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Abstract: - This paper offers a new methodology for designing in CMOS technology analog-digital artificial
neurons training on arbitrary logical threshold functions of some number of variables. The problems of
functional ability, implementability restrictions, noise stability, and refreshment of the learned state are
formulated and solved. Some functional problems in experiments on teaching logical functions to an artificial
neuron are considered. Recommendations are given on selecting testing functions and generating teaching
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1 Introduction required one transistor per logical input. Its (_:ircqit
) i L was based on representing a threshold function in
Hardware implementation of an artificial neuron has ratio form. In [8-11], a CMOS learnable neuron was
a number of well-known advantages over software proposed on the baée of 4-DTE that consisted of
implementation [1-5].  The hardware synapses, a f-comparator, and an output amplifier.
implementation of an artificial neuron can take the The learnable synapse of this neuron had five
form of either a special purpose programmable transistors and one capacitor. The neuron had one
controller or dlgltallan_alog circuit (device). Each remarkable property: its implementability depended
type of implementations has its advantages, only on the threshold value and not on the number
drawbacks, and fields of application. Although of logical inputs or their weights. This fact coupled
analog/digital implementation has the advantage of with its relatively low complexity made this neuron
high performance, there are rigid limitations on the very attractive for use in the next generation of
class of realizable threshold functions due to its digital-analog neurochips.
analog nature. These limitations considerably An artificial neuron designed for implementation
decrease the functional possibilities of neural nets of logical threshold functions it is more correctly
that have a fixed number of neurons. called a learnable threshold element (LTE). During
The functional power of a neurochip depends learning, this device creates analog weights for
equally on the number of neurons that can be placed binary (digital) input variables. Obviously, an actual
on one VLSI and the functional possibilities of a artificial neuron can be constructed based on LTE.
single neuron. Unfortunately, the effects of these The goal of this paper is to improve the LTE
parameters on the functional power of the neurochip circuit in terms of its learnability for complicated
have not been studied. However, before creating logical threshold functions (with a large value of the
new neurochips, it is necessary to decrease the minimum threshold), noise-stability, and ability to
area/synapse and extend the functional possibilities maintain the learned state for a long time.
of a neuron. When the function threshold is high, the noise-
In [6, 7], a new type of threshold element (5- stability becomes especially important. It s

driven threshold element, f-DTE) was offered that
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determined by the smallest change of the output
voltage minAV of the pB-comparator at the
threshold. Larger min AV is attained by increasing
the sharpness of the fS-comparator characteristic in
the threshold zone. This is achieved by
incorporating into the f-comparator two extra
transistors and selecting their functional modes.

The noise stability and, hence, the
implementability of given logical functions by the
LTE depends not only on the min A} value but
also on the threshold position of the p-comparator
characteristic relative to the threshold of the output
amplifier. This paper offers a method to teach the
LTE a given logical function. This teaching method
allows not only automatic positioning of the
amplifier threshold to the middle of min A} but
also increases min AV up tomax min AV, which
is attained when finding the minimum threshold of
the function and is determined by the steepness of
the p-comparator characteristic. The method uses
three output amplifiers with different thresholds,
which provide threshold hysteresis. The width of
this hysteresis determines the value of minAV
attained during learning.

Some additional issues are addressed in the
paper. One problem is maintaining the LTE in the
learned state for a long time (refreshing the analog
memory on capacitors). The solution of the problem
uses the same idea of applying the threshold
hysteresis of output amplifiers. The second issue
concerns the possibility of speeding up LTE
learning on given logical threshold functions. This
problem is solved by forming weights of several
input variables simultaneously and by changing the
learning step values during learning. The problem of
functional abilities of LTE is also examined in this
paper. It is obvious that LTE can implement only
threshold logical functions. According to the theory
of switching functions, all threshold functions are
monotonous. The minimum representation of
monotonous functions coincides with their concise
form. If the concise form of a threshold function
contains only positive variables, the function is
called isotonous (a subclass of monotonous
functions). The LTE with the simplest synopses,
each of which contains only one capacitor as a
memory element, can be taught only to isotonous
threshold functions. As will be shown below, by
using more complicated synapse circuits with two
memory elements for keeping positive and negative
weights it is possible to construct an LTE that is
learnable for an arbitrary threshold function of some
number of variables. Finally, some functional
problems in experiments on teaching LTE are
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considered and a set of recommendations is given
on how to choose testing functions and construct
teaching sequences.

All results in the paper were obtained using
SPICE simulation. For the simulation experiments,
transistor models MOSIS BSIM3v3.1 0.8um (level
7) for analog/digital circuits were used. In most
experiments on LTE teaching, logical threshold
Horner’s function of 7 and 10 variables were
applied as test functions.

2 LTE Learnable for Isotonous
Threshold Functions

2.1 Threshold Element with Controllable
Input Weights

The conventional mathematical model of a neuron,

starting from the work by McCulloch and Pitts [12],

is the threshold function:

(& o 0if 4<0
F=Szgn(jz_;wjxj —T} Szgn(A)z{1 it 450 @

where w;is the weight of the j-th input and 7' is the

threshold value.

Representing a threshold function as (1) implies
that a threshold element is traditionally implemented
by the structure shown in Fig.1.

Fig. 1 General structure of the neuron threshold
model.

It is shown in [6, 7] that any threshold function
can be represented in ratio form, as follows:

a Z WX,
F=Sign( w.x.—TJzSign == T |=

/Z:l: n [ngsw/x/
Rt[stSW_/’)_CjJ; Rt(A/B):{O if A<B

Z/,Es WX, 1if A=B

where S is a certain subset of indexes® such that

)

1 . - -

To construct S it is sufficient to take any hypercube vertex that lies in
the separating hyperplane and to include in S indexes of the variables
having the value 1 on the vertex.
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2 jesw; =T . From (2) it immediately follows that non-saturated mode since both of them meet the
-y 2
CMOS implementation of a threshold element can condition ¥V, <V, <Vo =V, Vo =V, .~ Hence,
be like Fig.2. )2
out
In :ﬂn|:(Vdd _Vth)Vout - 2 :|'

Ve =Vou)?
I, :—ﬂ{% Wy V)~ L= el } @
1,+1,=0.
In [6] these equations were analyzed and it was
shown that the suggested comparator circuit has

Fig. 2 p-driven threshold element (5-DTE). sensitivity AVous ~—2V at the point @ = 4,18, =1.
d ner

(24
The voltage 7,,at the p-comparator output is Hence, at the threshold level (v,, =V, /2) the
determined by the ratio of steepnesses (4, and 3, ) reaction of the s-comparator to a unit change of the
of n- and p-circuits. For this reason, the threshold weighted sum AV, ~[2/T|V, ie. it linearly
element is called g-driven (5-DTE). The steepnesses decreases as the threshold increases.
are formed by connecting transistors  of The analysis of g-DTE stability to parameter
corresponding widths in parallel. variations made in [5] showed that only g-DTE with
In [8, 9], to build a threshold element with low thresholds (<3, 4) can be stably implemented.
controllable input weights, a reduced ratio form is However, an artificial neuron is a learnable object
introduced: and variations of several parameters (for example,
. Z’f WX technological) can be compensated during learning.
F =Sign(2w‘/.xj - T] =Rt EREE The learnable LTE based on of -DTE [8, 9] has
= 3) a sufficiently simple control over the input weight
. (Fig.4): the control voltage changes the equivalent
Rz[ o, x’]’ w,=w,IT of the respective synapse.
j=1
that leads to the p-comparator circuit shown in r@pvdd v
- n Ve out
Fig3a where g, =08, B,=), 0x; . o F
: i x|
B,=8.

]
Vi | vcfl1 Vi |

Fig. 4 p-driven LTE.

Since the synapse can be in one of two states,
conducting or non-conducting, the output voltage

Fig. 3 The g-comparator: (a) CMOS V.. of the p-comparator is formed only by the
implementation; (b) equivalent circuit. synapses which are conducting in this given

i L ) ) moment.
F|g.3a._The output voltage of the /_3-comparator_ is adding new synapses does not change the LTE
determined by the value a =4, /5, in the following output state. It follows from this that the
way: implementability of f-DTE and, hence, of the LTE
>V, 12 if a<l on its base depends only on the threshold value and
ou =\ o voI2if a>1 does not depend on the number of inputs and sum of

their weights (this fact was established in [6]). The

If the output voltage of a CMOS couple (Fig.3b)
Vou =V 12, it means that both transistors are in

2 . .
For simplicity, let us assume that the threshold voltage is the same for
both transistors.
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essential aspect is the sensitivity of the p-
comparator to changes in the current at the threshold
point. Since the range of pg-comparator output
voltage is restricted within (0-7,, ), the only way to
increase the p-comparator steepness at the threshold
point is to increase the non-linearity of the
dependency of the p-comparator output voltage on
the ratioa = 3,/ 3,

2.2 Increasing g-comparator Sensitivity
To increase the sensitivity of the g-comparator, its
transistors should be in the saturated mode when the
output voltage is in the threshold zone of output
amplifier switching. This can be demonstrated using
the example of the equivalent circuit in Fig.3b.

Let the gates of both transistors be fed not by

ground and voltage supply but by voltages ¥/ and

Vg’i such that both the transistors are in the

saturated mode when V.

out

=V, 12. Let us assume
for simplicity that V) =V, =V,., Vi =V, =V,,
and 0<V, -V, <V, /2. Then the equations for

the currents flowing through the transistors can be
represented as

In = ﬂn (Vgs _Vth)z(l—}_/anout)!
Ip = _ﬂp (Vgs _I/th)z[l—}_ﬂ‘p (Vdd _Vout)]’
1,+1,=0.
where the parameters 4, and 2, reflect the small

increase in the transistor currents that takes place
when ¥, increases. From these equations we find

()

:M o= ﬂ /Ig (6)
M A +Aa ] e
and
Wi _ Ay + 2y + 2y A,V 0y | -
da (4, +4,2)

— _ 3
Let 2,=003%, and 1,=011% > For
Vou=Vaul2, it is easy to calculate from (6) that

a =1.15. Parameter « does not equal 1 at this point
since the values of 4, and A, are different. When

Dou _ 75\, Thus, the

da
sensitivity of the fg-comparator has increased 3.75

V=5V and =115,

3 . .
The values of these parameters were taken from existing transistor
models.
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times. The smaller the values of 4, and 2,, the

greater the sensitivity.

In the LTE circuit (Fig.4), every synapse consists
of two transistors. The gate of one transistor is fed
by the input variable x; the gate of the other one is

fed by the voltage ¥, that controls the variable

weight (the current in the synapse).

Let us first consider the lower part of the LTE 4-
comparator where the synapse currents are summed
and replace the couples of transistors, which form
synapses, by equivalent transistors  with
characteristics shown in Fig.5. These characteristics
were obtained using SPICE simulation.

300uA

Mode switching line
e
-
Ve=5V.
— V=4V
200uA "
g Ve=3.5V

Ve=3V

Ve=2.5V

100uA S
Ve=2V

Ve=1.5V

Ve=1v

0A

ov 1.0V 3.0v 4.0v 5.0V

Fig. 5 Characteristics of the transistor that is
equivalent to the transistor couple.

To the left of the mode switching line, the
transistors are in the non-saturated mode; to the
right, in the saturated mode. It is easy to see from
these characteristics that when V . =25V the

out

equivalent transistors are in the saturated mode, if
the control voltage V. <25V, and in the non-

saturated mode, if V. >2.5V. Thus, the saturated

mode condition restricts the range of control voltage
change. Breaking this restriction leads to decreasing
the output signal of the f-comparator because the
currents are re-distributed among the synapses. In
fact, let the smallest weight corresponds to synapse
current /., and adding this current to the total

current of the other synapses will cause the
switching of the LTE. If the synapse with the largest
current is not saturated, decreasing V,,, , because of

the total current increases, will reduce the current of
this synapse. The currents of other non-saturated
synapses also decrease. As a result, the total current
increases by a value that is considerably smaller
than 7/ ,;,. This leads to a decrease in the output
signal of the S-comparator.

The range in which the control voltages of the
synapses change can be extended by incorporating
an extra n-channel transistor M; into the circuit as
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shown in Fig.6. The gate of this transistor is fed by
voltage 7, ., such that when the current provides

TV
Vrcl? ||_+
M2, Vami
Veers :
M}} Vuul
Veerr | Vs
| ]
S|
Vidl Ve V|

Fig. 6 Modified s-comparator.

Vou=Va4 12, the transistor is saturated under the

reaction of the voltage V, =V, — V5. Increasing

the total current through the synapses by adding a
synapse that has the smallest current makes Vs

smaller, so that Vs becomes larger. The extra

transistor opens and the increase in the total current
compensates for the change in V5 . Thus, due to the

negative voltage feedback, the extra transistor
stabilizes V7 and therefore stabilizes the currents

through the synapses.
In Fig.6, when the control voltage of the synapse
has its maximum value (V. =5V), the current

through the synapse depends on V,  as shown in

out

Fig.7. It looks like a transistor characteristic with
two zones: a linear zone and a zone of saturation. It
is easy to see that when V,, ~ 2.5V, the synapse is

in the saturated mode. When the voltage V.,

reduces, the synapse current decreases and the
change of the synapse current range narrows.
When 7, ., increases, the synapse current grows

and the linear zone of the characteristic widens,
which may cause the loss of current stabilization at
the working point. Thus, there is an optimum value
of V... Inall experiments 7, =3V,

300uA
V=5V

200uA,
100uA

0A <

ov 1.0v 20v 30v 4.0v 5.0V

Fig. 7 Dependence of the synapse current on 7,
when V. =5V.

ut
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Now let us consider the p-channel part in the
modified p-comparator (Fig.6). At the working
point (V,,~V,,/2), it should provide a current

corresponding to the maximum value of the
threshold of realized functions. To achieve this goal,
one p-channel transistor can be used with the
reference voltage 7,,, providing its saturation at the

working point. However, in this case the steepness
of the characteristic V,,(/) at the working point
will be insufficient for good stabilization of the
threshold value of the current. For this reason, the
modified f-comparator circuit (Fig.6) uses the
notion of a cascode amplifier [13, p.287] that has
two p-channel transistors, M; and M,, referenced by
voltages V,,, and V.., respectively. These
reference voltages are selected so that as the
comparator current increases, first the transistor M
is saturated and then M, becomes saturated. In
SPICE experiments V, ., =3.5V, V, 3 =2.5V.

The dependence of voltage V,,,, on the current at
the drain of Ml is shown in Fig.8 (Curve 2).

5.0V .
2
™.
4.0V N
|
20V —— —
ov
OA  40uA  BOUA  120uA 160UA  200UA 240UA

Fig. 8 Curve 1 — dependency V,,,(I); Curve 2 —
dependency V(1) ; Curve 3 — dependency Vs ().

As soon as M; comes into the saturation zone, the
voltage ¥, of M, begins to change at a higher speed

because V, =V,,3—Vu- The voltage drop on A,

sharply grows, thereby increasing the steepness of
V. .(I) (Curve 1 in Fig.8). Curve 3 in Fig.8 shows
rather good stabilization of the voltage drop V(1)
on the synapses.

For comparison, Fig.9 contains experimental
characteristics of the old and new p-comparators
adjusted to the function threshold 7=89.

This experiment shows how the comparator
output ¥, depends on the number of switched

out

synapses whose control inputs were fed by the
voltage min¥, corresponding to the smallest weight
of a variable.

For the old comparator (Curve 1), the leap of the
output voltage in the threshold point is 32mV. The
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5.0V

—
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HHH“‘H_

T
e Cune 2
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T

4.0V

... Curve 1 W (88, 3.227V)

Amplifier threshold = 2.7V e

R
™
(89, 2151V, ;

0 20 40 60 80 100 110

2.0v

ov.

Fig. 9 Comparator characteristics: Curve 1 for the
old comparator; Curve 2 for the new one.

new comparator has a much higher steepness in the
threshold zone; the voltage leap at the threshold
point is about 1V.

2.3 LTE Circuit and the Method of Teaching
Circuits used to create control voltages that
determine the weights of input variables of LTE
depend slightly on the way synapses are
implemented. Some of these circuits were published
(for example, in [14]) and they have similar
structures. Their main difference lie in the type of
memory element they use (a capacitor or a transistor
with floating gate) and with the way the values of
input binary variables ({0,1} or {-1,+1}) are
represented.

Fig.10 shows the complete LTE circuit used in
the experiments. Every its synapse contains five

T dd

Vrct'l :
v 1 D" Fien
ref3 1LV
4 out L [::D ];mid
\{'cfl | F
' - D’ o
X, e X, X, *
Va| J Va| Vea| I
| . . | —l 4 | ol 4
Sk [ |15 | | ek | )
— | |
- - . - - -
Decrement . -

Inerement - s

Fig. 10 The LTE circuit.

transistors and a capacitor. Two of the transistors
form one of the parallel branches of the p-
comparator. The input variable arrives at the gate of
the lower transistor and the control voltage arrives at
the gate of the upper one. This order of the transistor
connection makes the synapse current dependency
on the control voltage more linearly, reducing by
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several times the influence of the input variable
change on the control voltage.

During teaching, the voltage that controls the
synapse current (i.e.,, the variable weight)
accumulates on a capacitor. The capacitor charge is
allowed to change only when the synapse is active,
i.e. when the input variable equals "1". The
capacitor charge increase or decrease is realized by
approximately the same quanta that determine a
learning step. The learning step is appointed based
on the accuracy required to set the control voltages.
Its value can be controlled by choosing the
amplitude and duration of “increment" and
"decrement” signals.

When teaching LTE fairly complicated threshold
functions (with a large value of sum of weights and
thresholds), the learning step should be small. LTE
teaching algorithms are usually built so that as soon
as the output signal of the LTE begins to coincide
with the value of the learning function, the teaching
stops. Due to the small learning step, in cases when
the LTE fires after the variable with the smallest
weight changes its value, the voltage leap at the
output of the f-comparator can exceed the minimum
permissible value, which is sufficient for amplifier
firing, by a very small value.

To increase the margin of reliability after the
teaching, the LTE circuit has three output amplifiers
with different sensitivity thresholds: high, middle
and low. The value of the function produced by the
taught LTE is taken from the output F,,,. The

output signals F,,, and F,,, are used only during

teaching. After teaching, the voltage leap at the
output of the pg-comparator that causes switching
F,.. Will be not less than the difference between the

threshold voltages of the other two amplifiers.

The control voltages, which have been set during
teaching, are kept on the capacitors and can change
due to parasitic leakage resistances. In this
connection, one should organize the procedure of
refreshing capacity memory. The three output
amplifiers with different thresholds allow one to
solve this problem, for example, by auto-correcting
the control voltages using the output signal £, as

a learning sequence of the function’s values.

The general structural scheme wused when
simulating the process of teaching the neuron to a
given threshold logical function is shown in Fig.11.

The generator of input signals periodically
produces sequences of value combinations of input
variables x;,x,,...,x, and the sequence of values that

the given logical function Y takes on these
combinations. The teaching/refresh switch passes to
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Increment

Fhlgh)
Fmid
¥y

A F .lo\\ A
Decrement

Xl Xaf . X Strobe F

Comparator

Input Signal v > Teach/Refresh
Generator > Switch
| Teach A

Fig. 11 General scheme for experiments.

its output F either the signal Y (when teaching) or
the output signal F,,, (when refreshing). The
comparator produces the signals "decrement” and
"increment."  Passive values of these signals are
equal to "0" and "1" respectively. Their logical

description looks like
Decrement = Y *Fygn and Increment = YVE,,

when teaching;
Decrement = F,

mid
F.., v F,  when refreshing.
Physically, these signals are realized with limited
amplitude and duration, determining the learning
step.

In experiments with LTE learning, there is an
acute problem in selecting threshold functions for
teaching, which determines simulation time. The
duration of experiments is very important because it
is often measured in hours and even days. A
threshold function for teaching should have:

— a short sequence of wvariable combinations
checking all possible switches of the function value,
— awide range of variable weights, and

— a high threshold value for a given number of
variables.

This problem will be investigated in greater detail
in the final section of the paper. It will be shown
that a function that can be represented by the
Horner's scheme x,(x,,vx, ,(x,53Vvx,4(.)),

satisfies these requirements. For such functions, the
sequence of integer values of variable weights and
threshold with minimum sum forms the Fibonacci
sequence. The length of the checking sequence is n
+ 1 for the Horner's function of » variables.

- Fjign and Increment =

2.4 SPICE Simulation Results of LTD
Learning

Two series of experiments on LTE teaching for

given threshold functions are described here.

The goal of the first series was to show the
necessity of using a threshold hysteresis when
teaching the LTE and when providing the auto-
support to the LTE state after the LTE is taught. The
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threshold hysteresis can be obtained using three
output amplifiers whose characteristics have
different thresholds as shown in Fig.12.

6V
ni
4V ‘

2V

Vour |

oV i
3.5V

2.0V 25V 3.0V

Fig. 12 Static characteristics of the output
amplifiers.

When the movement to the threshold is from the
left, the higher value of the threshold is used for
learning; when from the right, the LTE learns to the
lower value. This leads to stretching out the
minimum leap minAV,,, of the f-comparator output

voltage in the threshold zone and to automatic
positioning of the output amplifier threshold with
the middle value F,,, into the middle of this leap.

Obviously, the hysteresis width should not exceed
maxminAV, ., which is defined by the parameters of

out

the p-channel part of the S-comparator and by the
minimum value T7,;,, of the logical function

threshold: maxminAV,,, = f (Imaxmin = Leomp ! Trin)
where [ is the comparator current in the

comp
threshold zone and /.., i, 1S the maximum current

of the synapse with the smallest weight.
For the teaching, Horner's function of seven

variables was chosen:
Y7 = x7(xg v x5 (x4 v x3(x, v X)) =
X7Xg V X7X5X, V X7X5X3Xy V X7X5X3Xy;
Y, =% v X (%5 v %, (%3 v 1)) = ®)
X7V XgX5 V XgXg X3V XgXqX5Xy.

From all its possible representations in the form

Y, = Sign(Zj_:lexj —T) with integer values of

weights and threshold, the representation
Y, = Sign(x, +x, + 2x5 + 3x, +5x;

9)
+8x¢ +13x, —21)
is the optimum by the criterion of
min(Z;:le+T)=54. For this representation,
Tin =21.

The checking sequence for this function contains
eight combinations. Their order is chosen such that
the sequence of the corresponding function values
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alternates. The combinations in the checking
sequence have one remarkable property: if the LTE
is taught to the optimum representation of the
function, their change must cause the voltage leaps
at the comparator output, which are equal in
amplitude. The teaching sequence is a periodically
repeated checking sequence.

To obtain illustrative and easily explainable
results from the experiment, we had to reduce the
steepness of the p-comparator characteristic. In the
experiment, the B -comparator parameters were
chosen so that when the threshold was 21,
maxminAV, . was equal to 0.5V. The teaching was

out
conducted with the step equal to 10mV.

The results of teaching the LTE to the Horner's
function of seven variables with various hysteresis
widths are given in Fig. 13.

5V

UL AU

o 2704V

ST
b) 2.902v T
\_(If—\ﬂ
>
2582V

ov
5V

2.950V

mﬁu—\gﬁ o W o N W
{ 2.474V

c)

ov.

Fig. 13 Output signal of the LTE p-comparator
learned to the function of 7 variables:
(a) without hysteresis,
(b) with hysteresis of 340mV, and
(c) with hysteresis of 450mV.

When there was no hysteresis (Fig.13a), the LTE
learned the function representation with threshold
T=267 that strongly differed from the optimum. The
voltage leaps at the comparator output vary on the
checking sequence from minAV,, =28mV (

2.732—-2.704) up to maxAV, . that exceeds 2V.

out
Obviously, after such teaching, the LTE will have
poor noise-stability.

In the second case (Fig.I3b), the neuron was
taught with a 340mV-wide hysteresis and learned to
the function representation with threshold T=26.
The dispersion of the voltage leaps at the
comparator output decreased considerably (
minAV,,, =0.37V; maxAV, ,=0.9V) and the

Out out

noise-stability of the LTE significantly increased.
In the third case (Fig.13c), the neuron was taught
with the hysteresis of 450mV wide. The LTE
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learned a function representation that was close to
the optimum. All the voltage leaps at the output of
the p-comparator were approximately the same (
minAV, . =0.48V; maxAV, , =0.55V).

out out

Using simulation, we checked the possibility of
providing auto-support of the LTE in the learned
state based on of using threshold hysteresis. With
this aim, the leakage resistances of control voltage
capacitors were explicitly incorporated into the LTE
circuit. The LTE was taught the Horner's function of
seven variables with 450mV wide hysteresis of
output amplifiers threshold. After the teaching, the
learning mode was replaced by the refreshment
mode. The neuron kept stably functioning on the
periodically repeated checking sequence. Signals
"Increment"” and "Decrement"” occurred from time to
time correcting the control voltages on the
capacitors and supporting them within the
permissible limits.

The result of correcting the control voltages is
easily observable in Fig.14.

3V 2928V 2958V

Vout

23y 2485V 2452V

Fn-gn
*_ Decrement 4~

_—

mid

Increment |
low A

860.2us 60 4us 860 6us 860.8us 261us

Fig. 14 Correction of the control voltages in the
refreshment mode of LTE operation.

As seen from the figure, the voltage level
V.. =2.485Vcorresponding to  the  value
combination 1010110 of input variables was not
sufficient to switch the output signal £, . As a

result, the signal "Increment" occurred that
increased by 10mV the voltages on the synapse

capacitors C,,Cs,Cy, and C, causing the decrease

of v,,, by 33mV and switching . On the next
combination, 1010100, the level V,,, =2.928V was
not sufficient to switch F,,. The signal

"Decrement" reduced by 10mV the voltages on C,,
Cs, and C; causing the increase of v,, by 30mV
and changing the value of F,,,. In spite of the

correction of the control voltages, the values of the
output signal F,,, still corresponded to the values

of the function on all combinations of the checking
sequence.

Issue 4, Volume 8, April 2009



WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS

In the second series of experiments, the LTE was
taught to a threshold function of 10 variables:

Yo = X3 (Xg v xg (37 v xg (305 v x, (363 V X, X, ) = x50

V XjgXg X, V XygXgXeXs V X1gXgXg X, X5 V XgXgXg X, X, X,

Y, = 3?10 v fg (;78 v ;@ ()?6 v )?5 (x, v X, (X, vx))) =

XgX;XsX X, (10)
This function can be represented in the form
Y,, = Sign(x, +x, +2x, + 3x, +5x; +8x, + (1)

13x, + 21x, + 34x, +55x,, —89)

The checking sequence for the function must
contain not less than 11 combinations that are

defined by the terms of ¥, and Y, in (10). To

make the teaching sequence of function values
interchangable it is necessary to have an odd
number of combinations in the checking sequence.
For this purpose, it is possible to add any
combination on which the function has the value
“1”. 1t is well known that any threshold function is a
star. The top vertex of the star is the most
convenient candidate to be added to the checking
sequence (this improves the learning time). Finally,
the checking sequence for the function (10) is

X1 XgXgX7 XgXs X Xg X, X, Vg
1000000000 O
1100000000 1
1001111111 0
1011000000 1
1010011111 0O
1010110000 1
1010100111 0O
1010101100 1
1010101001 O
1010101011 1
1010101010 O
1111111111 1

The checking sequence is implemented as shown in
Fig.15. The final graphic in it represents strobe-
signal ¢ that participates in forming “increment” and
“decrement” signals.

In the LTE circuit, the p-comparator was
adjusted to the maximum sensitivity providing at the
threshold 7=89 maxminAV, , ~1V (Fig.9); the

out
hysteresis width was 0.85V, and the learning step
was adaptive.

The learning step is defined by the amplitude and
duration of the “increment” and “decrement”
signals. These signals ensure charging and
discharging the capacitors with the current of
0.15uA and can have a maximum duration equal to
the duration of the strobe-signal # (90ns). It gives for
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Fig. 15 Single checking sequence of signal value
combinations.

the capacitor of 1pF the maximum learning step that
is equal to 13.5mV.

The change of the control voltages on the synapse
capacitors during the learning is shown in Fig.16.

35V
Veto
30V IR
oprretene
‘-"MW
25V JJUSEEE— )
JET———
20V I Vg
1/ -
j” e o A
1 o S =7
1.5V i Vg
r/ /
1y - e
. JA /\3"& ‘‘‘ ——— Ves;
10V / — e
/‘_‘; Pa— v
/
0.5V V/ v
J
ov.

0s 50us 100us  150us  200us  250us  300us  330us  400us 450us

Fig. 16 Changes of the control voltages on the
synapse capacitors during the learning.

The dynamics of the learning are easily observable.
The control voltages stop changing at the moment
0.28ms. This means that the learning process is over
and it is possible to switch from the teaching mode
to the refreshing mode. The most accurate moment
of mode switching can be defined with a special
control signal that sets the switcher into refreshing
mode if the LTE output F,, coincides with the

output F of the mode switcher on all combinations
of some checking sequence. In the refreshing mode,
if F,, and F do not coincide on at least one

combination of the checking sequence, this control
signal sets the switcher into teaching mode. This
means that the LTE has lost the learned state and
must be taught again. The refreshing mode of
operation can be interrupted with an evaluation
process that calculates the value of the logical
function on some input combination. Obviously,
refreshing and evaluation have to interchange.
During evaluation, to receive correct results the LTE
output F,;, should be gated.
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As is easily seen from Fig.16, stable values of the
control voltages approximately correspond to the
weights of the wvariables in the optimum
representation of the threshold function (the values
are distributed close to Fibonacci numbers). At time
equal to 0.28ms, the teaching mode has been
replaced by the refreshment mode. Starting from
this moment, only rare signals of "Increment" and
"Decrement" appear correcting some control
voltages.

The output signals of the LTE and the output
signal of its p-comparator in one period of the
checking sequence of the refreshment mode is given
in Fig. 17. One can see that the smallest leap of

50V

\':-\‘lll

32280V
2.2066V

F!nw

324.0us 324 4us 324.8us 325.2us 6.0us  326.4us

Fig. 17 Picture of the signals on the outputs of the g-
comparator and the LTE in the refresh mode.

V.. at the comparator output is 1V. The output

signal v, represents the values of the realized
function. In cases when the output signals 7, and
F,,, do not correspond to the function value, the
control voltages are corrected.

2.5 Implementability Limits of the LTE

In order to study the functional power of the LTE, a

number of experiments were carried out using

SPICE simulation. For all experiments with

learnable threshold elements, the problem of

choosing testing threshold functions is crucial. This

problem will be discussed in the final section of the

paper. As was already noticed, a threshold test-

function should match the following demands:

—to have a short learning sequence,

—to cover a wide range of input weights,

— to have the largest threshold for the given number
of variables.

Monotonous Boolean functions representable by
Horner's scheme match all these demands. For such
functions of » variables, the sequence of input
weights and threshold forms the Fibonacci sequence
and the length of the shortest learning (checking)
sequence is n+1 (the number of combinations of
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input variable values). Experiments were conducted
with three threshold functions for » =10, 11 and
12:

F,, = Sign(x, + x, + 2x, + 3x, + 5x, +8x, +
13x, + 21x, + 34x, +55x,, —89);

F = Sign(x, +x, + 2x, + 3x, +5x, +8x, +
13x, + 21x, + 34x, + 55x,, +89x,, —144);
F = Sign(x, + x, + 2x, + 3x, + 5x, +8x, +
13x, + 21x, + 34x, +55x,, +89x,, +144x,, —233).

Since the learning process was not the objective of
these experiments, the optimum values of control
voltages were set on the synapses. The logical
inputs of the LTE were fed by checking (learning)
sequences.

In the first series of experiments, maxminAV,

out
(the maximum of the smallest change of p-
comparator output voltage at the threshold level of
2.7V) was determined. The results of the
experiments are given in the second column of
Table 1. The implementability of the LTD is
determined by the signal AV, value. According to
the table, the LTE learnable for functions of 12
variables is near the edge of implementability
because of relatively small values of AV,,,.

(12)

Table 1: Results of SPICE simulations.

LTE AV, (min=max)v,, | oV,
type

Fo 1V 1.88+3.7V | 0.3%
By 0.525V | 1.9+3.68V | 0.2%
Fip 0.325V | 1.97+3.65V | 0.1%

In the second series of experiments, for fixed
parameters of the comparator the range of
admissible threshold voltages of the output amplifier
F,;, has been defined under stipulation that on the

range borders the comparator produced minA/,

out
not less than 100mV when the LTE was in the
learned state. The results are given in the third
column of Table 1. The conclusion is: deviation of
the amplifier threshold (e.g., because of
technological parameter variations) does not
essentially influence LTE implementability. The
LTE during learning is adjusted to any threshold of
the output amplifier from these ranges.

The other experiments were associated with the
question: with what precision should the voltages be
maintained for normal functioning of the LTE after
learning? First, the LTE stability to supply voltage
variations should be investigated. With constant
values of the reference voltages, when changing the
voltage supply at £0.1% (x5mV), the dependence of
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the voltage v,,, from the current flowing through p-
transistors of the comparator shifts along the axis of
current at £1.5% as shown in Fig. 18. For the LTE
F,, , the current in the working point is about
233/ i 1.5% of this value is 3.517,,, i.e., the shift
of the characteristic is 3.5 times more than the
minimum current of the synapse. Evidently, the
LTE will not function properly when the working
current changes in this way.

min 1

5.0V 7

cov!
2w il

OVi
oA S0uA  100uA  180uA 200UA  280UA 300uA 250UA

Fig. 18 Behaviour of the dependency 7,,,(1,) when
the voltage 7, changes in the interval £0.1%.

On the other hand, taking into account the
method of producing reference voltages, it is natural
to assume that the reference voltages must change
proportionally to the changes of the voltage supply.

The effect from reference voltage change is in the
reverse direction to the effect of supply voltage
change and partially compensates it. The
experiments carried out under these conditions
showed that learned LTE F,, F,, and F;, can

function properly in respective ranges of supply
voltage change shown in the fourth column of Table
1. To fix the borders of the ranges, the following
condition was used: signal AV, /2 should be either

out

more or less than the output amplifier threshold by a
value of not less than 50mV.

The control voltages of the synapses were set up
with an accuracy of 1mV. With what accuracy
should they be maintained after the learning?
Evidently, the LTE will not function properly if
with the same threshold of the output amplifier the
total current of the synapses drifts by 7, /2 on

either side. Experiments were conducted to
determine the permissible range (+JV,), in which

the control voltage V. of one of the synapses (with

minimum and maximum currents) can change while
the control voltages of the other synapses are
constant. The condition for fixing the range borders
was the same as in the previous series of
experiments. The obtained results are given in Table
2.
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Table 2: Results of SPICE simulations.

Type §IS min §VC min 5VC max
F, | 0421, | #5.3%(x46mV) | +0.60% (£17mV)
F, | $0401,, | +4.7%(+40mV) | +0.73% (+27mV)
F, +0.347 in +3.8% (£32mV) 1+0.23% (+£10mV)

In the second column of the table, the permissible
ranges of synapse current change are shown. The
third and fourth columns contain the limits of
change of the control voltages. These limits define
corresponding changes of current in synapses with
minimum and maximum weights.

It is possible to make the following conclusion
based on Table 2 data: since all the control voltages
of synapses in the LTE should be maintained
simultaneously, their maintenance should be as
accurate as units of millivolts.

3. LTE Learnable for Arbitrary

Threshold Functions

A threshold function with positive input weights is
an isotonous Boolean function. Such a function can
be realized by an artificial neuron (LTE) with only
excitatory inputs. However, most problems solved
by artificial neural networks also require inhibitory
inputs. If the input type (excitatory or inhibitory) is
known beforehand, the problem of inverting the
weight sign is solved trivially by inverting the
respective variable. Otherwise, the neuron should
have synapses capable of forming the weight and
type of the input during the learning, using only
increment and decrement signals. The possibility of
building such synapses for the LTE is the subject of
this section.

3.1 Statement of the Problem

The behaviour of a A-DTE is described by a
threshold function in ratio form [6]. To build the
LTE, it is convenient to represent threshold
functions in reduced ratio form:

F=R(Ywx,IT)=Ri(Y0,x,) (13)

0if 4<1,
1if 4>1.

The simplest way of solving this problem is by
doubling the number of variables (and synapses)
feeding the LTE inputs by both x, and their

J
inversions x; with input weights «; and b,
respectively. Note that doubling the number of
synapses does not lead to cutting down the number

where @, =w, /T and R¢(4) ={
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of realizable threshold functions because the
implementability of LTE depends only on the
threshold value and does not depend on the sum of
the input weights or number of synapses. On the
contrary, incorporating extra inverse inputs
increases the number of realizable threshold
functions of » variables by 2n times.

Let in a certain isotonous threshold function

Rt(zjzla’ij) some variables x, €Y be inverted

while other variables x, eZ(i# j,ZUY =X) are
not. Then
F= Sign(Zw»/.x‘/. + ZW,')_C; -T)=
ez

x;eY

Sign(Q wx, + 2 w,(l-x)-T)=

x;€Z x;eY

Sign(ijxj - ZW,-)_C,- —(T - sz‘)) =

x;eZ x;eY x;eY

Z 70X, —Z y DiXi
X ;€ J x;€
RZ J 1

- ZrieY a)i

where w, =w, /T . Itis easy to see from (14) that

the use of negative weights can be reduced to
inverting the wvariables and vice versa. The
normalized threshold of a function represented by
Rt-formula with negative weights is equal to

1_Zx,eY a)i !

The circuit of a neuron synapse capable of
forming both positive and negative weights of an
input variable is made of two simple synapses as
shown in Fig.19.

(14)

“ INCREMENT o

DECREMENT ©

Fig. 19 Synapse forming positive and negative
weights of the input variable.

It is easy to see that the LTE with such synapses
realizes the threshold function

Rt ijl(af —b))x,

1- Zj’:l bj

(15)
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where «; and b, are weights brought to the

threshold. They are defined by voltages on the
capacitors C; and C, for x; and X, respectively.

On the other hand, for the case of doubling the
synapses number, it follows from (14) that the
threshold function realized by the LTE must be

; 2ala; =b;)x;
1- Z;Zl (b;—a;)Sign(b; —a;)
(to maintain the limitations on weights and

thresholds).
It is easy to see that if in every pair (a;,b;) one of

the weights is equal to zero, then expressions (15)
and (16) coincide and have the form:

F=Ri(Yax +Ybx)=

x;€Z x; €Y

ZX,EZ a/xj B Z)c,-eY bixi
1-> b
x;ey 1

It follows from the above that when teaching an
LTE with such synapses it is desirable to change the
input weights (a;,b;) in such a way that one of the

weights in each pair goes to zero. Moreover, as it
will be shown below, this condition provides the
maximum level of LTE implementability.

It is difficult to conclude from (15) and (16) that
synaptic weights affect the neuron implementability.
Let us look at how the p-comparator operates
(Fig.6). The sizes of p-transistors and reference
voltages V,,,, and V,, determine the current 7,

when the output voltage of the p-comparator is
equal to the output amplifier threshold. As a first
approximation, the smallest change of the current is
Iy=1,I1T and AV,, =kl, where k is the steepness

out
of the S-comparator voltage-current characteristic at
the threshold of the output amplifier. However, if
a;#0 and b;#0 , then via each j-th synapse an

additional current flows that is determined by
min(a;,b;) . Thus, the approximate value of the

smallest current can be obtained from the equation

R

(16)

A7)
Rt

I =I—7tf—102min(aj,bj)
J

and

_ 1y, _
T(1+ijin(aj,bj))

It follows from (18) that if the value of AV,,is

fixed, the largest realizable threshold depends on
min(a;,b;) as

(18)

1y

< . : (19)
AV, 1+, min(a;, b))
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Thus, keeping the implementability level requires
either increasing 7, during the learning (that is

actually associated with some difficulties) or
providing min(a,,b,)=0 for any j by modifying
the synapse circuit and changing the learning
algorithm.

In [20] several modifications of synapse circuits
have been suggested and for each of them the
existence of stable decisions, which the LTE is able
to keep realizing non-isotonous threshold functions,
has been proved. Unfortunately, the authors could
not find on-chip learning algorithms leading to these
decisions. One possible solution is proposed in the
next subsection. This solution provides an on-chip
learning process, which gives convergence
independent of initial conditions and uses a
modified synapse circuit.

3.2 The Problem Decision
The same general structure scheme that is shown in
Fig.11, is used when simulating the process of
teaching the LTE an arbitrary given logical
threshold function. The *“Input Signal Generator”
periodically produces checking sequence of value
combinations of input variables and the sequence of
values that the given logical function takes on these
combinations. The isotonous logical function (10)
depending on 10 variables is chosen as a test
function. The checking sequence for this function is
represented in Fig.15. Non-isotonous functions can
be derived from this function by inverting some
variables with the help of inverters. The generator
is supposed to be implemented separately from the
LTE. Other blocks of the general scheme are
assumed to be implemented on-chip. In the
schematics (shown below), the widths of all
transistors are pointed out to make the experiments
replicable.

The “Teach/Refresh Switch” passes to its
output F either the signal Y (when teaching) or the
signal F,., (when refreshing) and realizes the

mid
logical function F =Y & Teach v F,,;; & Teach .  Its
schematic is very simple and is realized in Fig.20.
PWR Fimid
T [T M7
Y ] 12u' 1.2u'
Teach M1 M4 3 M8
2 tizul | 1.2ul | F
vz T st [Twe, T
*1au T2u | [12ul]
M& M0
| 120 i 1120

- - .

‘0
Fig. 20 Schematic of the switch.
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Fig. 21 Schematic of the “Comparator”.

The “Comparator” produces “Decrement” and
“Increment” signals. Its schematic is shown in
Fig. 21.

In the schematic, the “Increment” signal is
designated as incr_ p to point out that this signal

controls p-channel transistors. Its function together
with its implementation description is
incr_p=F, vFvi=F, -Fvt

where F is the switch output and 7 is the strobe-
signal inversion. Passive value of this signal is
“Log.1” and active value is “Log.0”. The function is
realized on the gates G;, G, and transistors M; —
Mes. The output stage of the function implementation
is a NAND gate (transistors M, Mz, M, and Mg)
combined with an embedded voltage divider
(transistors M;— Ms) and a current mirror on the
transistors M, and Ms, which restricts the
“Increment” current through p-channel transistors
controlled by the signal incr _p . The width of the

transistor M, provides the 0.15uA current through a
p-channel transistor of the minimum width (1.2u).
Using the voltage divider allowed to reduce the
width of the transistor M, more than twenty times.
“Decrement” signals consist of three signals:
decr _n, ndecr _n,and nincr _n. The main signal

decr _n has the logical function

decr _n=F, F-t=tvF-F

high high
that is implemented on the gates Gs, G4, Gg, and
transistors Mg — My,. Active value of this signal is
“Log.1”. The last stage of the function
implementation is an inverter (transistors Mg, Mi3)
that contains the embedded voltage divider
(transistors My, My;) and the current mirror on the
transistors M12, My, which restricts the amplitude
of the signal decr _n. The transistor My, of 11.7u
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width provides the current 0.15uA through #-
channel transistors of minimum width (1.2u)
controlled by the signal decr _n.

Two additional “Decrement” signals (nincr _n
and ndecr _n) are used when teaching the LTE
synapses input weight signs. Each of them creates
an additional force that pulls down voltages of the
synapse capacitors corresponding to min(a;,b,) up
to the ground potential during LTE learning. The
signal nincr _n is alternative to the signal incr_ p
and has the logical function

nincr_n=F, -F-t=F, -Fvft

low low

that is implemented on gates G,, Gs, and transistors
Mis — Myo. The last stage of the implementation is
analogous to the last stage of the signal decr _n.

The transistor M, of 21.5u width provides current
81.6nA through n-channel transistors of minimum
width (1.2u) controlled by the signal nincr_n .

The signal ndecr _n is alternative to the signal
decr _nand has one additional restriction: if during
the strobe-signal ¢="Log.l"the signal decr n=
”Log.1” is finished, the signal ndecr _n= *“Log.1”
cannot be produced. The function of the signal
ndecr _n is defined as
where Q is output of the latch keeping the value of
the signal decr _n up to the end of the strobe signal.
In Fig.21 the latch Q is constructed from gates Gs,
Gg and has excitation functions

S=F -t_vf; R=iVF.

high

The signal ndecr _n is implemented as

ndecr_n=F,,

ndecr _n = f\/F-va-F}ﬁgh Q
on gates Gs, Gy, Gg, G7, and transistors My, — M.
The last stage of the implementation is the same as

in the realisation of the signal decr n. The

transistor Mg of the current mirror with 11u width
provides current 0.16uA through n-channel
transistors of minimum width (1.2u) controlled by
the signal ndecr _n .

The LTE itself consists of A-comparator with
output amplifiers and synapses. The schematic of
the f-comparator is presented in Fig.22.

In this figure, all parameters of transistors and
values of reference voltages are pointed out. All
amplifiers are constructed as a serial connection of
three inverters. The amplifier with the output 7,

has a threshold equal to 2.7V. The thresholds of
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Fig.22 Schematic of the f-comparator with output
amplifiers.
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M15

1.2u

amplifiers with outputs £, and £, are equal to

2.3V and 3.15V respectively. Thus, the width of
threshold hysteresis is 850mV.

The full synapse circuit of the LTE learnable for
arbitrary threshold functions is introduced in Fig.23.
It is constructed on the basis of the synapse circuit
in Fig.19. Voltages V., and V., on the capacitors

control the synapse currents flowing through pairs
of transistors (Ms, M,;) or (Mg, My,). The circuit has
two input logical variables x andx . The variable x
can be derived with the help of an inverter. The
voltages on the capacitors C; and C, correspond to
the positive “a” and negative “b” weights
respectively. If V., <V, or V., <V, (here Vv, is

th
the threshold voltage of n-channel transistors), it
means that a=0 or b=0 because the
corresponding transistor pair will be closed.

The signals incr _p and decr _n increase and

decrease the capacitor voltages through pairs of
transistors (M]_, M3), (Mz, M4) and (M7, Mzg), (Mg,
M,,) respectively depending on the value of input
variables (x, x ).

Two pseudo n-MOS inverters on transistor pairs
(M2g, M3g) and (Mso, Myo) are sensitive elements of

capacitor voltages close to 7, . Voltage V, , =

3.9V fixes the conductivity of their p-channel
transistors. Output signals G; and G, of these
elements control the conductivity of two pairs of
transistors (Mys, My7) and (Mye, Myg) respectively.
Transistors of each pare can pass currents only
when the voltage on the corresponding capacitor (
Ve, OrVe,) exceeds 675mV. Two inverters (May,

My and Ms,, My,) with outputs Gz and G, invert the
signals G; and G,. Signals Gz and G, control
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Fig. 23 The LTE Synapse implementation.

transistors Mg and My, each of which opens when
the voltage of the corresponding capacitor (7, or

Ve, ) exceeds 635mV. Difference between these

threshold voltages (675-635=40mV) is very
important because it provide correct learning
behaviour of synaptic weights in the region close to
the threshold of n-channel transistors.

Signals G; and G, also write information about
the sign of the synaptic weight in the latch (outputs
Q and 5 ) on transistors M3z — Mgg, Mys, Myy. The

latch keeps information when voltages of both
signals Gz and G, exceed the threshold of the latch
inputs. When Q=Log.1, the weight sign is positive.
If Q = Log.0, the sign is negative.

Signals G, — Gy, ndecr _n, nincr _n, the latch
Q, and input variables (x,x) control the
conductivity of additional decrement chains for
each capacitor. For the capacitor C1, these chains
are described by the expression

MM, MM, v M, (MM, v M M).
For the capacitor C, the expression for chains is
M10M12M16M24 Vv M14(M20M28 Vv M18M25) :
It should be noted that transistors M7, M,g cannot
be replaced by transistors My, M, because of
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appearance of parasitic dependency between
voltages V., and ¥, through parasitic capacitances
of these transistors.

The initial setting signal is controls the
transistors Mys and Mys, Which serve only for the
initial setting of the voltages on the capacitors C;
and C,.

During learning, the synapse works in the
following way. Let us suppose that initially
Vey <V, and Vg, >V, . Then the signals G; and G,
will be equal to “Log.1” and “Log.0” respectively
and the latch Q will be in the state Q = Log.0
(negative weight sign). There are two cases.

First, the sign of the input variable weight is
negative, i.e., it coincides with the state of the latch.
In this case the signals nincr _n and ndecr _n
pull together the voltage V., to OV by the chain
(Mg, Mllv Mls, M23) and by the chain (M13, M17,
Mys) respectively. At the same time the signals
incr _p and decr_n try to set the voltage V.,
corresponding to the weight of the input variable x .

Second, the sign of the input variable weight is

positive, i.e., it does not coincide with the state of
the latch. In this case, the learning sequence will
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provide that for the capacitor C; increment steps
caused by the signals incr _p will prevail over

decrement steps caused by the signals decr n,
ndecr _n , nicr_n and the voltage V., will grow.
As soon, as V., exceeds V,, the sensitive inverter

(Myg, Msg) closes the transistors Mys, M7 halting
the action of the signals ndecr _n, nicr_n by the

additional chains. This inverter also switches the
inverter (Ms;, My;), which, in its turn, opens the
transistors Mg and M, enabling action of the
signals ndecr _n by the additional chain. After

that, the voltage V., continues to rise to the weight
value and the signals decr _n, ndecr _n will pull
down the voltage V., by two chains: (Mg, My),
and (M4, Mao, Mzg).

As soon as the voltage V., reaches 675mV, the

sensitive inverter (Msg, Myo) opens the transistors
Mis, Mg and, when V., =635mV, switches the

inverter (Ms;, Myy), which, in its turn, closes the
transistors Mg , M,; and switches the latch Q into
the state Q = Log.1 (positive weight sign). Output
signals of the latch close the transistor My, and
open the transistor Myg. The difference in critical
values of the voltage ¥V, , which leads to switching

the sensitive element (Msy, Myo) and the inverter
(M3y, Myyp), is very important because in this case
switching of the latch only slightly changes the
condition of the capacitor C, discharging and the
voltage V., continues decreasing down to ground

potential due to opening the additional chain (Mg,
Mg, Mys) that partly compensates closing the chain
(M14, M2, Mzg).

3.3 Results of SPICE Simulation
All experiments on teaching of the LTE to non-
isotonous (antitonous) threshold functions were
conducted for functions obtained by inverting some
variables in the isotonous threshold Horner's
function (10) of 10 variables. Below the results of
SPICE simulating LTE learning are presented for
only two test-functions: for the isotonous function
(10) and for the non-isotonous function
(antitonous) derived from (10) by inverting
variables with even indexes

YlO = xlO')_CQ Vv X10X8f7 Vv x10x8'x6)_65 Vv

X1 XgXeXy X3 V X1gXgXg X, X, X, ;
Yio =X VXgXg V XgX;Xg V Xg XXX, V (20)

XgX7XgX3X, V XgX7 XXX,
Another form of the function (20) representation is
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Y, = Sign(—x, + x, —2x, +3x, —5x, +

8x, —13x, + 21x, —34x, +55x,, —34).

The checking sequence for these two functions is

represented in Fig.15. In experiments, the duration

of keeping one combination is 200ns and the

checking sequence takes 2.4us. The learning
sequence is cyclically repeated checking sequence.

Fig.24 shows the LTE learning process for the

function (10) starting from the initial state, in which

Voo =Vep, =0V for all synapses. In this figure,

designations AV, of curves denote voltage
difference V., —V,, for the synapse of j-th variable.

(21)

A T

S AVig
3.0V P

/ AV
~ . AV
2.0V »“’,_______,—/—""'““’"“‘“\ p /’/ / 8
‘ﬁ/ AV,

/1 P P— —

AV, I\ —

’__,__f—m_,:/_/,:/j/”;/ AV, AV

LoV

WAV,

220V oo
0.7ms

Os 0.1ms

Fig. 24 The LTE learning of the function (10).

0.2ms 0.3ms 0.4ms 0.5ms 0.6ms

It is easy to see from Fig.24 that all curves reach
stable states for the time equal to 0.44ms or for 183
learning cycles and the weights of all variables are
positive.

Fig.25 illustrates the process of LTE learning for
the function (20) starting from the same initial
state.

4.0V

Wi

3.0V s

, / AVy
2.0V /et Ve
1/ e AV,
i rd AV,
1.0V AV
\»\._M"/,—r;/:::—-”‘::/ / AV
Y I
0.0V 4 mt*‘\\
ST - RN AV, AV
D NN L3
BENY \ ™~ \ [\ ———
o TAV;
| ‘\\\ —
20V . o
30V y
0s 0.1ms 0.2ms 0.3ms 0.4ms 0.5ms 0.oms  0.7ms

Fig. 25 The LTE learning of the function (20).

It is possible to conclude, analyzing Fig.25, that
this learning process has the same time parameters
as the process in Fig.24. Signs of variable weights
and their values are determined correctly: all even
variables have positive weights and all weights of
odd variables are negative.
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In Fig.26 the process of LTE learning of the
function (10) is presented for one of the worst cases
when from the initial state, in which all synaptic
weights are the least negative (V. =0V,

V.,=5V), the LTE is taught to all positive
weights.

5.0V7T

4.0V
AVig

20V pd
/-

00 OdmeO6meOfms Toms i3ms Tdme Téms 1fme
Fig.26 The LTE learning of the function (10) from
the initial state of the least negative weights.

The picture shows the correct result of the learning.
The decision is found for 1.2ms (500 cycles).

Fig.27 illustrates the process of LTE learning of
the function (20) from the initial state (V. =0V,
V-, =5V ) for all synapses.

Analyzing Fig.25, it is possible to conclude,
that this learning process is finished for 1.45ms
(604 cycles). Signs of variable weights and
their values are determined correctly: all odd
variables have negative weights and all weights
of even variables are positive.

5.0V

4.0V

0.0v

4.0V [/

- v i
1.2ms  1.4ms 1.6ms 1.8ms 2.0ms

1.0ms

-5.0VF " :
0s  02ms0.4ms  0.6ms

Fig.27 The LTE learning of the function (20) from
the initial state of the least negative weights.

0.8ms

For the proposed procedure of on-chip LTE
learning for arbitrary threshold functions of some
number of variables, it is not clear how to prove its
convergence analytically.  Sufficient SPICE-
simulation experiments have been done to establish
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that this learning procedure possesses of
convergence from initial states (V. =0V,
V.,=0V), (V,=0V, V.,=5V), (V,=5V,

V.,=0V),(V,=5V, V., =5V), which may be
different for different synapses. To provide the
procedure convergence from these initial states it is
necessary to chose very accurate current amplitudes
of the signals ndecr _nand nicr _n .

Nevertheless it is impossible to be sure that there
is no an initial state, from which does not exist the
algorithm convergence. By this reason it does not
possible to confirm that, if the LTE is taught to
realize some threshold function, using its state as
initial, it can be repeatedly taught any other
function. May be it is so, but this fact did not
proved.

In any case, if accept the restriction that any
learning process is started from the reasonable
initial state (¥, =0V, V., =0V), which is the
same for all synapses, the accuracy diapason of
setting for the signals ndecr _n, nicr_n become

much wider.

By this reason, it can be recommended after
losing by the LTE of a learned state to do the initial
setting of the LTE before new act of learning.

4. Some Functional Problems in

Experiments with LTE Learning
Developing a hardware implementation (e.g.
CMOS) of artificial neurons with critical
parameters such as threshold value of realizable
functions, number of inputs, values and sum of
input weights is a difficult technical problem that
nevertheless has to be solved [1-8]. While tasks of
purely logical design can be solved more or less
efficiently in an analytic way, tasks of physical
design necessarily require computer simulation
(e.g., SPICE simulation). Computer simulation can
and must answer the following questions:

— What are the limiting parameters of an artificial
neuron of a certain type?
— Are these parameters attainable during teaching?

A modern learnable artificial neuron, which is
implemented as a hardware device and oriented to
reproducing complicated threshold functions (sum
of input weights and threshold >1000), is merely a
sophisticated  analog-digital ~ device,  whose
maximum functional power is attained, in many
cases, by using the effects of the second and even
the third order transistor behaviour. This, in its turn,
requires using models of higher levels (e.g.
BSIM3v3.1). Therefore, the dependencies of
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neuron behaviour on the synapse parameters are,
generally speaking, non-linear. Because of this, the
neuron for simulation should have a wide range of
synaptic weights that covers all the range of values
under consideration. This, in turn, requires that the
neuron behaviour should be simulated under all
necessary combinations of the input signals. It
should also be taken into account that simulation
results strongly (and sometimes crucially) depend
on the parameters of the transistor model in usage.
Hence, to get results with a certain level of
generality, a number of simulations using different
models (e.g., from different manufacturers) should
be conducted. Thus, to get an answer to the
question about the maximum functional power of
the artificial neuron, serious experimental work is
needed, the volume of which obviously depends
linearly on the number of variable value
combinations used in every experiment.

The existence of a number of neuron circuit
parameters, which provide reproducing a threshold
function of limiting complexity, does not mean that
the voltages controlling the input weights and
threshold for this function can be attained during
the teaching. If a control voltage V can change in
the interval V , <V <V . and w,, is the

maximum value of the corresponding input weight
(or threshold), then AV =V, ., —Viin) Whae 1S the

value determining the required precision of
teaching. Taking into account the possible non-
linearity of the dependence w()) and necessity of

compensating during teaching technological
variations of transistor parameters (geometrical
sizes, thresholds, etc.), the precision of setting the
control voltages should be oV =kAV (k < 1). A
teaching system can be considered as a complex
non-linear analog-discrete control system with
feedback delay. Its analytic study is very difficult,
S0 again one arrives at the necessity of computer
simulation as the basic tool of this research.

In order to provide the required precision, the
increment of the voltage controlling the synaptic
weight in one step of teaching (exposing one
combination of variable values) should be <&V .
Hence, to simulate the process of teaching the
artificial neuron to reproduce a threshold function
withw, =100+ 200, every combination from the

learning sequence should be exposed about 1000 or
more times, regardless of selecting the teaching
strategy. Because of this, SPICE simulation of the
teaching process takes hours. Naturally, the
duration of the simulation process linearly depends
on the length of the learning sequence.
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In order to obtain reasonable simulation time for
highly complicated artificial neurons, the test tasks
should be threshold functions with learning
sequences of the minimum length and with fixed
values of w,, . Values of input weights should

cover all the value ranges as tightly as possible.
Functions of this type are the subject of the section.
Some results of threshold logic that have been
known for several tens of years, at least as
scientific folklore, will be used.

4.1 Bearing Sets of Threshold Functions and
Checking Sequences
The geometrical model of threshold functions

Y = Sign(ijlexj —17) is a separating hyperplane

wx —n=0. |If

with the equationd wx, the
combinations of variable values correspond to
vertexes of a unit hypercube, the threshold function
has the value "Log.1" on the vertices that have a
positive distance from the separating hyperplane (7
set) and the value "Log.0" on those whose distance
from the separating hyperplane is negative (F set).
Traditionally, the task of synthesizing a threshold
element by given sets 7"and F'is reduced to solving
a linear programming task:

finding min| > w, +77J at the conditions

J=1

D wax, —n=0

X‘,ET

2wx,—n<0
xjeF
Note that the system of inequalities is redundant
since some inequalities majorize others.

Without loss of generality, threshold functions
with w; >0 will be only discussed further. Such

threshold functions correspond to isotonous
Boolean functions (monotonous functions with
only positive variables) and can be realized by
neurons with only excitatory inputs. By definition,
for monotonous functions £ (X), from X, > X, it

1

follows that f(X,) > f(X,) where X; and X, are

certain combinations of variable values. Or, for
isotonous threshold functions
Zwkxk -n> Zwkxk -n.
xp=leX xp=leX;

A monotonous Boolean function in a unit
hypercube corresponds to a "star", i.e. a set of
subcubes that have at least one common vertex
(star vertex) [23]. For an isotonous function, the
star vertex is X ={L1..1}; for an antitonous
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function (inversion of the isotonous one) -
Xmin ={0,0,...,0}. The vertex lying on the maximum

diagonal of a subcube (at the maximum distance)
from the top of the star will be referred to as a
bearing vertex. The set of bearing vertices for star T
will be called bearing set 7, and for star F —

bearing set F,. It is easy to see that vertices X €T
are the minimum and vertexes X e F, are the

maximum in the respective subcubes. Hence, to
solve the linear programming task, it is enough to
use only the inequalities corresponding to the
bearing sets.*

A subcube of dimension m in an n-dimensional
hypercube corresponds to a conjunction of range
n—m in the concise form of a Boolean function.’
This conjunction determines the bearing vertex,
namely: for the set 7, coordinate X, has the value

“Log.I", if x, appears in the conjunction and
“Log.0" otherwise; for the set F,, coordinate x; has
the value "Log.0", if x, appears in the conjunction

J
and "Log.I" otherwise. For example, for »n=7,

x,X3%g <> 1010010, X,X3%,%; <> 0100101. Thus, the
number of vertices in the sets 7, and Fis equal to

the number of terms in the minimum Boolean
forms of the threshold function and its inversion.

It obviously follows from above that, if the
artificial neuron is taught to recognize bearing sets,
it recognizes corresponding threshold function as
well. A learning sequence that consists of input
variable value combinations belonging to bearing
sets will be referred to as a bearing learning
sequence. The length of the bearing learning
sequence can vary in a wide range: from n+1 for

the Y = Sign(Z'j’_:lxj —n) up to
w2 2-n!
! (n/2)Y(nl2)!
Y= Sign(z;lxi —nl2) with odd ».

function

for the function

4.2 Test Functions

The length of the test sequence as a function of the
number of variables means nothing, if it is not
correlated with complexity of the threshold
function. A natural question arises about estimating
threshold function complexity. For simulation

4 _ . ] L
This result has been known in the threshold logics since the late 50's
or early 60's, but it is difficult to give specific reference.

5 . . . .
For a monotonous function, the concise form coincides with the
minimum form.
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tasks, which are discussed here, this complexity is
associated with implementability of an artificial
neuron. It varies depending on a circuit solution.
For a v-CMOS artificial neuron [3-5], its
implementability and, hence, threshold function
complexity estimation is determined by the sum of
the input weights. For a g-driven artificial neuron
[6-8], implementability and complexity are
determined only by the threshold value. Keeping in
mind these two types of complexity estimation for
threshold functions, we will use two efficiency
criteria for test functions, namely: C, = L(n)/n and

G, =L(n)/2::le where L(n) is the length of the

learning sequence in the number of bearing
combinations. The lower the values of these
criteria, the more efficient the function will be in
teaching.

Let us start from a simple example considering
two threshold functions:

Y, = sign(Zx‘/. —nJ; Y, =
Jj=n
n=1
Y, = Sign((n -Dx, + le/. —nJ ;

j=1

-1

A

, =X, ij,
j =1
Both functions have the same number of bearing
combinations and L(n) =n+1. Since the threshold
is the same for ¥; andY,, both functions also have
the same value of the first efficiency criteria C,,
C,(Y,)=C,(Y,)=1+1/n. The only advantage of
Y, is that there is an input with the weight n—1.
At the same time C,(Y)=1+1/n,
C,(Y,)=1/2)+1/(n-1). Since C,(Y,)>C,(Y,),
Y, is preferable as a test function; the question
arises of whether it is possible to derive test
functions with the highest efficiency for both
criteria.
Let us consider Boolean functions that can be
represented in Horner's scheme:
Hl (n) = ‘xn vxnfl (xan Vv xn—3 (-x",4 Vv )) 1

H,(n)=x,(x,,vx,,(x,,vx,,(.)),

and call them Horner's functions of the first and
second type, respectively. Note that according to
De Morgan's law, inverted functions of the first
type are functions of the second type with respect
to inverted variables, and vice versa, i.e., inverted
functions of the second type are functions of the
first type with respect to inverted variables.
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Let

N[To1 (n)] = N[Foz (n)] ) N[Toz (”)] = N[F01 (n)]
be the numbers of vertices in the bearing sets of
Horner's functions of » variables of the first and the
second type. It is easy to see that
H,(n)=x,vH,(n-1) and H,(n)=x,H,(n-1).
Therefore,

N[Ty, (n)]= N[Fy,(n—1)]+1,
N[Fy(n)]= N[T,,(n—-1)] and
L(n)=L(n-1)+1=n+1.

Hence, a Horner's function of » variables has the

shortest bearing learning sequence.

Statement 1: The first and second types of
Horner's functions of » variables are threshold
functions with the same vectors of input weights
w={w,w,,,.,wm} differing only in their
threshold values.

It is easy to find, directly applying De Morgan’s
theorem, that Horner's functions of the first and the
second type are dual®, i.e. H,(n)=H; (n).

For any threshold function

f(X) = Sign(ijlexj _77) '
the following is true:
m = Sign(— ijxj +n —1}
J=1

and

fd(X)=ﬁ=5ign(—iw,(1—x,.)+n—1j=

Sign{i WX, — (i w,—n+ 1}}
j=1 j=1

that proves the Statement 1.

Statement 2: Input weights of a threshold
functions represented by Horner's scheme form the
Fibonacci sequence.

It follows directly from the minimum form for
Horner's functions that
w, =1 (”) =1, (n _1) =W, tW,5,
where 7,(n) and 7,(n) are thresholds for Horner's
functions of » variables of the first and the second
type, respectively. Solving the difference equation
with the initial conditions w, =w, =1, we get

_1 1+\/§ n+l 1_\/§ n+1.
"cE Tz ) Uz ) |

_f(X) and
(X)) =9(X).

6

Functions go(X) are called dual, if

ISSN: 1109-2734

389

V. Varshavsky, V. Marakhovsky, H. Saito

771(”) :Wn; 772(”) :Wn+l; ij :Wn+l_1'
j=1

At first glance, Horner's functions look like
functions of » variables with extreme parameters
(sum of input weights, threshold, etc.). However,
this is not so, as it is possible to see from simple
examples. Already for fore variables there is a
threshold function

X, X, %, V (X, VX)X, = 22)
Sign(x, +2x, +2x, +3x, —5)
with the sum of input weights greater than that of
Horner's functions. From the function dual to (22),
by deleting inversions of variables and multiplying
it by x. the next function is derived
(36,5 v (X, VX, VX)X, )X = (23)
Sign(x, +2x, +2x, +3x, +5x; - 9).
This function has a threshold greater than that of
the second type Horner's function of five variables.
However, both functions (22) and (23) have
bearing learning sequences of the length equal to
n+3. Note that for values within practical interest of
maximum input weights, thresholds, and sums of
input weights (100-1000), Horner's functions are an
excellent example of test functions.

Finally, the following Horner’s functions can be
recommended as test functions with the shortest
learning sequences:

Y, = Sign(x, +x, + 2x, + 3x, +5x, +8x, +13x, +
21x, —21);

Y, = Sign(x, + x, + 2x, + 3x, + 5x, +8x, +13x, +
21x, +34x, —34);

Y, = Sign(x, + x, +2x, +3x, +5x; +8x, +13x, +

21x, +34x, +55x,, —55);

Y, = Sign(x, +x, +2x, + 3x, +5x, +8x, +

13x, + 21x, + 34x, +55x,, +89x,, —89);

Y, = Sign(x, + x, + 2x, + 3x, +5x; +8x, +13x, +
21x, +34x, +55x,, +89x,, +144x,, —144);
Y,, = Sign(x, + x, + 2x, + 3x, +5x, +8x, +13x, +
21x, + 34x, +55x,, +89x,, +144x,, +233x,, — 233).
Table 3 contains bearing sets 7, and F,; for
functions Y;. In this table, combinations of variable
Leyxypenx, }

. . 2 i
equivalents of binary numbers ijlx]zf '

values correspond to decimal
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Table 3: Bearing sets for Horner's functions of the first type

n To Fo
8(85,86,88,96,128 63,79,83,84
9|171,172,176,192,256 127,159,167,169,170

10|341,342,344,352,384,512 255,319,335,339,340

11|683,684,688,704,768,1024

511,639,671,679,681,682

12|1365,1366,1368,1376,1408,1536,2048

1023,1279,1343,1359,1363,1364

13|2731,2732,2736,2752,2816,3072,4096

2047,2559,2687,2719,2727,2729,2730

5 Conclusion

The proposed LTE has many attractive features. It
is simple for hardware implementation in CMOS
technology. Its p-comparator has very high
sensitivity to current changes; this makes it possible
to obtain the smallest voltage leap at the
comparator output equal to 1V when the threshold
of the realized function is 89 and to 325mV, if the
threshold is 233. The implementability does not
depend on the sum of input weights and is
determined only by the function threshold. Such an
LTE can perform very complicated functions, for
example, logical threshold functions of 12
variables. The experiments confirm this result for
functions of 10 variables. Moreover, during LTE
learning all dispersions of technological and
functional parameters of the LTE circuit are
compensated.

For enhancement of functional abilities a new
circuit of the LTE synapse has been proposed,
which gives to LTE the opportunity to have both
excitatory and inhibitory inputs. The LTE with
such synapses can be taught arbitrary threshold
function of some number of variables in the case
when it is not known beforehand which inputs are
inhibitory and which are excitatory. An on-chip
learning procedure, which allows the LTE to learn
arbitrary threshold functions of 10 or less variables,
has also been proposed. The solution is based on
the well-known fact that any Boolean function of »
variables can be represented as an isotonous
function of 2n variables (x;and x;). The circuit

in Fig.23 realizes this idea in the pure form. The
function looks like

y= Sign(ijxj + Zvj)_c/. -T)=
=1 =1

Rt(za/x/ +Zb/~3/)
Jj=1 j=1
where, if a; #0, then b; =0 and vice versa.

The ability to determine the type of logical
variable inputs during the learning increases the
number of realizable functions by 2" times
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compared with the isotonous LTE implementation
(n is the number of variables).

We believe that the proposed LTE and its
learning procedure can be very useful in many
important applications including development of
actual artificial neurons. The functional power of
neurochips depends not only on the number of
neurons that can be placed on one VLSI, but also
on functional possibilities of a single neuron. It is
evident that extending functional possibilities of a
neuron is the prior aim when creating new
neurochips, particularly in the case of a neuron
implementation as a digital/analog circuit.

The main drawback of the proposed LTE is the
high stability requirements for the supply voltage.
This drawback appears to be peculiar to all circuits
with high resolution, for example, digital-analog
and analog-digital converters. It is natural to
assume that rather slow changes of the supply
voltage (with periods of not less than tens
milliseconds) will be compensated during learning
and refreshing. Its rapid changes can cause the loss
of learned information. It would be reasonable to
study the possibility of compensating the
operational LTE parameters using circuit facilities.

Somebody can note that PSPICE simulations
was oriented to very old CMOS technology of
0.8um. Frankly speaking it does not matter what
technology to use. We used old technology because
of the problems stated in the paper have been
studding during 15 years. There is no doubt that all
simulations can be repeated for new technologies
oriented on digital/analog  implementations.
Unfortunately submicron technologies are not
appropriate because of big values of leakage
currents.
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