDF partitioning by an edge cut set, is 

proposed to solve these problems. The distinction 

between this method and conventional ones is that 

boundary blocks of level k are connected to those of 
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level k-1 and k+1 only. This character can be found 

in the associated NBBDF matrix shown in figure 6. 

 

Level k

Level k+1

Level k+1

Level k+1

 
Fig.6 NBBDF matrix partitioned by edge cut sets 

 

The recursive procedure of NBBDF partitioning 

by edge cut sets is described as follows.  

Firstly, partitioning the diagonal block of level 0, 

which is a NBDF graph actually, into a BBDF graph 

partitioned by an edge cut set. And, the number of 

diagonal blocks is ,k pn , where 0k =  and 1p = . 

Secondly, assuming the original graph has been 

divided into k nested levels. Then, the pth diagonal 

block of level k-1 is partitioned into ,k pn  diagonal 

blocks and one boundary block bb bb bb
, , ,( , )k p k p k pG V E . 

Meanwhile, there are 1,k in +  parts, which do not 

contain any common vertex, in each diagonal block 
db db db
, , ,( , )i i i
k p k p k pG V E  ( ,1,2, , k pi n= ⋯ ). 

Upon that, the NBBDF partitioning algorithm is 

operated in a recursive way as explained below. 

1) Combining vertex set db
,
i

k pV  of the ith diagonal 

block db db db
, , ,( , )i i i
k p k p k pG V E  with vertex set bb

,k pV  of the 

boundary block bb bb bb
, , ,( , )k p k p k pG V E  to form an induced 

subgraph , , ,( , )i i i
k p k p k pG V E , where db bb

, , ,
i i
k p k p k pV V V= ∪ ; 

2) Known by the assumption, there are 1, 1k in + +  

parts containing different vertices in the induced 

subgraph , , ,( , )i i i
k p k p k pG V E  for db bb

, ,
i

k p k pV V φ=∩ . By way 

of theorem 1, partitioning subgraph , , ,( , )i i i
k p k p k pG V E  

into 1, 1k in + +  decoupled subgraphs ' ' '( , )j j jG V E  and 

one edge-induced subgraph bb bb( , )G V ℑ ; 

3) Excluding a subgraph, which is induced by 
bb
,k pV  of boundary block bb bb bb

, , ,( , )k p k p k pG V E , from these 

1, 1k in + +  decoupled subgraphs ' ' '( , )j j jG V E , then the 

rest 1,k in +  decoupled subgraphs ' ' '( , )j j jG V E  are level 

k+1 diagonal blocks db db db

1, 1, 1,( , )j j j

k i k i k iG V E+ + +  of diagonal 

block db db db
, , ,( , )i i i
k p k p k pG V E , where 1,1,2, , k ij n += ⋯ ; 

4) Excluding vertices, which belong to boundary 

block bb bb bb
, , ,( , )k p k p k pG V E , from edge-induced subgraph 

bb bb( , )G V ℑ , then the rest vertex-induced subgraph is 

the level k+1 boundary block bb bb bb

1, 1, 1,( , )k i k i k iG V E+ + +  of 

the ith diagonal block db db db
, , ,( , )i i i
k p k p k pG V E  satisfying 

{ }bb bb

1, bb ,&k i k pV v v V v V+ = ∈ ∉ . 

After the original graph has been partitioned into 

a 1-nested BBDF graph in figure 4, which includes 

0,1 3n =  diagonal blocks, diagonal block 2 serves as 

db2 db2 db2

0,1 0,1 0,1( , )G V E , where there are 1,2 2n =  parts with 

no common vertex. Utilizing the above method to 

partition diagonal block 2 of the BBDF graph in 

figure 4, the process is demonstrated in figure 7. 

 

 
Fig.7 NBBDF partitioning by edge cut sets 

 

First of all, combining DB 2 with BB to get the 

induced subgraph 2 2 2

0,1 0,1 0,1( , )G V E . Next, according to 

theorem 1, partitioning subgraph 2 2 2

0,1 0,1 0,1( , )G V E  into 

1,2 1 3n + =  decoupled subgraphs ' ' '( , )j j jG V E  and one 

edge-induced subgraph bb bb( , )G V ℑ . Vertices of the 

3 decoupled subgraphs ' ' '( , )j j jG V E  are black nodes 

in part 1, black nodes in part 2 and the bottom 3 

black nodes in BB respectively. Vertices of edge-

induced subgraph bb bb( , )G V ℑ  are white nodes in DB 

2 and the top 2 nodes in BB. Furthermore, excluding 

subgraph ' ' '( , )j j jG V E , which contains 3 black nodes 

in BB, leaves two diagonal blocks of level 1 as db 1 

and db 2. At last, excluding 2 black nodes in BB 

from edge-induced subgraph bb bb( , )G V ℑ  leaves the 

boundary block bb of level 1. 
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3.4 Implementation of NBBDF partitioning 
NBBDF partitioning is a recursive method from 

outside to inside, that is, the outermost is level 0 and 

the innermost is level N if the original graph has 

taken an N-nested partitioning.  

In an NBBDF graph, blocks, whether diagonal or 

boundary, are referred to as boundary blocks for the 

reason that a diagonal block of level k is also a 

boundary block of level k+1. 

 
NBBDF partitioning starts

Establishing the original graph representing 

the electric grid

Determining the number of nested-levels

Current nested-level

NestedLevels

0i =

i NestedLevels<

Picking first edge    from the edge sete

exists

Taking vertex    and vertex     of edge1v 2v

Yes

1. [ ] 2. [ ]v Colors i v Colors i==

Accomplishing nested-partitioning on the 

original graph by some heuristic algorirhm

Making  for all verticesLevel NestedLevels=

1 2BI BI NestedLevels== ==

1 1. ; 2 2.BI v Level BI v Level= =

Yes

( 1 ) & ( 2 )BI NestedLevels BI i== ==

No

( 2 ) & ( 1 )BI NestedLevels BI i== ==

No

No

No
Yes

Yes

Yes

1BI NestedLevels==

Yes

No

1.v Level i=

2BI NestedLevels==

Yes

2.v Level i=

No

Removing edge from the edge set

Yes

Picking next edge    from the edge set

No 1i i= +

End

e

e

e

e

 
Fig.8 Flowchart of NBBDF partitioning by edge cut 

sets 

 

The implementation of NBBDF partitioning by 

edge cut sets is illustrated in detail in figure 8, in 

which a flowchart involves some fundamental data 

structures described in section 3.2. 

According to this flowchart, it is found that the 

computational complexity is less than N*E, where N 

is the nested-level number and E is the edge number. 

Generally, N is not more than 4 for power systems, 

that is, the complexity of NBBDF partitioning is 

proportional to the number of branches. Therefore, 

NBBDF partitioning is comparable with multilevel 

graph partitioning in speed.  

There are 2 characteristics for vertices in the 

NBBDF graph partitioned by edge cut sets as: 

1) In array Colors of a vertex, first Level-1 

integers indicate colors of the block this vertex 

belongs to while first Level integers indicate colors 

of the block this vertex is connected to. 

2) Vertices in the vertex set AdjVs of a vertex, 

whose property Level equals k, can have property 

Level of k-1 or k+1 only. 

The first one is helpful in the late vertex ordering 

process, and the second one ensures the hierarchical 

structure of distributed file storage. 

 

 

4 Preparing for parallel computing 
In accordance with the NBBDF graph obtained, 

distributed file storage is employed to take on the 

task of reducing initialization overheads in parallel 

computation. In order to keep fill-ins of matrix 

Gaussian elimination to a low level, a sub-optimal 

vertex ordering scheme is also adopted. 

 

 

4.1 Vertex ordering of NBBDF graph 
Parallel Gaussian elimination of NBBDF matrix 

is operated on boundary blocks of each level in turn. 

Thereby, renumbering nodes in each corresponding 

submatrix is a key point for preserving the sparsity 

of the entire NBBDF matrix. 

Node renumbering for a matrix corresponds to 

vertex ordering for a graph, which is known as a 

non-polynomial complete problem [3]. This is the 

reason why our vertex ordering scheme is called 

sub-optimal instead of optimal. 

Theorem 2: In the connected graph G(V, E), there is 

a connected subgraph Gc(Vc, Ec). Vertices, which 

belong to V-Vc and are adjacent to graph Gc(Vc, Ec), 

constitutes a complete graph after graph Gc(Vc, Ec) 

is eliminated from graph G(V, E). 

Theorem 2 points out that no matter what orders 

vertices take in a diagonal block, as long as it is a 

connected diagonal block, vertices adjacent to it are 

connected with each other in the boundary block 

after it is eliminated. In other words, extra fill-ins 

before the process of boundary block elimination 

are predetermined and have nothing to do with the 

vertex order of any diagonal block. 

In the NBBDF graph partitioned by edge cut sets, 

boundary blocks of level k are only connected to 

those of level k-1 and level k+1. To an NBBDF 

graph with the deepest level of N, its vertex ordering 

is given below. 

1) In a boundary block bb bb bb
, , ,( , )k p k p k pG V E  of level k, 

where 0,1, ,k N= ⋯ , appending extra edges on those 

vertices connected to the same diagonal block as to 

make them connected with each other; 

2) Transferring to stage 3 when 0k = . Otherwise, 

locating the boundary block bb bb bb
1, 1, 1,( , )k q k q k qG V E− − −  of 

level k-1, to which bb bb bb
, , ,( , )k p k p k pG V E  is connected. 
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Combining bb
1,k qV −  with bb

,k pV  to form a vertex-induced 

subgraph ex ex ex
, , ,( , )k p k p k pG V E ; 

3) Exploiting the vertex ordering method in [20], 

called simplified Tinney 3 scheme, to order vertices 

in subgraph ex ex ex
, , ,( , )k p k p k pG V E ; 

4) Returning to stage 3 unless all vertices, which 

sprang from bb bb bb
, , ,( , )k p k p k pG V E , have been sorted in 

subgraph ex ex ex
, , ,( , )k p k p k pG V E . 

Both theorem 2 and the foregoing procedure 

reveal that a boundary block of level k has no need 

to wait for its descendants to finish their jobs before 

starting its own vertex ordering. As a result, vertex 

ordering of the NBBDF graph can be parallelized 

effortlessly. 

 

 

4.2 Distributed file storage 
The overall performance of parallel power flow 

calculation is not only subject to parallel computing 

as Gaussian elimination, however, the formulation 

of Jacobian matrix should be taken into account 

because loading data from files, which contains the 

entire system, is time-consuming, especially when 

the system is quite large. 

Moreover, the NBBDF graph partitioned by edge 

cut sets has an inherent property as boundary blocks 

of level k are only connected to those of level k-1 

and k+1. Therefore, distributed data files can be 

deployed in the following way. 

For a boundary block of level k, there are four 

data files available as Local, Inner, Outer and BS. 

� File Local stores buses and branches of this 

boundary block; 

� File Inner stores buses and branches, which are 

related to this boundary block, of level k+1 

boundary blocks; 

� File Outer stores buses and branches, which are 

linked to this boundary block, of level k-1 

boundary blocks; 

� File BS stores slack nodes and corresponding 

branches connected to this boundary block. 

Figure 9 displays the structure of distributed file 

storage. 

 

⋯

⋯⋯

⋰ ⋱ ⋰ ⋱

⋯ ⋯

 
Fig.9 Distributed file storage in a hierarchical way 

 

As the structure of grid is ongoing changing, for 

example, adding or dropping some branches, several 

cases are discussed below. 

1) Buses (including the new one), which are 

connected by a branch, resident in an identical 

boundary block. It is the file Local of this boundary 

block that needs to be updated only; 

2) Buses, which are connected by a branch, 

resident in different boundary blocks, of which one 

is level k block and the other is level k+1 block. 

Both the file Outer of level k+1 block and the file 

Inner of level k block need to be updated; 

3) Buses, which are connected by a branch, 

resident in different boundary blocks that are not 

adjacent to each other and named level i block and 

level j block respectively. These two buses should 

be put into the first outer level boundary block 

preceding both level i block and level j block.  And 

four files of all boundary blocks along 2 paths from 

the first outer level to level i and to level j need to 

be updated simultaneously. 

 

 

4.3 Mapping tables 
One process is assigned to one boundary block to 

complete initialization and computation. Here, one 

process doesn’t mean one processor since it will 

take more processors than actually needed. 

Every process reads these 4 data files to form 4 

corresponding vertex sets as InnerVs, LocalVs, 

OuterVs and BSVs. Identical with section 3.2, some 

fundamental data structures, which are defined in 

the following tables, are used within the processes. 

 

Table 5 Process prototype 

Property Type Remarks 

ParentID Integer 
Unique identifier of 

its parent process 

ChildProcCount Integer 
Number of its child 

processes 

ChildProcIDs 
Integer 

array 

IDs of its child 

processes 

TableLFI 
Mapping 

table 

Mapping vertices in 

InnerVs of its parent 

process to vertices in 

LocalVs 

TableOFL 
Mapping 

table 

Mapping vertices in 

LocalVs of its parent 

process to vertices in 

OuterVs 

TableLTO 
Mapping 

table 

Mapping vertices in 

LocalVs to vertices 

in OuterVs of its 

child processes 
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Table 6 Mapping table prototype 

Property Type Remarks 

Entry 
Mapping table 

entry 

One mapping in this 

table 

 

Table 7 Mapping table entry prototype 

Property Type Remarks 

ProcID Integer Mapping process ID 

Value Integer Mapping value 
 

For an NBBDF graph partitioned by edge cut 

sets, three mapping tables as TableLFI, TableOFL 

and TableLTO in table 5 are explained in figure 10, 

where dashed frames represent processes and solid 

frames represent nested levels. 

Each process has 3 mapping tables except those 

corresponding to innermost and outermost boundary 

blocks. 

 

 
Fig.10 Mapping tables for an NBBDF graph 

 

 

4.4 Parallel vertex ordering of NBBDF graph 
A parallel implementation can be inferred from 

the procedure of vertex ordering given in section 4.1. 

Nevertheless, according to theorem 2, considering a 

situation where there are unconnected portions in a 

boundary block, in other words, this boundary block 

is not a connected graph, thus appending extra edges 

on vertices which are connected to this unconnected 

boundary block is invalid. 

To solve this problem, the implementation of 

parallel vertex ordering of NBBDF graph, depicted 

in figure 11, has employed vertex coloring approach. 

Through vertex coloring method, vertices belonging 

to different connected components are designated 

different colors in the vertex set LocalVs of a 

process. After that, a parent process receives vertex 

colors from its child processes to update the color 

information of its own vertex set InnerVs. 

 
Vertex ordering starts

Coloring vertices in LocalVs

Sending color information of LocalVs to 

parent process

Having child processes Yes

No

Having parent process Yes

No

Appending extra edges based on color 

information of InnerVs

Sending vertex orders of LocalVs and 

InnerVs to child processes

Sending vertex orders of OuterVs to parent 

process

Having child processes Yes

No

Having parent process Yes

Having child processes Yes

No

No

Vertex ordering by simplified Tinney 3

End

Receiving vertex colors from child 

processes to update InnerVs

Receiving vertex orders of LocalVs and 

InnerVs from parent process to establish 

TableOFL and TableLFI respectively

Receiving vertex orders of OuterVs from 

child processes to establish TableLTO

 
Fig.11 Parallel vertex ordering of NBBDF graph 

 

 

5 Parallel computing 
This section is separated into two parts with 

respect to parallel power flow calculation for large-

scale power systems. For one thing, task scheduling 

is illustrated for achieving high parallel efficiency. 

For another thing, attention is paid to the iterative 

procedure of parallel power flow calculation.  

 

 

5.1 Task scheduling 
Whether in the BBDF or NBBDF graph, it is 

evident that blocks of different levels are calculated 

in sequence. To full utilize processors available, 

computational tasks should be scheduled to increase 

the overall parallelism degree. 

Conventional methods for task scheduling rely 

on a task graph, which gives precedence relations 

between tasks [12, 21]. In the NBBDF graph, a task 

is a running process which reads 4 data files and 

commits corresponding computation. Thus, the task 

graph is identical with distributed files in structure 

as shown in figure 9. 

For parallel power flow calculation with an 

NBBDF system matrix, task scheduling is operated 

in a bottom-to-up manner as described below. 

1) Assigning each bottom task in the task graph 

to different processors successively; 

2) If this level is level 0, then quitting; 

3) Searching for a group of tasks having a same 

parent task which is assigned to no processor yet; 
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4) Assigning this parent task to the processor 

which contains the task with heaviest computing 

loads in this group; 

5) If there are such groups of tasks remaining on 

this level, going back to stage 3. Otherwise, moving 

up one level along the task graph and returning to 

stage 2. 

In stage 4, a task with heaviest computing loads 

essentially coincides with a boundary block with 

most vertices. 

The reason why assignes a task together with its 

heaviest-load child task to the same processor is that 

smaller boundary block needs less communication 

during parallel computation. Consequently, this task 

scheduling scheme can decrease communication 

overheads to a great extent and improve the entire 

parallel efficiency of power flow calculation. 

 

 

5.2 Parallel power flow calculation 
In parallel power flow calculation, each process 

deals with one boundary block of NBBDF graph 

and reads 4 data files as Inner, Local, Outer and BS 

to carry out initialization before iterations. 

Also, parallel power flow calculation is running 

in a recursive way. Considering a process dealing 

with a level k boundary block, whose parent process 

deals with a related boundary block of level k-1 and 

child processes deal with related boundary blocks of 

level k+1, the iterative procedure is stated as follows. 

 

1) Updating Jacobian matrix 

Jacobian matrix is formulated via electrical datas 

in Inner, Local, Outer and BS, which is expressed 

by equation (2). 

11 12 1 1

21 2

     
=     
    

J J x y

J 0 x 0
    (2) 

Referring to the NBBDF matrix in figure 6, 11J  

is the corresponding matrix of a level k boundary 

block, 12J  and 21J  are incidence matrices relating 

the level k boundary block to the level k-1 boundary 

block. Vector 1x  records voltage deviations of buses 

in the level k boundary block. Vector 2x  records 

voltage deviations of related buses in the level k-1 

boundary block. Vector 1y  records power deviations 

of buses in the level k boundary block. 

 

2) Forward substitution 

It is not until all child processes have completed 

their forward substitutions that forward substitution 

of current process can commence. The preparation 

for forward substitution is displayed in figure 12. 

11Ĵ

⋱

⋱

⋱

⋱

⋱

⋱

12J

⋱

⋱

⋱

21J

Level k-1

Level k

⋱

⋱

11Ĵ

21J
⋱

⋱

⋱

⋱

⋱

12J

Level k-1

1ŷ
1ŷ

⋱

Level k

Level k

 
Fig.12 Preparing for forward substitution of current 

process 

 

Matrix 11∆J  and vector 1∆y , which are made up 

of elements received from all child processes, are 

used to update matrix 11J  and vector 1y  respectively. 

11 11 11

1 1 1

ˆ

ˆ

= + ∆

= + ∆

J J J

y y y
    (3) 

Applying forward substitution to equation (2), 

equation (4) is given below. 

11 12 1 1

22 2 2

     
=     ∆ ∆     

U U x z

0 J x y
   (4) 

Equation (4) is based on equation (5) and 

equation (6). 

11 11 12 11 12

21 22 22 21

ˆ    
=     ∆     

L 0 U U J J

L I 0 J J 0
   (5) 

11 1 1

21 22 2

ˆ     
=     ∆     

L 0 z y

L I y 0
    (6) 

Here, 22 21 12∆ = − ×J L U  and 2 21 1∆ = − ×y L z . 

 

⋱

⋱

11Ĵ

21J
⋱

⋱

⋱

⋱

⋱

12J

0

⋱

11Ĵ 12J

21J

1ŷ

1ŷ

0 0

11U
12
U 1z

2∆y
22∆J

⋱

⋱

⋱

⋱

⋱

⋱

⋱

⋱⋱

11U 12U 1z

 
Fig.13 Forward substitution of current process 

 

If there is a parent process, current process has to 

send elements of 22∆J  and 2∆y  to its parent process 

for filling 11∆J  and 1∆y  respectively. The procedure 

is displayed in figure 13. 

 

3) Backward substitution 

After updating vector 2x  by elements received 

from parent process, current process does backward 

substitution to equation (4) to solve vector 1x . 
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[ ] [ ] [ ]1

1 11 1 12 2

−
= − ×x U z U x    (7) 

Here, 2 =x 0  if there is no parent process. 

If there are child processes, current process has 

to send elements of 1x  to its child processes for 

updating vector 2x . 

 

4) Updating voltage vectors 

Vector 0x  records voltage deviations of related 

buses in level k+1 boundary blocks. 

If there is a parent process, current process has to 

send corresponding elements of 1x  to its parent 

process for updating 0x . 

Voltage vectors of vertices in InnerVs, LocalVs 

and OuterVs are updated by 0x , 1x , 2x  respectively. 

 

5) Convergence testing 

Vector 1y  is calculated by the voltage vector of 

LocalVs just obtained in stage 4. Current process 

exchanges the maximum 1 ∞
y  of 1y  with others, 

and acquires the maximum max
∞

y  of all 1 ∞
y . 

When the maximum max
∞

y  is less than the 

required precision, parallel power flow calculation 

exits with a convergent result. 

 

 

6 Experimental results 
There is a use-case that three power systems 

described in table 8 are used to investigate the 

efficiency of parallel power flow calculation which 

is based on NBBDF partitioning through edge cut 

sets. The programming language is C++ for NBBDF 

partitioning and parallel power flow calculation. 

The network environment is a LAN with bandwidth 

of 1000 Mbps. Taking account of collisions detected 

in Ethernet, the utility ratio of LAN is presumed to 

be 10% at least under light or no communication 

load, that is to say, the actual bandwidth is not less 

than 100 Mbps. In this distributed memory parallel 

architecture, each processor has a 1.8 GHz CPU and 

1 GB memory individually. 

 

Table 8 Three power systems for testing 

System Bus No Line No Transformer No 

Case 1 300 304 107 

Case 2 2806 1652 2305 

Case 3 5317 3890 3275 

 

In table 8, the first case is a standard grid model 

of IEEE while the following two are real electric 

grids in East China. 

 

6.1 NBBDF partitioning 
Before NBBDF partitioning, initial areas of grids 

should be given. Although geographic information 

based partitioning is an intuitional and convenient 

way to create few cut edges, the computational load 

imbalance among processors will influence parallel 

efficiency ultimately. Multilevel graph partitioning 

is used to determine initial areas of grids for the 

reason that it is superior to geographic information 

based partitioning in balancing computational loads 

 

Table 9 Initial areas of three electric grids 

System 
Area code Vertex number 

Level 1 Level 2 PV PQ Total 

Case 1 

1 
1 9 41 50 

2 9 40 49 

2 
1 13 37 50 

2 16 32 48 

3 
1 6 45 51 

2 15 36 51 

Case 2 

1 
1 33 427 460 

2 54 433 487 

2 
1 59 397 456 

2 57 416 473 

3 
1 75 402 477 

2 56 396 452 

Case 3 

1 
1 34 828 862 

2 104 738 842 

2 
1 83 796 879 

2 121 812 933 

3 
1 89 785 874 

2 33 893 926 

 

Table 10 Boundary blocks of three electric grids 

after 2-nested BBDF partitioning 

Level Boundary block 
Vertex number 

Case 1 Case 2 Case 3 

0 - 24 52 33 

1 

1 35 27 54 

2 16 61 45 

3 17 95 29 

2 

11 27 436 830 

12 24 480 805 

21 33 436 850 

22 43 409 905 

31 35 429 862 

32 45 380 903 

 

Initial areas of three cases by multilevel graph 

partitioning are presented in table 9. In the original 

graph representing the electric grid, those vertices 

corresponding to slack nodes are not included in that 

voltages of slack nodes keep unchanged during the 
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calculation and those vertices need not participate in 

the iterative procedure. Here, there is only one slack 

node in each grid for testing. 

After 2-nested BBDF partitioning to three grids, 

boundary blocks of all levels are shown in table 10. 

In this table, the first two columns correspond to 

property Level and property Colors of vertices in all 

boundary blocks respectively. 

 

 
Fig.14 Admittance matrix of case 3 with NBBDF 

 

The NBBDF system matrix of case 3 is exhibited 

in figure 14. It is evident that there is no connection 

between boundary blocks of non-contiguous levels. 

This conclusion coincides fully with the character of 

NBBDF partitioning by edge cut sets. 

 

 

6.2 Partitioning performance assessment 
The proposed NBBDF partitioning algorithm is 

compared with multilevel k-way partitioning in 

terms of a) runtime, b) cut-edge number and c) extra 

edges supplemented during the graph contraction to 

investigate its partitioning performance. Metis [22], 

a graph partitioning software package, is used to 

realize multilevel k-way partitioning, where k equals 

6 to satisfy the same number of processors with 

NBBDF partitioning. 

Comparison results are demonstrated in figure 15, 

in which the baseline represents results of multilevel 

k-way partitioning and bars represent ratios of 

results of NBBDF partitioning to those of multilevel 

k-way partitioning. 

For three cases, runtimes of NBBDF partitioning 

are less than those of multilevel k-way partitioning. 

This is because computational complexities of these 

two methods are ( )o E , where E is the edge count. 

Furthermore, multilevel k-way partitioning involves 

initial partitioning and refining which increase time 

overheads to the whole partitioning while NBBDF 

partitioning has to do nothing but traverse all edges. 

 
Fig.15 Performance of NBBDF partitioning by edge 

cut sets relative to that of multilevel k-way 

partitioning for three cases 

 

In figure 15, it is found that cut edges of NBBDF 

partitioning are a bit more, particularly in case 1, 

than multilevel k-way partitioning. This is because 

cut edges among partitions are increasing as the 

partition number grows. Meanwhile, IEEE grid of 

case 1 is a strongly connected network, whereas real 

grids are loosely coupled among various geographic 

domains. In addition, the increase of nested levels is 

another factor for additional cut edges. 

 

Table 11 Fill-ins in one iteration of Jacobian matrix 

Gaussian elimination 

Partitioning 
Fill-ins 

Case 1 Case 2 Case 3 

NBBDF 

Level 0 124 368 198 

Level 1 1200 1696 952 

Level 2 1084 4672 19162 

Total 2408 6736 20312 

Multilevel 

k-way 

Level 0 3008 2896 4216 

Level 1 7918 117072 427078 

Total 10926 119968 431294 

 

Matrix fill-ins during Gaussian elimination are 

proportional to extra edges in the graph contraction. 

For three cases, the fact that extra edges of NBBDF 

partitioning are significantly fewer than multilevel 

k-way method justifies a good effect of Tinney 3 

scheme applied in the vertex ordering procedure. In 

table 11, fill-ins in one iteration of Jacobian matrix 

Gaussian elimination substantiate the effectiveness 

of vertex ordering to NBBDF graph as well. 
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6.3 Parallel performance evaluation 
Aside from two parallel power flow calculations 

based on NBBDF and multilevel k-way partitioning, 

serial power flow calculation is involved in parallel 

performance evaluation. Particular attention is paid 

to one iteration of Gaussian elimination in order to 

investigate the efficiency of parallel power flow 

calculation in detail. 

For further explanation, some symbols are given 

below, where parallel Gaussian elimination is based 

on NBBDF partitioning. 

� serialT  - runtime of one iteration of serial 

Gaussian elimination; 

� parallelT  - runtime of one iteration of parallel 

Gaussian elimination; 

� ComQ  - communications volume in one iteration 

of parallel Gaussian elimination; 

� ComT  - communication time in one iteration of 

parallel Gaussian elimination; 

� operandsT  - serial computation time of one 

iteration of parallel Gaussian elimination in one 

processor; 

� StepsT  - parallel computation time of one 

iteration of parallel Gaussian elimination in 

more than one processor; 

� pλ  - average parallelism degree; 

� pS  - speedup ratio; 

� pE  - parallel efficiency; 

� p  - number of processors; 

� IN  - iterations of Gaussian elimination; 

� sT  - runtime of serial power flow calculation; 

� pT  - runtime of parallel power flow 

calculation based on NBBDF partitioning. 

Definition 2: To an algorithm, average parallelism 

degree is the quotient of total operands divided by 

the number of steps. 

In a parallel algorithm, whether operands or 

steps are proportional to the execution time which 

includes no communication time. Hence, oprandsT  is 

responsible for operands and StepsT  is for steps.  

Following equations are presented for revelation 

about relations of these symbols. 

operands operands

p

Steps Parallel Com

T T

T T T
λ = =

−
   (8) 

serial
p

Parallel

T
S

T
=     (9) 

p

p

S
E

p
=   (10) 

A parallel algorithm is recognized as superlinear 

one when p 1E > . 

Upon the presumption of light-loaded LAN with 

bandwidth of 100 Mbps at least, ComT  is directly 

proportional to ComQ . Communication statistics in 

one iteration of parallel Gaussian elimination are 

listed in table 12. 

 

Table 12 Communication overheads in one iteration 

of parallel Gaussian elimination 

System ComQ /kb Bandwidth/Mbps ComT /ms 

Case 1 43.80 100 0.4380 

Case 2 88.98 100 0.8898 

Case 3 180.71 100 1.8071 

 

In parallel Gaussian elimination, it is the forward 

substitution, in which elements of updating matrix 

22∆J  need to be sent, that dominates the whole 

communication. Moreover, the number of vertices 

of any level boundary block places an upper limit on 

the size of the updating matrix 22∆J  under N-nested 

BBDF partitioning. 

According to table 10, for three cases, sums of 

vertices of level 1 and level 0 boundary blocks are 

92, 235 and 161 respectively. Thus, there is least 

communications volume in case 1 for its smallest 

sum. The reason for more communications volume 

of case 3 than case 2 is that there are nearly double 

cut edges in case 3 than those of case 2. 

Average parallelism degrees are listed in table 13, 

followed by speedup ratios and parallel efficiencies 

in table 14. As a result of similar task graphs, each 

case has been assigned six processors, that is, 6p =  

for all cases. 

 

Table 13 Average parallelism degrees in one 

iteration of parallel Gaussian elimination 

System operandsT /ms StepsT /ms pλ  

Case 1 4.1260 1.1867 3.4769 

Case 2 38.1378 7.8315 4.8698 

Case 3 109.0773 20.1700 5.4079 

 

Table 14 Speedup ratios and parallel efficiencies in 

one iteration of parallel Gaussian elimination 

System serialT /ms parallelT /ms pS  pE  

Case 1 5.1303 1.6247 3.1577 0.5263 

Case 2 50.0430 8.7213 5.7380 0.9563 

Case 3 134.2626 21.9771 6.1092 1.0182 

 

According to table 13 and table 14, it is telling 

that average parallelism degrees along with speedup 
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ratios are increasing as the system scale grows. And, 

the parallel efficiency surpasses 100% in case 3. 

There are three causes for this superlinearity. The 

first one is that sum of consuming times in updating 

partial Jacobian matrices in parallel processors is 

smaller than that of updating the integrated Jacobian 

matrix in one processor. The second reason is that 

manipulating non-zero elements of a large matrix, 

like inserting or deleting one, has to rearrange more 

non-zero elements than those of several submatrices 

which make up this large matrix if Compressed Row 

Storge (CRS) has been adopted. The third cause is a 

large computation-communication ratio denoted by 

the quotient of the computation time divided by the 

communication time as shown in equation (11). 

Steps

Com

T

T
χ =    (11) 

Where, χ  is the computation-communication ratio. 

The first two causes do well in explaining why 

operands serialT T<  for three cases. Besides, increasing 

computation-communication ratios that are inferred 

from table 12 and table 13 by virtue of equation (11) 

lend evidence to the third cause. 

 

 
Fig.16 Parallel efficiencies in one iteration of 

Gaussian elimination under different partitioning 

algorithms 

 

The comparison of parallel efficiencies between 

proposed NBBDF partitioning and multilevel k-way 

partitioning are shown in figure 16. Multilevel k-

way partitioning uses centralized file storage. In this 

figure, it is found that there is no way of achieving 

superlinearity without distributed file storage no 

matter how efficient the partitioning method is. 

Table 15 lists the performance of parallel power 

flow calculation including loading data from files. 

 

 

 

Table 15 Performances of parallel power flow 

calculation under 2-nested BBDF partitioning 

System IN  sT /s pT /s pS  pE  

Case 1 6 0.0468 0.0129 3.6279 0.6047 

Case 2 7 1.4042 0.2178 6.4472 1.0745 

Case 3 7 5.3810 0.7389 7.2824 1.2137 

 

By contrast with table 14, the parallel efficiency 

has made greater progress than that in one iteration 

of parallel Gaussian elimination. Furthermore, its 

growing rate has also kept pace with the expanding 

electric grid. In case 3, the growing rate of parallel 

efficiency reaches up to 19.6%. This achievement is 

attributed primarily to distributed file storage, which 

decreases loading time, especially the topological 

analysis of the grid, to a great extent. Thereby, the 

total computation time has declined. 

 

 

7 Conclusion 
A new partitioning algorithm based, which is 

engaged in transforming system matrices of power 

grids into NBBDF, parallel power flow calculation 

is presented in this paper. Features distinguishing 

the proposed method from other algorithms are 

concluded below. 

1) Partitioning the original graph into NBBDF by 

edge cut sets in a recursive way cuts off relations 

between boundary blocks of non-contiguous levels, 

and improves average parallelism degree as a result; 

2) In order to bring as few fill-ins as possible into 

the matrix Gaussian elimination, a Tinney 3 based 

vertex ordering scheme together with its parallel 

implementation is employed after partitioning. 

3) The problem of time-consuming initialization 

before starting parallel computing is solved by way 

of distributed file storage that provides a task graph 

for task scheduling. 

4) Aiming at full utilizing processors available, 

tasks are assigned to running processors in terms of 

precedence relations in the task graph. At this point, 

the detailed implementation of parallel power flow 

calculation is given. 

Final experimental results for three power grids 

imply that the proposed method not only gains high 

performance, what’s more, it is able to contribute to 

superlinearity in large-scale grids. 

In the future research, this partitioning method 

should be investigated in various applications of 

power systems such as stability analysis of voltages, 

dynamic stability computation and so forth. 
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Appendix: 

Proof of Theorem 1: According to theorem 1, the 

original graph ( , )G V E  has been partitioned into n 

independent subgraphs ' ' '( , )i i iG V E  and one subgraph 
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boundary boundary( , )G V ℑ  that is related to each ' ' '( , )i i iG V E . 

This substantiation involves two respects. 

a) Independency 

Assuming that there are two subgraphs ' ' '( , )i i iG V E  

and ' ' '( , )j j jG V E  which are connected with each other, 

thus, there is one edge ( , )kl k le v v= at least satisfying 

{ }' '( , ) &kl k l k i l je v v v V v V= ∈ ∈  and V ,Vkl i i G
e  ∉   . 

Owing to i jV V φ=∩ , '

i iV V⊂  and '
j jV V⊂ , it is 

inferred that ' '
i jV V φ=∩  and '

l i iv V V∉ ⊂ . Given that 

'

k i iv V V∈ ⊂ , it is concluded that V ,Vkl i i G
e  ∈   , 

which is contradictory to V ,Vkl i i G
e  ∉    and renders 

this assumption invalid. 

b) Connectivity 

Assuming that there is an independent subgraph 
' ' '( , )i i iG V E  not connected with boundary boundary( , )G V ℑ , 

there is no edge { }'

boundary( , ) &kl k l k i le v v v V v V= ∈ ∈  

accordingly. 

As ( , )G V E  is a connected graph, the edge cut 

[ , ]i i i GV Vξ =  of subgraph iG  is not empty. boundaryG  

is the edge-induced subgraph of [ , ]i i i GV Vξ = ,  hence, 

boundaryiV V φ≠∩ .  

No such edge { }'

boundary( , ) &kl k l k i le v v v V v V= ∈ ∈  

means that there is no edge ( , )kj k je v v=  satisfying 

'

k i iv V V∈ ⊂  and boundaryj iv V V∈ ∩ . As a result, initial 

subgraph ( , )i i iG V E  is disconnected, which violates 

the precondition in theorem 1. So this assumption is 

unjustifiable. 

 

Proof of Theorem 2: This substantiation is carried 

out in a recursive way. 

First, there are k vertices in connected subgraph 

( , )c c cG V E . According to lemma 1, this theorem is 

reasonable when 1k = . 

Presuming this theorem is tenable when k i≤ , 

two cases have to be considered when 1k i= + , and 

1iv +  is a vertex which is contracted last in ( , )c c cG V E . 

a) 1iv +  is a cut vertex. 

There are two vertex sets 1S  and 2S , which are 

vertex sets of two connected components, satisfying 

1 2 1c iV S S v += ∪ ∪ . In figure A1, 0A , 1A and 2A  are 

adjacent vertex sets of 1iv + , 1S  and 2S  respectively. 

According to the presumption, vertices consisted 

of 1iv +  and vertices in 1 2A A∪  are connected with 

each other after 1S  and 2S  have been contracted. 

Then, the subgraph 0 1 2A A A A= ∪ ∪ , induced from 

adjacent vertices of ( , )c c cG V E , is a complete graph 

after 1iv +  has been contracted according to lemma 1. 

Hence, this theorem is proven. 

 

1S 2S

1A 2A

0A

( ),c c cG V E

1iv +

 
Fig. A1 1iv +  is a cut vertex 

 

b) 1iv +  isn’t a cut vertex. 

1S , which is a vertex set of rest vertices, satisfies 

1 1c iV S v += ∪ . In figure A2, 0A  and 1A  are adjacent 

vertex sets of 1iv +  and 1S  respectively.  

According to the presumption, vertices consisted 

of 1iv +  and vertices in 1A  are connected with each 

other after 1S  has been contracted. Similar to case a), 

the subgraph 0 1A A A= ∪ , induced from adjacent 

vertices of ( , )c c cG V E , is a complete graph after 1iv +  

has been contracted according to lemma 1. Thereby, 

this theorem is justified. 

 

1S

1A 0A

( ),c c cG V E

1iv +

 
Fig. A2 1iv +  is a non-cut vertex 

 

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Wenkai Zhao, Xinyan Fang, Xu Dong, Yuan Bi, Ying Wu

ISSN: 1109-2734 272 Issue 4, Volume 9, April 2010




