
A survey on modeling and simulation of a signal source with controlled 

waveforms for industrial electronic applications 
 

NAZIH MOUBAYED
1
, CLAUDE BAYEH

2
 AND MOUAFAC BERNARD

2
 

1
Faculty of Engineering 1 

2
Faculty of Engineering 2 

Lebanese University 

LEBANON 

Email: nmoubayed@ieee.org 
 

 

Abstract: - In industrial electronic systems, power converters with power components are used. Each 

controlled component has its own control circuit. In this paper, the authors propose an original control circuit 

in order to replace the different existing circuits. The proposed circuit is the representation of an elliptical 

trigonometry function. Thus, by varying the value of one of its parameter, the output waveform will change. 

Finally, Labview and Matlab simulation results of the studied circuit are presented and discussed.  
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1 Introduction 
In motor drives, robotics, or other industrial 

electronic applications, the use of power converters 

is essential to improve the control and, therefore, the 

efficiency of the studied system [1]. Power 

converters are generally composed of power 

components with different characteristics [2]. These 

components are divided in two categories: the 

controlled components and the uncontrolled 

components [3]. The controlled components, like 

thyristors and transistors, need controlled signals 

with specified waveforms in order to be applied on 

their controlled terminals (base or gate) [4]. Thus, 

each component has its own control source [5]. 

This paper underlines the importance of the elliptical 

trigonometry functions in generating different 

waveforms by varying one parameter value. 

In fact, the elliptical trigonometry is an original 

study regarding the trigonometry literature [6],[7]. 

The existed trigonometry is a particular case of the 

elliptical trigonometry [8],[9]. The last one describes 

an elliptic curve [6], but the existed one describes a 

circular form [10],[11]. The mathematical topics of 

Fourier series and Fourier transforms rely heavily on 

knowledge of trigonometric functions [12],[13] and 

find application in a number of areas, including 

statistics [14],[15]. The trigonometric functions are 

also very important in technical subjects like 

science, engineering, and even medicine. 

Regarding the elliptical trigonometry topic, its 

important functions are the elliptical cosine and the 

elliptical sine. In this paper, generalities on the 

proposed function are presented in section two.  

 

 

In section three, a revue on the elliptical 

trigonometry is given. In section four, the block 

diagram of the elliptical sine function is presented. 

Labview simulation results of the studied function 

are illustrated in section five. Programming the used 

function in Matlab is treated in section six. Finally, a 

conclusion about the elliptical trigonometry 

functions is presented in section 7.  

 

 

2 Generality 
The used controlled circuits for power transistors 

(MOSFET, IGBT, etc) differ from those used for 

Thyristors (GTO, Triac, etc). Designing and 

modeling circuits for all these controlled 

components taking into account their different 

characteristics, take time, and realizing them 

practically, take time and money. In this paper, one 

electronic circuit representing an elliptical 

trigonometry function is proposed to be used in 

simulation (Labview, Matlab, etc), or practically, in 

order to control the different existed power 

components (figure 1). Tow parameters, a and/or b, 

are used as input variable parameters for the 

proposed function. ‘α’ is equal to ‘ω.t’.  

 
Fig. 1: The studied function. 
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3 Revue on the elliptical trigonometry 
In order to make a review on the elliptical 

trigonometry, it is necessary to introduce the 

definition of the angular functions. In fact, the 

angular functions are new mathematical functions 

that produce a rectangular signal, in which period is 

function of angles [6]. Similar to trigonometric 

functions, the angular functions have the same 

properties as the precedent, but the difference is that 

a rectangular signal is obtained instead of a 

sinusoidal one [16],[17],[18]. Moreover, one can 

change the frequency, the amplitude and the width 

of any period of the signal by using the general form 

of the angular function.  

 

• The expression of the angular function related to 

the (ox) axis is defined, for K ∈ Ζ, as [6]:  
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For β = 1 and γ = 0, the expression of the angular 

function becomes: 
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Its waveform is illustrated in figure 2.  

 
Fig. 2: The )(angx α  waveform. 

 

• The expression of the angular function related to 

the (oy) axis is written as [6]: 
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For β = 1 and γ = 0, the simplified expression of the 

angular function, which is presented in figure 3, is: 
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Fig. 3: The )(angy α  waveform. 

 

 

3.1 The elliptical trigonometry unit  
The Elliptical Trigonometry Unit is an ellipse with a 

center O (x = 0, y = 0) and has the equation form: 

1
b
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with:  

‘a’ is the radius of the ellipse on the (x’ox) axis, 

‘b’ is the radius of the ellipse on the (y’oy) axis.  

 

The elliptical trigonometry unit is used to define 

functions that describe the ellipse (figure 4) as the 

elliptical cosine and the elliptical sine [6]. 

 

 
Fig. 4: The elliptical trigonometry unit. 

 

It is essential to note that ‘a’ and ‘b’ must be 

positive. In this paper, ‘a’ is fixed to 1. ‘b’ is a 

variable parameter. 

 

 

3.2 The elliptical trigonometry functions  

• The elliptical cosine is the function that gives the 

ratio of 
a

'a
 with 'a  is the projection of the point M 

(onto the ellipse) on the (x’ox) axis (figure 4): 

a

'a
)(elcos b =α       (6) 

with α is the angle defined by the position of the 

point M: 

α = (
∧

OM;OX ).  
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The elliptical cosine function is written as [6]:  

2
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For specific parameter values, this equation gives 

the classic cosine expression [15]. 

• The elliptical sine is the function that gives the 

ratio of 
b

'b
. Therefore:  

b
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The elliptical sine expression is [6]: 
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• The elliptical tangent function is written [6]: 
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3.3 Derivative of the elliptical functions  

• The derivative of the elliptical cosine function is:  
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• The derivative of the elliptical sine is:  
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• The elliptical tangent derivative is:  
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 3.4 Original formula  
To complete the set of formulas that describe the 

elliptical trigonometric functions, it should be noted 

that [6]:  

1)u(Sinel)u(Cosel
2

b

2
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4 Block diagram of the elliptical sine 

function 
In this paper, the elliptic sine function, which is 

defined in equation (9), is chosen to be treated in the 

following sections. Its block diagram is illustrated in 

figure 5. There are three inputs connected to this 

diagram, two variable parameters, ‘a’ and ‘b’, and 

one sine wave.  

 

 
 

Fig. 5: The elliptical sine block diagram. 
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5 Simulation results in Labview 
Consider ‘a = 1’ and ‘b’ the variable parameter. This 

choice is proposed to simplify the following study of 

the elliptical sine function. Its representation in 

Labview is illustrated in figure 6. 
 

 
 

Fig. 6: Representation of Sinelb (α) in Labview. 

 

 

5.1 First case (b = 1) 

When a = b = 1, the ellipse equation, defined in (5), 

becomes: 

1yx 22 =+                 (15) 

which is the equation of a circle (figure 7). 

 

 
 

Fig. 7: The circle trigonometry unit. 

 

As: 
1

'b

b

'b
)(elsin b ==α   

and 

  
1

'b

OM

'b
)(cos ==α ,  

because OM is the radius of the circle and is equal to 

unity, therefore, the elliptical sine expression (9) 

becomes: 

)(sin)(elsin b α=α . 

 

Figures 8.a and 8.b represent the waveforms of the 

elliptical sine function and its absolute value for         

a = b = 1. 
 

 
a) sin elb (α)  

 

 
b) | sin elb (α) | 

Fig. 8: Elliptical sine waveforms for b = 1. 

 

 

5.2 Second case (b >> 1)  
From equation (9), two configurations are studied:    
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Thus, the obtained signal is a square signal.  

2. Consider 
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Thus, the output signal is a signal of zero amplitude. 
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Thus, a purely square signal can be obtained    

(figure 9.a). By using its absolute value (figure 9.b), 

the obtained signal is a continuous or dc signal. 

 

 
a) sin elb (α)  

 

 
b) | sin elb (α) | 

Fig. 9: Elliptical sine waveforms for b = 80 >> 1. 

 

 

5.3 Third case (b << 1)  
From equation (9), two configurations are also 

studied: 
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In this case 0)(tg ≠α , Therefore   1)(tg.
b

a
2

≻≻




 α .  

Thus: 

).(ang

)(tg
b

a
1

)(ang
).(tg

b

a
)(elsin X

2

X
b α≈






 α+

α
α=α  

 

2. Consider π=α .k  and )(tg.ab α≻≻ .  

In this case 0)(tg =α , Therefore 0)(tg.
b

a
2

=




 α , 

thus:  

.0
01

)(ang
.0)(elsin X

b ≈
+

α
=α  

 

• As conclusion:  

( )







π+=α−

π=α+

π≠α±

=α

.1k2for0

k2for0

.kfor1

)(elsin b                 (17)  

For this configuration, a Dirac signal with positive 

and negative pulses or with only positive pulses can 

be obtained (figures 10.a and 10.b). 

 

 
a) sin elb (α)  

 

 
b) | sin elb (α) | 

Fig. 10: Elliptical sine waveforms for b =0.001 << 1. 

 

 

5.4 Fourth case (b < 1)  
In this case, an elliptical deflated form is obtained 

(figure 11.a). The absolute value of this signal    

(figure 11.b) has an average value greater than that 

of an absolute value of the sinusoidal signal. Hence, 

the advantage is that the average of the signal can be 

increased by only varying the value of the parameter 

‘b’ without any use of any other functions. 

 

 
a) sin elb (α)  

 

 
b) | sin elb (α) |  

Fig. 11: Elliptical sine waveforms for b = 0.2 < 1. 
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5.5 Fifth case (b > 1)  
For this configuration, the signal takes the elliptical 

swollen form (Figure 12.a). The average value of its 

absolute signal (figure 12.b) is less than that 

obtained by the absolute value of the sinusoidal 

wave. Therefore, decreasing the average of a signal 

by varying only one parameter ‘b’, is also another 

advantage of the elliptical trigonometric functions. 

 

 
a) sin elb (α)  

 

 
b) | sin elb (α) | 

Fig. 12: Elliptical sine waveforms for b = 3 > 1. 

 

 

5.6 Determining the value of ‘b’ for a quasi-

triangular signal  
The main objective of this part is to obtain a signal 

closed to a triangular one. Therefore, the following 

method is proposed in order to calculate the value of 

‘b’ for which the error between the desired signal 

and the obtained one is minimized. This study is 

limited to the angular interval 


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,0 . 
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elliptical sine becomes:  
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The wave form of this function is also illustrated in 

figure 13. 

 

 
 

Fig. 13: Obtained signal sinelb and the               

desired signal (y) waveforms.  

 

The difference between these two functions, Sinelb 

and y, is:  

y)(Sinelb −α=ε .  

It is considered that, for 
4

π
=α  (the center of the 

studied interval 




 π
2

,0 ), the error ε is equal to zero. 

Thus, b takes the value of 3 . To calculate the 

maximum and the minimum error values, εmax and 

εmin, the derivative of ε must be equal to zero.  

 

Therefore: 

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Figure 14 represents the variation of this error in the 

interval 




 π
2

,0 . 
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Fig. 14: Error between the desired signal and the 

obtained one.   

 

For 3b = , it is difficult to reduce the error to zero. 

Therefore, the elliptical sine function takes a quasi-

triangular signal waveform as illustrated in       

figure 15.  
 

 
a) sin elb (α)  

 

 
b) | sin elb (α) | 

Fig. 15: Elliptical sine waveforms for 3b = . 

 

In spite of the presence of the error, its amplitude is 

small and can be considered in some applications as 

negligible.  

 

Consequently, by varying b between 0 and 1 in the 

elliptical sine function, different signal forms are 

obtained. Thus, the elliptical trigonometry functions 

will have important influences in engineering, 

especially in power electronics [19],[20].  

 

 

 

5.7 First conclusions  
As presented previously, the elliptical sine function 

takes different forms by varying the input parameter 

‘b’. The same analysis can be treated using the 

parameter ‘a’. Therefore, same waveforms will be 

obtained but with different value of ‘a’. Then, ‘a’ 

and ‘b’ can be tow different potentiometers, changed 

manually in an analog circuit, or by programming in 

a digital circuit. This study can be generalized to the 

second elliptical function which is the coselb (α). 

Thus, for a = 1 and 3/3b = , the obtained 

elliptical cosine waveforms are given in figure 16.  
 

 

 
a) cos elb (α) 

 

 
b) | cos elb (α) | 

Fig. 16: Elliptical cosine waveforms for 3/3b = . 

 

Consequently, it should be noted that: 

 

1. By varying ‘b’ between 0 and 1, all signals with 

different waveforms can be obtained from the   

sinelb (α) or the coselb (α) functions. 

 

2. By varying ‘b’ between 0 and +∞, the obtained 

signal changed from the pulse of Dirac (v ≈ 0) to a 

dc signal (v = Vmax). 

 

3. By using three inputs (a, b and sin (α)), and for 

different values for the two variable parameters (a 

and b), four different signals can be obtained in 

the same time. These signals are those of the 

following functions: 

 sinelb (α), coselb (α), | sinelb (α) | and | coselb (α) |. 
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Table 1 resumes the output signal waveforms of the 

elliptical trigonometry functions for ‘a’ equal to 1 

and for different values for b.  
 

Table 1: Waveform of the elliptical trigonometry 

functions. 
 

b  coselb (α) sinelb (α) 

b >> 1 Square signal 
Pulse of Dirac 

(positive and negative) 

b >> 1 
Continuous signal 

(with absolute value) 

Pulse of Dirac 

(with absolute value) 

b > 1 Elliptical swollen Elliptic deflated 

b = 1 
Sinusoidal signal 

(cosine) 

Sinusoidal signal 

(sine) 

b < 1 Elliptic deflated Elliptical swollen 

b << 1 
Pulse of Dirac 

(positive and negative) 
Square Signal 

b << 1 
Pulse of Dirac 

(with absolute value) 

Continuous signal 
(with absolute value) 

b= 3/3  
Quasi-triangular 

signal 
 

b = 3   
Quasi-triangular 

signal 

 

 

6 Programming the elliptical sine 

function in Matlab 
As presented and analyzed in the previous section, 

the elliptical sine function can be also programmed 

and written in the Matlab software. Thus, the 

elliptical trigonometry functions can be used in any 

industrial applications.  

 

The following program, illustrated in figure 17, 

represents the detailed steps in writing the elliptical 

sine function in Matlab. This program is proposed to 

be divided in tow parts. In the first one, the program 

contains the definition and the expression of the 

angular function, defined previously in equation (2). 

The elliptical sine expression, defined in equation 

(9), is written the second part. 

 

For a = 1, and for the same values taken for b in 

Labview examples, the Matlab simulation results 

give the same waveforms for the elliptical sine 

function. As example, figure 18 represents the 

waveform of the elliptical sine function and its 

absolute value for b = 3 . 

 

 

 

 

 

 
% Programming the angular function related 

% to the x’ox axis: angx = angx (α) 

angx = sign(cos(α)); 

 

% Programming the elliptical sine function: 

% sinel = sinel (α, a, b) 

a = 1; 

b = sqrt(3);     

α = -15:0.0001:15;  

sinel = angx(α). * (a/b). * tan(α) * 

          (1. / (sqrt (1. + ((a/b). * tan(α)). ^2) ) ). 

y = sinel ;  

plot (α, sinel)  

axis ([-9 9 -1.5 1.5]);   

% Domain of the window or zoom for good vision  

grid MINOR;  

 

Fig. 17: Elliptical sine program in Matlab 
 

 

 
a) sin elb (α) 

 

 
b) |sin elb (α)| 

Fig. 18: Elliptical sine waveforms for 3b = . 
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7 Conclusion  
In this paper, the elliptical unit and its trigonometry 

functions are presented. The proposed elliptical 

trigonometry is a new form of trigonometry that 

permits producing multiple forms of signals by 

varying some parameters; it can be used in 

numerous scientific domains and particularly in 

mathematics and in engineering.  

The elliptical sine function is treated in this paper. 

The model of the studied function is represented in 

Labview and in Matlab. In general, a connection 

cable, with specific transmission data protocol, 

connects any industrial system to the computer. One 

can use the studied function in order to generate 

control signal in need for the power components of 

the industrial system.  

For the studied function, more than eight different 

signals are produced by varying one parameter. 

These signals are: sinusoidal signal, rectangular, 

square, elliptical swollen, elliptical deflated, quasi-

triangular, impulse of Dirac with positive and 

negative part, impulse of Dirac positive part only, 

continuous signal, etc. 

The elliptical trigonometry functions will be widely 

used in electronic domain especially in power 

electronics. Thus, several studied will be improved 

and developed after introducing the new functions of 

the elliptic trigonometry. Some mathematical 

expressions and electronic circuits will be replaced 

by simplified expressions and reduced circuits. 
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