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Abstract: - This paper offers a new methodology for designing in CMOS technology analog-digital artificial 
neurons training on arbitrary logical threshold functions of some number of variables.  The problems of 
functional ability, implementability restrictions, noise stability, and refreshment of the learned state are 
formulated and solved. Some functional problems in experiments on teaching logical functions to an artificial 
neuron are considered. Recommendations are given on selecting testing functions and generating teaching 
sequences. All results in the paper are obtained using SPICE simulation. For simulation experiments with 
analog/digital CMOS circuits, transistor models MOSIS BSIM3v3.1, 0.8µm, level 7 are used. 
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1 Introduction 
Hardware implementation of an artificial neuron has 
a number of well-known advantages over software 
implementation [1–5]. The hardware 
implementation of an artificial neuron can take the 
form of either a special purpose programmable 
controller or digital/analog circuit (device). Each 
type of implementations has its advantages, 
drawbacks, and fields of application. Although 
analog/digital implementation has the advantage of 
high performance, there are rigid limitations on the 
class of realizable threshold functions due to its 
analog nature. These limitations considerably 
decrease the functional possibilities of neural nets 
that have a fixed number of neurons.  

 The functional power of a neurochip depends 
equally on the number of neurons that can be placed 
on one VLSI and the functional possibilities of a 
single neuron. Unfortunately, the effects of these 
parameters on the functional power of the neurochip 
have not been studied. However, before creating 
new neurochips, it is necessary to decrease the 
area/synapse and extend the functional possibilities 
of a neuron.   

 In [6, 7], a new type of threshold element (β-
driven threshold element, β-DTE) was offered that 

required one transistor per logical input. Its circuit 
was based on representing a threshold function in 
ratio form. In [8–11], a CMOS learnable neuron was 
proposed on the base of β-DTE that consisted of 
synapses, a β-comparator, and an output amplifier.  
The learnable synapse of this neuron had five 
transistors and one capacitor. The neuron had one 
remarkable property: its implementability depended 
only on the threshold value and not on the number 
of logical inputs or their weights. This fact coupled 
with its relatively low complexity made this neuron 
very attractive for use in the next generation of 
digital-analog neurochips.  

 An artificial neuron designed for implementation 
of logical threshold functions it is more correctly 
called a learnable threshold element (LTE). During 
learning, this device creates analog weights for 
binary (digital) input variables. Obviously, an actual 
artificial neuron can be constructed based on LTE. 

 The goal of this paper is to improve the LTE 
circuit in terms of its learnability for complicated 
logical threshold functions (with a large value of the 
minimum threshold), noise-stability, and ability to 
maintain the learned state for a long time.  

 When the function threshold is high, the noise-
stability becomes especially important. It is 
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Fig. 11  General scheme for experiments. 

its output F either the signal Y (when teaching) or 
the output signal midF  (when refreshing). The 
comparator produces the signals "decrement" and 
"increment."   Passive values of these signals are 
equal to "0" and "1" respectively. Their logical 
description looks like 

Decrement = highFY ⋅  and Increment = lowFY ∨  
when teaching; 

Decrement = highmid FF ⋅  and Increment = 

lowmid FF ∨  when refreshing. 
Physically, these signals are realized with limited 
amplitude and duration, determining the learning 
step. 

 In experiments with LTE learning, there is an 
acute problem in selecting threshold functions for 
teaching, which determines simulation time. The 
duration of experiments is very important because it 
is often measured in hours and even days. A 
threshold function for teaching should have: 
– a short sequence of variable combinations 
checking all possible switches of the function value, 
–  a wide range of variable weights, and 
– a high threshold value for a given number of 
variables. 

 This problem will be investigated in greater detail 
in the final section of the paper. It will be shown 
that a function that can be represented by the 
Horner's scheme (...)))(( 4321 −−−− ∨∨ nnnnn xxxxx , 
satisfies these requirements. For such functions, the 
sequence of integer values of variable weights and 
threshold with minimum sum forms the Fibonacci 
sequence. The length of the checking sequence is n 
+ 1 for the Horner's function of n variables. 

 
 

2.4  SPICE Simulation Results of LTD    
       Learning 
Two series of experiments on LTE teaching for 
given threshold functions are described here. 

 The goal of the first series was to show the 
necessity of using a threshold hysteresis when 
teaching the LTE and when providing the auto-
support to the LTE state after the LTE is taught. The 

threshold hysteresis can be obtained using three 
output amplifiers whose characteristics have 
different thresholds as shown in Fig.12.  

 

 
Fig. 12  Static characteristics of the output 

amplifiers. 
 

 When the movement to the threshold is from the 
left, the higher value of the threshold is used for 
learning; when from the right, the LTE learns to the 
lower value. This leads to stretching out the 
minimum leap outVΔmin  of the β-comparator output 
voltage in the threshold zone and to automatic 
positioning of the output amplifier threshold with 
the middle value midF  into the middle of this leap. 
Obviously, the hysteresis width should not exceed 

outVΔminmax , which is defined by the parameters of 
the p-channel part of the β-comparator and by the 
minimum value minT  of the logical function 
threshold: )/(minmax minminmax TIIfV compout ==Δ  
where compI  is the comparator current in the 
threshold zone and minmaxI  is the maximum current 
of the synapse with the smallest weight. 

 For the teaching, Horner's function of seven 
variables was chosen: 

;
)))(((

1357235745767

12345677

xxxxxxxxxxxxx
xxxxxxxY

∨∨∨
=∨∨∨=

 

.
))((

1246346567

12345677

xxxxxxxxxx
xxxxxxxY

∨∨∨
=∨∨∨=

            (8) 

From all its possible representations in the form 
)( 7

17 ∑ =
−= j jj TxwSignY  with integer values of 

weights and threshold, the representation 

)21138               
532(

76

543217

−++
++++=

xx
xxxxxSignY

            (9) 

is the optimum by the criterion of 

∑ =
=+7

1 54)min( j j Tw . For this representation, 

21min =T . 
 The checking sequence for this function contains 

eight combinations. Their order is chosen such that 
the sequence of the corresponding function values 
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of realizable threshold functions because the 
implementability of LTE depends only on the 
threshold value and does not depend on the sum of 
the input weights or number of synapses. On the 
contrary, incorporating extra inverse inputs 
increases the number of realizable threshold 
functions of n variables by 2n times. 

  Let in a certain isotonous threshold function 
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)( ω  some variables Yxi ∈  be inverted 
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where Tw jj /=ω  . It is easy to see from (14) that 
the use of negative weights can be reduced to 
inverting the variables and vice versa. The 
normalized threshold of a function represented by 
Rt-formula with negative weights is equal to 
∑ ∈

−
Yx ii
ω1 . 

 The circuit of a neuron synapse capable of 
forming both positive and negative weights of an 
input variable is made of two simple synapses as 
shown in Fig.19.  

 
Fig. 19 Synapse forming positive and negative 

weights of the input variable. 

    It is easy to see that the LTE with such synapses 
realizes the threshold function 
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where ja  and jb  are weights brought to the 
threshold. They are defined by voltages on the 
capacitors 1C  and 2C  for  jx  and jx , respectively. 
     On the other hand, for the case of doubling the 
synapses number, it follows from (14) that the 
threshold function realized by the LTE must be  
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(to maintain the limitations on weights and 
thresholds). 

 It is easy to see that if in every pair ),( jj ba  one of 
the weights is equal to zero, then expressions (15) 
and (16) coincide and have the form:  

.
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 It follows from the above that when teaching an 
LTE with such synapses it is desirable to change the 
input weights ),( jj ba  in such a way that one of the 
weights in each pair goes to zero. Moreover, as it 
will be shown below, this condition provides the 
maximum level of LTE implementability. 

 It is difficult to conclude from (15) and (16) that 
synaptic weights affect the neuron implementability. 
Let us look at how the β-comparator operates 
(Fig.6). The sizes of p-transistors and reference 
voltages 2refV  and 3refV  determine the current thI  
when the output voltage of the β-comparator is 
equal to the output amplifier threshold. As a first 
approximation, the smallest change of the current is 

TII th /0 =  and 0kIVout =Δ  where k is the steepness 
of the β-comparator voltage-current characteristic at 
the threshold of the output amplifier. However, if 

0≠ja  and 0≠jb  , then via each j-th synapse an 
additional current flows that is determined by 

),min( jj ba  . Thus, the approximate value of the 
smallest current can be obtained from the equation 

∑−=
j

jj
th baI

T
II ),min(00  

and 

∑+
=

j jj

th

baT
II

)),min(1(0 .                  (18) 

It follows from (18) that if the value of outVΔ is 
fixed, the largest realizable threshold depends on 

),min( jj ba  as    

∑+Δ
≤

j jjout
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baV
kIT

)),min(1(
.               (19) 
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width provides the current 0.15uA through n-
channel transistors of minimum width (1.2u) 
controlled by the signal ndecr _ . 

 Two additional “Decrement” signals ( nnincr _  
and nndecr _ ) are used when teaching the LTE 
synapses input weight signs. Each of them creates 
an additional force that pulls down voltages of the 
synapse capacitors corresponding to ),min( jj ba  up 
to the ground potential during LTE learning. The 
signal nnincr _  is alternative to the signal pincr _
and has the logical function 

tFFtFFnnincr lowlow ∨⋅=⋅⋅=_  
that is implemented on gates G2, G5, and transistors 
M15 – M20. The last stage of the implementation is 
analogous to the last stage of the signal ndecr _ . 
The transistor M20 of 21.5u width provides current 
81.6nA through n-channel transistors of minimum 
width (1.2u) controlled by the signal nnincr _ . 
     The signal nndecr _  is alternative to the signal 

ndecr _ and has one additional restriction: if during 
the strobe-signal "1Log."=t the signal =ndecr _  
”Log.1” is finished, the signal =nndecr _  “Log.1” 
cannot be produced. The function of the signal 

nndecr _  is defined as 
Q_ ⋅⋅⋅= tFFnndecr high  

where Q  is output of the latch keeping the value of 
the signal ndecr _ up to the end of the strobe signal. 
In Fig.21 the latch Q  is constructed from gates G8, 
G9 and has excitation functions 

.   ; FtRFtFS high ∨=∨⋅=  
The signal nndecr _ is implemented as 

Q_ ⋅⋅∨⋅∨= highFFtFtnndecr  
on gates G3, G4, G6, G7, and transistors M21 – M26. 
The last stage of the implementation is the same as 
in the realisation of the signal ndecr _ . The 
transistor M26 of the current mirror with 11u width 
provides current 0.16uA through n-channel 
transistors of minimum width (1.2u) controlled by 
the signal nndecr _ . 

 The LTE itself consists of β-comparator with 
output amplifiers and synapses. The schematic of 
the β-comparator is presented in Fig.22.  
 In this figure, all parameters of transistors and 
values of reference voltages are pointed out. All 
amplifiers are constructed as a serial connection of 
three inverters. The amplifier with the output midF  
has a threshold equal to 2.7V. The thresholds of  

 
Fig.22  Schematic of the β-comparator with output 

amplifiers. 
 

amplifiers with outputs lowF  and highF  are equal to 
2.3V and 3.15V respectively. Thus, the width of 
threshold hysteresis is 850mV. 
    The full synapse circuit of the LTE learnable for 
arbitrary threshold functions is introduced in Fig.23. 
It is constructed on the basis of the synapse circuit 
in Fig.19. Voltages 1CV and 2CV  on the capacitors 
control the synapse currents flowing through pairs 
of transistors (M5, M21) or (M6, M22). The circuit has 
two input logical variables x and x . The variable x  
can be derived with the help of an inverter. The 
voltages on the capacitors C1 and C2 correspond to 
the positive “a” and negative “b” weights 
respectively. If  thC VV <1  or thC VV <2   (here  thV  is 
the threshold voltage of n-channel transistors), it 
means that  0=a  or 0=b  because the 
corresponding transistor pair will be closed.  

 The signals pincr _  and ndecr _  increase and 
decrease the capacitor voltages through pairs of 
transistors (M1, M3), (M2, M4) and (M7, M23), (M8, 
M24) respectively depending on the value of input 
variables (x, x ).  
    Two pseudo n-MOS inverters on transistor pairs 
(M29, M39) and (M30, M40) are sensitive elements of 
capacitor voltages close to thV . Voltage =4refV  
3.9V fixes the conductivity of their p-channel 
transistors. Output signals G1 and G2 of these 
elements control the conductivity of two pairs of 
transistors (M15, M17) and (M16, M18) respectively. 
Transistors of each pare can pass currents only  
when the voltage on the corresponding capacitor (

1CV  or 2CV ) exceeds 675mV.  Two inverters (M31, 
M41 and M32, M42) with outputs G3 and G4 invert the 
signals G1 and G2. Signals G3 and G4 control 
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Fig. 23  The LTE Synapse implementation. 

 
transistors M9 and M10, each of which opens when 
the voltage of  the corresponding capacitor ( 1CV or 

2CV ) exceeds 635mV. Difference between these 
threshold voltages (675–635=40mV) is very 
important because it provide correct learning 
behaviour of synaptic weights in the region close to 
the threshold of n-channel transistors.  
    Signals G3 and G4 also write information about 
the sign of the synaptic weight in the latch (outputs 
Q and  Q ) on transistors M33 – M38, M43, M44. The 
latch keeps information when voltages of both 
signals G3 and G4 exceed the threshold of the latch 
inputs. When Q=Log.1, the weight sign is positive. 
If Q = Log.0, the sign is negative. 
    Signals G1 – G4, nndecr _ , nnincr _ , the latch 
Q, and input variables ( xx  , ) control the 
conductivity of additional decrement chains for 
each capacitor. For the capacitor C1, these chains 
are described by the expression 

)MMM(MMMMMM 26172719132315119 ∨∨ . 
For the capacitor C2 the expression for chains is  

)MMM(MMMMMM 251828201424161210 ∨∨ . 
It should be noted that transistors M27, M28 cannot 
be replaced by transistors M23, M24 because of 

appearance of parasitic dependency between 
voltages 1CV and 2CV through parasitic capacitances 
of these transistors. 

 The initial setting signal is  controls the 
transistors M45 and M46, which serve only for the 
initial setting of the voltages on the capacitors C1 
and C2.  

 During learning, the synapse works in the 
following way. Let us suppose that initially 

thC VV <1  and thC VV >2 . Then the signals G1 and G2 
will be equal to “Log.1” and “Log.0” respectively 
and the latch Q will be in the state Q = Log.0 
(negative weight sign). There are two cases. 

 First, the sign of the input variable weight is 
negative, i.e., it coincides with the state of the latch. 
In this case the signals nnincr _  and nndecr _  
pull together the voltage 1CV  to 0V by the chain 
(M9, M11, M15, M23) and by the chain (M13, M17, 
M26) respectively. At the same time the signals 

pincr _  and ndecr _  try to set the voltage 2CV  
corresponding to the weight of the input variable x . 
    Second, the sign of the input variable weight is 
positive, i.e., it does not coincide with the state of 
the latch. In this case, the learning sequence will 
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provide that for the capacitor C1 increment steps 
caused by the signals pincr _  will prevail over 
decrement steps caused by the signals ndecr _ , 

nndecr _ , nnicr _  and the voltage 1CV  will grow. 
As soon, as 1CV  exceeds thV  the sensitive inverter 
(M29, M39) closes the transistors M15, M17 halting 
the action of the signals nndecr _ , nnicr _ by the 
additional chains. This inverter also switches the 
inverter (M31, M41), which, in its turn, opens the 
transistors M10 and M28 enabling action of the 
signals nndecr _  by the additional chain. After 
that, the voltage 1CV  continues to rise to the weight 
value and the signals ndecr _ , nndecr _  will pull 
down the voltage 2CV  by two chains: (M8, M24), 
and (M14, M20, M28).  

  As soon as the voltage 2CV reaches 675mV, the 
sensitive inverter (M30, M40) opens the transistors 
M16, M18 and, when mVVC 6352 = , switches the 
inverter (M32, M42), which, in its turn, closes the 
transistors M9 , M27 and switches the latch Q into 
the state Q = Log.1 (positive weight sign). Output 
signals of the latch close the transistor M20 and 
open the transistor M19. The difference in critical 
values of the voltage 2CV , which leads to switching 
the sensitive element (M30, M40) and the inverter 
(M32, M42), is very important because in this case 
switching of the latch only slightly changes the 
condition of the capacitor C2 discharging and the 
voltage 2CV  continues  decreasing down to ground 
potential due to opening the additional chain (M14, 
M18, M25) that partly compensates closing the chain 
(M14, M20, M28). 

 
  

3.3 Results of SPICE Simulation 
All experiments on teaching of the LTE to non-
isotonous (antitonous) threshold functions were 
conducted for functions obtained by inverting some 
variables in the isotonous threshold Horner's 
function (10) of 10 variables. Below the results of 
SPICE simulating LTE learning are presented for 
only two test-functions: for the isotonous function 
(10) and for the non-isotonous function 
(antitonous) derived from (10) by inverting 
variables with even indexes  

         
;         1246810346810

56810781091010

xxxxxxxxxxx
xxxxxxxxxY

∨
∨∨∨=

 

.        1357923579

4579679891010

xxxxxxxxxx
xxxxxxxxxxY

∨
∨∨∨∨=

      (20) 

Another form of the function (20) representation is 

).34553421138
532(

109876

5432110

−+−+−
+−+−+−=

xxxxx
xxxxxSignY

      (21) 

 The checking sequence for these two functions is 
represented in Fig.15. In experiments, the duration 
of keeping one combination is 200ns and the 
checking sequence takes 2.4us.  The learning 
sequence is cyclically repeated checking sequence. 

 Fig.24 shows the LTE learning process for the 
function (10) starting from the initial state, in which 

V021 == CС VV  for all synapses. In this figure, 
designations jVΔ  of curves denote voltage 
difference 21 CC VV −  for the synapse of j-th variable. 

 

 
Fig. 24  The LTE learning of the function (10). 

 It is easy to see from Fig.24 that all curves reach 
stable states for the time equal to 0.44ms or for 183 
learning cycles and the weights of all variables are 
positive.  

 Fig.25 illustrates the process of LTE learning for 
the function (20) starting from the same initial 
state.  

 
Fig. 25  The LTE learning of the function (20). 

 It is possible to conclude, analyzing Fig.25, that 
this learning process has the same time parameters 
as the process in Fig.24. Signs of variable weights 
and their values are determined correctly: all even 
variables have positive weights and all weights of 
odd variables are negative. 
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 In Fig.26 the process of LTE learning of the 
function (10) is presented for one of the worst cases 
when from the initial state, in which all synaptic 
weights are the least negative ( V01 =CV ,  

V52 =CV ), the LTE is taught to all positive 
weights. 

 

 
Fig.26  The LTE learning of the function (10)  from  

the initial state of the least negative weights. 
 
The picture shows the correct result of the learning. 
The decision is found for 1.2ms (500 cycles). 

 Fig.27 illustrates the process of LTE learning of 
the function (20) from the initial state ( V01 =CV , 

V52 =CV ) for all synapses.   
 Analyzing Fig.25, it is possible to conclude, 

that this learning process is finished for 1.45ms 
(604 cycles). Signs of variable weights and 
their values are determined correctly: all odd 
variables have negative weights and all weights 
of even variables are positive. 
 

 
Fig.27  The LTE learning of the function (20) from 

the initial state of the least negative weights. 
 

For the proposed procedure of on-chip LTE 
learning for arbitrary threshold functions of some 
number of variables, it is not clear how to prove its 
convergence analytically. Sufficient SPICE-
simulation experiments have been done to establish 

that this learning procedure possesses of 
convergence from initial states ( V01 =CV , 

V02 =CV ), ( V01 =CV , V52 =CV ), ( V51 =CV , 
V02 =CV ),( V51 =CV , V52 =CV ), which may be 

different for different synapses. To provide the 
procedure convergence from these initial states it is 
necessary to chose very accurate current amplitudes 
of the signals nndecr _ and nnicr _ .    

 Nevertheless it is impossible to be sure that there 
is no an initial state, from which does not exist the 
algorithm convergence. By this reason it does not 
possible to confirm that, if the LTE is taught to 
realize some threshold function, using its state as 
initial, it can be repeatedly taught any other 
function. May be it is so, but this fact did not 
proved. 

 In any case, if accept the restriction that any 
learning process is started from the reasonable 
initial state ( V01 =CV , V02 =CV ), which is the 
same for all synapses, the accuracy diapason of 
setting for the signals nndecr _ , nnicr _ become 
much wider. 

 By this reason, it can be recommended after 
losing by the LTE of a learned state to do the initial 
setting of the LTE before new act of learning. 
 

 
4.  Some Functional Problems in  
     Experiments with LTE Learning 
Developing a hardware implementation (e.g. 
CMOS) of artificial neurons with critical 
parameters such as threshold value of realizable 
functions, number of inputs, values and sum of  
input weights is a difficult technical problem that 
nevertheless has to be solved [1-8]. While tasks of 
purely logical design can be solved more or less 
efficiently in an analytic way, tasks of physical 
design necessarily require computer simulation 
(e.g., SPICE simulation). Computer simulation can 
and must answer the following questions:  
− What are the limiting parameters of an artificial 
neuron of a certain type?   
− Are these parameters attainable during teaching? 

  A modern learnable artificial neuron, which is 
implemented as a hardware device and oriented to 
reproducing complicated threshold functions (sum 
of input weights and threshold >1000), is merely a 
sophisticated analog-digital device, whose 
maximum functional power is attained, in many 
cases, by using the effects of the second and even 
the third order transistor behaviour. This, in its turn, 
requires using models of higher levels (e.g. 
BSIM3v3.1). Therefore, the dependencies of 
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neuron behaviour on the synapse parameters are, 
generally speaking, non-linear. Because of this, the 
neuron for simulation should have a wide range of 
synaptic weights that covers all the range of values 
under consideration. This, in turn, requires that the 
neuron behaviour should be simulated under all 
necessary combinations of the input signals. It 
should also be taken into account that simulation 
results strongly (and sometimes crucially) depend 
on the parameters of the transistor model in usage. 
Hence, to get results with a certain level of 
generality, a number of simulations using different 
models (e.g., from different manufacturers) should 
be conducted. Thus, to get an answer to the 
question about the maximum functional power of 
the artificial neuron, serious experimental work is 
needed, the volume of which obviously depends 
linearly on the number of variable value 
combinations used in every experiment. 

 The existence of a number of neuron circuit 
parameters, which provide reproducing a threshold 
function of limiting complexity, does not mean that 
the voltages controlling the input weights and 
threshold for this function can be attained during 
the teaching. If a control voltage V can change in 
the interval maxmin VVV ≤≤  and maxw  is the 
maximum value of the corresponding input weight 
(or threshold), then maxminmax /)( wVVV −=Δ  is the 
value determining the required precision of 
teaching. Taking into account the possible non-
linearity of the dependence )(Vw  and necessity of 
compensating during teaching technological 
variations of transistor parameters (geometrical 
sizes, thresholds, etc.), the precision of setting the 
control voltages should be VkV Δ=δ  (k < 1). A 
teaching system can be considered as a complex 
non-linear analog-discrete control system with 
feedback delay. Its analytic study is very difficult, 
so again one arrives at the necessity of computer 
simulation as the basic tool of this research.  

  In order to provide the required precision, the 
increment of the voltage controlling the synaptic 
weight in one step of teaching (exposing one 
combination of variable values) should be Vδ≤ . 
Hence, to simulate the process of teaching the 
artificial neuron to reproduce a threshold function 
with 200100max ÷=w , every combination from the 
learning sequence should be exposed about 1000 or 
more times, regardless of selecting the teaching 
strategy. Because of this, SPICE simulation of the 
teaching process takes hours. Naturally, the 
duration of the simulation process linearly depends 
on the length of the learning sequence. 

  In order to obtain reasonable simulation time for 
highly complicated artificial neurons, the test tasks 
should be threshold functions with learning 
sequences of the minimum length and with fixed 
values of maxw . Values of input weights should 
cover all the value ranges as tightly as possible. 
Functions of this type are the subject of the section. 
Some results of threshold logic that have been 
known for several tens of years, at least as 
scientific folklore, will be used. 
 
 
4.1 Bearing Sets of Threshold Functions and 
Checking Sequences 
The geometrical model of threshold functions 

∑ =
−=

n

j jj xwSignY
1

)( η  is a separating hyperplane 

with the equation∑ =
=−

n

j jj xw
1

0η . If the 

combinations of variable values correspond to 
vertexes of a unit hypercube, the threshold function 
has the value "Log.1" on the vertices that have a 
positive distance from the separating hyperplane (T 
set) and the value "Log.0" on those whose distance 
from the separating hyperplane is negative (F set). 
Traditionally, the task of synthesizing a threshold 
element by given sets T and F is reduced to solving 
a linear programming task: 
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Note that the system of inequalities is redundant 
since some inequalities majorize others. 

 Without loss of generality, threshold functions 
with 0>jw  will be only discussed further. Such 
threshold functions correspond to isotonous 
Boolean functions (monotonous functions with 
only positive variables) and can be realized by 
neurons with only excitatory inputs. By definition, 
for monotonous functions )(Xf , from ij XX >  it 
follows that )()( ij XfXf ≥  where jX  and iX  are 
certain combinations of variable values. Or, for 
isotonous threshold functions 

∑∑
∈=∈=

−>−
ikjk Xx

kk
Xx

kk xwxw
11

ηη . 

  A monotonous Boolean function in a unit 
hypercube corresponds to a "star", i.e. a set of 
subcubes that have at least one common vertex 
(star vertex) [23]. For an isotonous function, the 
star vertex is }1,...,1,1{max =X ; for an antitonous 
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function (inversion of the isotonous one) –
}0,...,0,0{min =X . The vertex lying on the maximum 

diagonal of a subcube (at the maximum distance) 
from the top of the star will be referred to as a 
bearing vertex. The set of bearing vertices for star T 
will be called bearing set 0T  and for star F – 
bearing set 0F . It is easy to see that vertices 0TX ∈  
are the minimum and vertexes 0FX ∈  are the 
maximum in the respective subcubes. Hence, to 
solve the linear programming task, it is enough to 
use only the inequalities corresponding to the 
bearing sets.4 

A subcube of dimension m in an n-dimensional 
hypercube corresponds to a conjunction of range 

mn −  in the concise form of a Boolean function.5 
This conjunction determines the bearing vertex, 
namely: for the set 0T , coordinate jx  has the value 
"Log.l", if jx  appears in the conjunction and 
"Log.0" otherwise; for the set 0F , coordinate jx  has 
the value "Log.0", if jx  appears in the conjunction 
and "Log.l" otherwise. For example, for 7=n , 

1010010631 ⇔xxx , 01001016431 ⇔xxxx . Thus, the 
number of vertices in the sets 0T  and 0F is equal to 
the number of terms in the minimum Boolean 
forms of the threshold function and its inversion. 

 It obviously follows from above that, if the 
artificial neuron is taught to recognize bearing sets, 
it recognizes corresponding threshold function as 
well. A learning sequence that consists of input 
variable value combinations belonging to bearing 
sets will be referred to as a bearing learning 
sequence. The length of the bearing learning 
sequence can vary in a wide range: from 1+n  for 
the function )(

1∑ =
−=

n

j j nxSignY   up to 

)!2/()!2/(
!22 2/

nn
nC n

n
⋅

=  for the function 

)2/(
1∑ =

−=
n

j j nxSignY  with odd n. 

 
 

4.2  Test Functions 
The length of the test sequence as a function of the 
number of variables means nothing, if it is not 
correlated with complexity of the threshold 
function. A natural question arises about estimating 
threshold function complexity. For simulation 

                                                 
4 This result has been known in the threshold logics since the late 50's 
or early 60's, but it is difficult to give specific reference.  
5 For a monotonous function, the concise form coincides with the 
minimum form. 

tasks, which are discussed here, this complexity is 
associated with implementability of an artificial 
neuron. It varies depending on a circuit solution. 
For a ν-CMOS artificial neuron [3-5], its 
implementability and, hence, threshold function 
complexity estimation is determined by the sum of 
the input weights. For a β-driven artificial neuron 
[6-8], implementability and complexity are 
determined only by the threshold value. Keeping in 
mind these two types of complexity estimation for 
threshold functions, we will use two efficiency 
criteria for test functions, namely: η/)(1 nLC =  and 

∑ =
=

n

j jwnLC
12 /)(  where )(nL  is the length of the 

learning sequence in the number of bearing 
combinations. The lower the values of these 
criteria, the more efficient the function will be in 
teaching. 

 Let us start from a simple example considering 
two threshold functions: 
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Both functions have the same number of bearing 
combinations and 1)( += nnL . Since the threshold 
is the same for 1Y  and 2Y , both functions also have 
the same value of the first efficiency criteria 1C , 

nYCYC /11)()( 2111 +== . The only advantage of 

2Y  is that there is an input with the weight 1−n . 
At the same time nYC /11)( 12 += , 

)1/(1)2/1()( 22 −+= nYC . Since )()( 2212 YCYC > , 
2Y  is preferable as a test function; the question 

arises of whether it is possible to derive test 
functions with the highest efficiency for both 
criteria. 

 Let us consider Boolean functions that can be 
represented in Horner's scheme: 

...))(()( 43211 ∨∨∨= −−−− nnnnn xxxxxnH , 
(...)))(()( 43212 −−−− ∨∨= nnnnn xxxxxnH , 

and call them Horner's functions of the first and 
second type, respectively. Note that according to 
De Morgan's law, inverted functions of the first 
type are functions of the second type with respect 
to inverted variables, and vice versa, i.e., inverted 
functions of the second type are functions of the 
first type with respect to inverted variables. 
   

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS V. Varshavsky, V. Marakhovsky, H. Saito

ISSN: 1109-2734 388 Issue 4, Volume 8, April 2009



 Let  
)]([)]([ 0201 nFNnTN = , )]([)]([ 0102 nFNnTN =  

be the numbers of vertices in the bearing sets of 
Horner's functions of n variables of the first and the 
second type. It is easy to see that 

)1()( 21 −∨= nHxnH n  and )1()( 12 −= nHxnH n . 
Therefore,      

1)]1([)]([ 0101 +−= nFNnTN , 
)]1([)]([ 0101 −= nTNnFN  and 

11)1()( +=+−= nnLnL . 
Hence, a Horner's function of n variables has the 
shortest bearing learning sequence. 

Statement 1: The first and second types of 
Horner's functions of n variables are threshold 
functions with the same vectors of input weights 

},...,,{ 11 wwwW nn −=  differing only in their 
threshold values. 

 It is easy to find, directly applying De Morgan’s 
theorem, that Horner's functions of the first and the 
second type are dual6, i.e. )()( 21 nHnH d= . 

 For any threshold function  
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that proves the Statement 1. 
Statement 2: Input weights of a threshold 

functions represented by Horner's scheme form the 
Fibonacci sequence. 

 It follows directly from the minimum form for 
Horner's functions that 

2121 )1()( −− +=−== nnn wwnnw ηη  
where )(1 nη  and )(2 nη  are thresholds for Horner's 
functions of n variables of the first and the second 
type, respectively. Solving the difference equation 
with the initial conditions 121 == ww , we get 
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6 Functions )( Xf  and )( Xϕ  are called dual, if 
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 At first glance, Horner's functions look like 
functions of n variables with extreme parameters 
(sum of input weights, threshold, etc.). However, 
this is not so, as it is possible to see from simple 
examples. Already for fore variables there is a 
threshold function 
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             (22) 

with the sum of input weights greater than that of 
Horner's functions.  From the function dual to (22), 
by deleting inversions of variables and multiplying 
it by 5x  the next function is derived 
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       (23) 

This function has a threshold greater than that of 
the second type Horner's function of five variables. 
However, both functions (22) and (23) have 
bearing learning sequences of the length equal to 
n+3. Note that for values within practical interest of 
maximum input weights, thresholds, and sums of 
input weights (100-1000), Horner's functions are an 
excellent example of test functions. 

 Finally, the following Horner’s functions can be 
recommended as test functions with the shortest 
learning sequences:  
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    Table 3 contains bearing sets jT0  and jF0  for 
functions jY . In this table, combinations of variable 
values },...,,{ 21 nxxx  correspond to decimal 

equivalents of binary numbers 12

1
2 −

=∑ j
j jx .  
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 Table 3:  Bearing sets for Horner's functions of the first type 
n T0 F0 
 8 85,86,88,96,128 63,79,83,84 
 9 171,172,176,192,256 127,159,167,169,170 
10 341,342,344,352,384,512 255,319,335,339,340 
11 683,684,688,704,768,1024 511,639,671,679,681,682 
12 1365,1366,1368,1376,1408,1536,2048 1023,1279,1343,1359,1363,1364 
13 2731,2732,2736,2752,2816,3072,4096 2047,2559,2687,2719,2727,2729,2730

 
 
5  Conclusion 
The proposed LTE has many attractive features. It 
is simple for hardware implementation in CMOS 
technology. Its β-comparator has very high 
sensitivity to current changes; this makes it possible 
to obtain the smallest voltage leap at the 
comparator output equal to 1V when the threshold 
of the realized function is 89 and to 325mV, if the 
threshold is 233. The implementability does not 
depend on the sum of input weights and is 
determined only by the function threshold. Such an 
LTE can perform very complicated functions, for 
example, logical threshold functions of 12 
variables. The experiments confirm this result for 
functions of 10 variables. Moreover, during LTE 
learning all dispersions of technological and 
functional parameters of the LTE circuit are 
compensated.  
    For enhancement of functional abilities a new 
circuit of the LTE synapse has been proposed, 
which gives to LTE the opportunity to have both 
excitatory and inhibitory inputs. The LTE with 
such synapses can be taught arbitrary threshold 
function of some number of variables in the case 
when it is not known beforehand which inputs are 
inhibitory and which are excitatory. An on-chip 
learning procedure, which allows the LTE to learn 
arbitrary threshold functions of 10 or less variables, 
has also been proposed. The solution is based on 
the well-known fact that any Boolean function of n 
variables can be represented as an isotonous 
function of  2n variables ( jx and jx ).  The circuit 
in Fig.23 realizes this idea in the pure form. The 
function looks like 

∑ ∑
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where, if  0≠ja , then 0=jb   and vice versa. 
 The ability to determine the type of logical 

variable inputs during the learning increases the 
number of realizable functions by 2n times 

compared with the isotonous LTE implementation 
(n is the number of variables). 
    We believe that the proposed LTE and its 
learning procedure can be very useful in many 
important applications including development of 
actual artificial neurons. The functional power of 
neurochips depends not only on the number of 
neurons that can be placed on one VLSI, but also 
on functional possibilities of a single neuron. It is 
evident that extending functional possibilities of a 
neuron is the prior aim when creating new 
neurochips, particularly in the case of a neuron 
implementation as a digital/analog circuit. 

 The main drawback of the proposed LTE is the 
high stability requirements for the supply voltage. 
This drawback appears to be peculiar to all circuits 
with high resolution, for example, digital-analog 
and analog-digital converters. It is natural to 
assume that rather slow changes of the supply 
voltage (with periods of not less than tens 
milliseconds) will be compensated during learning 
and refreshing. Its rapid changes can cause the loss 
of learned information. It would be reasonable to 
study the possibility of compensating the 
operational LTE parameters using circuit facilities. 

 Somebody can note that PSPICE simulations 
was oriented to very old CMOS technology of 
0.8µm. Frankly speaking it does not matter what 
technology to use. We used old technology because 
of the problems stated in the paper have been 
studding during 15 years. There is no doubt that all 
simulations can be repeated for new technologies 
oriented on digital/analog implementations. 
Unfortunately submicron technologies are not 
appropriate because of big values of leakage 
currents.   
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