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Abstract: - This paper presents a parallel architecture for the solution of linear equations systems based on the 
Division Free Gaussian Elimination Method. This architecture was implemented in a Field Programmable Gate 
Array (FPGA). The division-free Gaussian elimination method was integrated in identical processors in a FPGA 
Spartan 3 of Xilinx. A top-down design was used. The proposed architecture can handle IEEE 754 single and 
double precision floating-point data and the architecture was implemented in 240 processors. Also, an algorithmic 
complexity of O(n2) was obtained using a n2 processors scheme that perform the solution of the linear equations. 
Moreover, the parallel division-free Gaussian elimination method, the architecture´s data distribution and the 
internal processor-element (PE) architecture are presented. Finally, this paper presents the obtained simulation 
results and synthesis of the modules designed in very high-speed integrated circuit hardware description 
language  (VHDL)  using 40 and 100 Mhz frequencies.  
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1 Introduction 
Linear systems are commonly found in many 
scientific fields, and they can range from a few to 
millions variables. Consequently, for large linear 
equation systems, the system solution involves long 
computational times. For this reason, parallel 
processing emerges as a good option for the solution 
of linear systems [1]. In the past years, many 
methods for the solution of linear system have been 
proposed. These methods present many advantages 
and drawbacks and the selection of the method rests 
in the problem to be solved [2]. The technological 
development in parallel processing, computer 
systems and electronic digital devices have evolved 
engineering. The design of new parallel 
architectures for the solution of engineering 
problems is becoming popular due to the advantages 
of parallel processing [3]. For instance, repetitive 
process can be executed simultaneously in order to 
reduce computational efforts. Therefore, the 
application of parallel techniques in methods for 
linear systems solutions can improve significantly 
its performance [5]-[7]. 
Recently, parallel processing has been applied for 
the solution of problems in image processing, finite 

element, mathematical algorithms and power 
electrical systems [9]. It is important to say that due 
to the behavior and mathematical modeling of some 
physical systems, its solution of can be parallelized 
[10, 11]. 
Section 2 presents the mathematical model of the 
one-step division-free Gaussian elimination method 
as well as its equations, conditions, algorithmic 
complexity and computational algorithm. The data 
distribution between processor elements (PEs) at 
each iteration is shown in Section 3. Section 4 
presents the proposed parallel architecture, named 
here Division-Free Parallel Architecture (DFPA). It 
also depicts the vertical and horizontal processing 
performed by PEs. The implementation in FPGA of 
the proposed architecture, the obtained simulations 
and synthesis of every module of the designed 
architecture is presented in Section 5. Section 6, 
shows the performed tests, obtained results and 
comparatives of the behavior of the proposed 
architecture against other architectures reported in 
the literature. Finally, Section 7 presents the 
conclusions. 
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2 One-Step Division-Free Bareiss 
Method 

Recently, many researches are focused in the design 
of parallel algorithms and parallel architectures which 
are square-root-free and division-free [1, 8,]. The 
main reason is that the division operation is time and 
space consuming. Moreover, the division operation 
presents numerical instability and a critical 
accumulative effect of roundoff error for large input 
matrices [8]-[9]. The characteristics of the one-step 
division-free method make it suitable for its 
implementation in an array of processors. Let a linear 
system of equations be given by. 

( ), 1 ,ijA a i j n= ≤ ≤ , 

( ), 1 , 1ijb a i n n j m= ≤ ≤ + ≤ ≤

 nmjniax ij −≤≤≤≤= 1,1),( . 

To solve Ax b= , the matrix A should be reduced to a 
diagonal form or a triangular form with subsequent 
back substitution.  

In general, the algorithm that reduces the matrix A to 
a diagonal form is more complex than the algorithm 
that reduces it to a triangular form. In this paper, the 
one-step division-free Gaussian elimination algorithm 
is used to reduce the matrix A to a diagonal form. 
The one-step division-free Gaussian elimination 
algorithm is described in (1).  
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At each iteration, it is possible to compute all the 2x2 
determinants at the same time. Consequently, 
computation of the determinants is given by nd where 
nd is the number of determinants to be computed in 
one iteration, n is the number of rows and m is the 
number of columns of matrix A. Equation (2) shows 
the algorithm complexity. 

 
nd n m= ⋅    (2) 

where O(n) is the algorithmic complexity for the 
number of determinants to compute in each 
iteration, n is the number of rows, m is the number 
of columns, and m = n+1; then: 

2nd n n= +    (3) 

Since the major exponent in (3) is 2n , the 
algorithmic complexity is O( 2n ). Data dependency 
exists in each iteration. Since iteration k+1 requires 
the data computed in the preceding iteration, the 
iteration k has to be previously computed. 
 

2.1 Proposed Architecture 
 
The proposed architecture consists in an array of 
processors distributed in a matrix form, where the 
number of PEs is 2n .  
A master processor is in charge of the data 
distribution between PEs. The master processor 
distributes the data that will be used for each PE 
during the first iteration. 
The PE performs sums and multiplications to 
compute a 2x2 determinant. The PEs require eight 
memory locations: the first four to store the four 
variables, the fifth and sixth location to store the 
multiplication results, the seventh position to store 
the sum and the eighth location to store the PE 
identification number. Each processor can be 
uniquely identified by its position onto the processor 
grid. 

 
Algorithm: One step division free method 
for (k=0; k<n; k++)     
      for (i=0; i<n; i++)  // Row 
         for (j=0;j<n+1; j++) // Column 
                if (k==i) 
                          D[i][j]=C[k][j]; 
                    else 
                          D[i][j]=(C[k][k]*C[i][j])-(C[i][k]*C[k][j]);  
                 end if 
          end for  
      end for  
      for ( p=0; p<n; p++)  // matrix C 
         for ( q=0;q<n+1; q++) 
               C[p][q]=D[p][q]; 
                      end  for  
       end  for  
end  for   //end program 

3 Data distribution 
The first task needed to perform the algorithm is the 
data distribution. The data is send to each processor; 
therefore the processor can perform its internal 
operations. The master processor sequentially sends 
the data to the first n processors. 
The number of the executed iteration is considering 
as the position of the processor into the grid. 
Therefore, each processor computes the data 
according to its position. For instance, the processor 
P11 computes the element a11, the processor P12 
computes the element a12, and successively every 
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processor Pij computes its corresponding element 
ija . At the beginning of the algorithm, the data from 

the original matrix is taken as the input data for the 
iteration 0. Consider k as the number of iteration, i 
as the number of row and j as the number of 
column. The processors are distributed in a matrix 
form shown in Fig 1. 

 

 
Fig. 1. Distribution of the processor in matrix form. 
 
The data that correspond to the position is stored at 
each processor. For instance, the processor P11 store 
the element 11a , the processor P12 store the element 

12a , and successively. The master processor sends 
the input data to every processor. Fig. 2 shows the 
data distribution. 
 

 
Fig. 2. Data distribution of elements ija into the 

processors ijP . 
The elements 11 12 13 1, ,. ... na a a a  for the first iteration are 
exactly the same for the iteration 0. The first row of 
the new matrix corresponding to iteration 1 is equal 
to the first row of the original matrix; therefore, its 
computation is not required. These elements are 
stored in the master processor, one by one until 

reach the n elements. The element 11a is stored in its 
corresponding processor ijP  when k i≠ . If 

1k = then all the processors need the term 11a due to 
this element is used in the computation of all the 
determinants required for the computation of the 
new value in the next iteration of the algorithm. 
Moreover, this element is stored in all the processor 
in a single clock cycle. Fig. 3 shows this 
distribution. 
 

 
Fig. 3. Data distribution of the elements kka  into the 

processors ijP . 
For the rows a special condition has to be 
considered. Each processor needs the element that 
corresponds to the row number into the matrix and 
the current iteration. For instance, for row 2 and 
iteration 1, the element a21 is stored in all the 
processor located in row 2 of the matrix of 
processors. This special data distribution is shown in 
Fig. 4. 

 
Fig. 4. Data distribution in the rows of the matrix of 

processors. 
The columns also have a common data that is stored 
in all the processor located in the same column. For 
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example, for column 2 and iteration 1, the element 
12a  is stored in all the processors corresponding to 

that column number. This behavior is present in 
every column. Fig. 5 depicts this data distribution. 
 

 
Fig. 5. Data distribution in the columns of the 

architecture. 
 
The data distribution presented in this section is 
performed to compute the first iteration of the 
algorithm. The data stored in each processor is used 
to compute the determinants that produce the new 
input data required for the next iteration k+1. 

4 Parallel Architecture of the 
Processor  
 
This section presents the proposed architecture 
DFPA, based in the Bareiss method, for the solution 
of linear equations. Also, the vertical and horizontal 
processing into the array of PEs is described. The 
proposed architecture is composed by an array of 
PEs, each PE compute the Bareiss determinant 
defined in (1). The processors are arranged as a grid. 
Fig. 6, depicts the processor grid. 
 

 
 

Fig. 6. Matrix form of the grid of EPs. 
 
Every PE into the DFPA Architecture receives the 

Bareiss coefficients through the rows of the grid. The 
processor 1nPE  receives the coefficient ina  and 
successively for the rest of processors until the 
processor mnEP  receives the coefficient mna . These 
coefficients conforms the Bareiss determinant 
coefficients. Once the four coefficients are received 
in each PE the determinant is computed. This 
processing is performed in horizontal form as shown 
in Fig. 7.  
 

 
 

Fig. 7. Horizontal processing of the coefficients by 
rows. 

 
The coefficient 11a  is sent to every PE using the 
processor element 11EP . At first, this coefficient is 
sent in vertical form to every 1nEP , then each 
processor sends this coefficient in horizontal form to 
all the rows in the grid of PEs as shown in Fig. 8. The 
horizontal processing is used for the Bareiss 
determinant computation. After that, the result is sent 
to the others processors for the computation of the 
next iteration. 
 

 
 

Fig. 8. Processing of element 11a . 

 
Fig. 9 shows the vertical processing. Once the first 
determinant at each iteration is computed, the vertical 
processing is performed to compute and send the 
obtained results to the rest of processors in vertical 
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form. The vertical processing comprises of sending 
the first row 11 12 13, 1( , , ... )na a a a to the PEs arranged in 
the following rows on the processor grid. This 
procedure permits the Bareiss determinant of the next 
iteration to be constructed. 
 

 
 
Fig. 9. Vertical processing of the coefficients in the 

first row of the proposed architecture. 
 
A horizontal processing is performed to compute and 
send the first column coefficients 11 21 31, 1( , , ... )ma a a a  
to the rest of the PEs arranged in subsequent columns 
on the grid as shown in Fig. 10. This procedure 
completes the Bareiss determinant for iteration 1. 
 

 
 
Fig. 10. Horizontal processing of the coefficients in 

the first column of the proposed architecture. 
 

Fig. 11 depicts the allocation of the coefficients onto 
the PEs grid for any iteration. Also, it can be seen in 
the figure how the different determinants are 
conformed. 
A PE basically consists of a multiplier, an adder and 
an accumulator. The PE receives four 32-bits data to 
solve a Bareiss determinant performing two 
multiplications and a sum. Also, each received data is 
stored into a register in the internal memory of the 
processor. 

 

 
 

Fig. 11. EP processing for iteration n. 
 
Similarly, the multiplication results are stored into 
two registers and the sum result in another register. 
Consequently, each PE is composed of eight 
registers. In order to solve the linear equation system, 
the PEs need to communicate with their processor 
neighbors. Fig. 12 shows the internal blocks that 
compose a PE. 
  

 
 

Fig. 12. Processor Element. 
 

5 FPGA Implementation of the 
Proposed Architecture 
The synthesis of the designed modules of the 
proposed architecture (DFPA) can handle IEEE 754 
single and double precision floating-point data. The 
simulations were performed using the ModelSim 
6.3f software and VHDL language. Also, the VHDL 
language includes IEEE standard libraries for 
arithmetic operations and data conversion functions 
[9]. 
 
5.1. VHDL Simulations 
 
These libraries were used for the design of the 
modules presented in this section. The designed 
Processor diagram block is presented in Fig. 13. It 
can be observed that this processor is composed by 
the five modules described before.  
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Fig. 13. Processor diagram block. 

 
5.1.1. Adder/Subtractor Module 

 
The designed Adder can sum and/or subtract 
positive and negative double precision floating-
point numbers. In [8], a detailed description of 
floating-point numbers implemented in FPGAs is 
presented. Fig. 14(a) shows the simulation of the 
sum of two numbers in ModelSim 6.3f software. It 
can be seen in the figure the result and the time 
needed for the computation of the sum that, in this 
case, is 4,000 ns approximately. 
 
5.1.2. Multiplier Module 

 
This module computes the multiplication of two 
positive/negative numbers. This operation is 
required for the Bareiss determinant computation in 
the designed parallel architecture. This module 
requires two 32-bits single precision floating-point 
numbers to obtain a 64-bits double precision 
floating-point number as result. Fig. 14(b) shows the 
simulation of a 32-bits multiplication, its result and 
the execution time (1,500 ns). 
5.1.3 Memory Register Module 

 
The memory module is essential for the storage of 
the coefficients of the Bareiss determinant, the sum 
result and the multiplication result during the 
determinant computation. This module consists of 
eight 64-bits registers and is basically the processor 
memory of each PE. 
Fig. 14(c) shows the simulation of this module 
where a data is stored in a memory register in 1,325 
ns. 
 
5.1.4 Communication Module 

 
This module was designed for serial data 
transmission between processors. The PEs send and 
receive 64-bits data to perform mathematical 

operations. Also, the master processor sends an 
identification number to every PE. Fig. 14(d) shows 
that the transmission time for a 64-bits data is 6,300 
ns.  
 
5.1.5 Control Module 

 
This module manages the data transmission between 
processors. Each PE uses this module for the 
identification of neighbors to sending their results. 
The time needed for sending a control data is 100 
ns, as shown in Fig. 14(e). 
 
Table 1, shows the total execution time for the 2x2 
determinant computations per processor. The result 
is obtained in 21.7 µs. Since all determinants are 
computed simultaneously, the time needed for the 
execution of the Bareiss algorithm per iteration is 
21.7 µs multiplied by n. 
 

Table 1 
Times Measurements. 

 
Description Operations Time per 

operation 
(sec) 

Total time 
per 

operation 
(sec) 

Adder-subtractor 1 4000x10-9 4000x10-9 
Multiplier 2 1500x10-9 3000x10-9 
Memory registers 6 1500x10-9 9000 x10-9 
Data input/output 4 1325 x10-9 5300 x10-9 
Control 4 100x10-9 400x10-9 
Total Time   21700 x10-9 

 
5.2. FPGA implementation 
 
A FPGA device, also named LCA (Logic Cell 
Array) is used for the processing phase. The 
FPGA’s consist in a bidimentional matrix composed 
of configurable block that can be connected by 
general resources of interconnection [7, 9]. 
The synthesis of the architecture was developed in 
the Xilinx ISE 8.1i software for FPGAs of the 
Spartan 3 family of Xilinx, to obtain the number of 
Gates, IOBs, CLBs, Slices, Shift, Flip Flops, and 
LUTs. The connection diagrams between digital 
components with different abstraction levels were 
also obtained. 
In this section, the synthesis of the modules of 
proposed parallel architecture, based in the 
parallelization of the one-step division free Gaussian 
elimination, is presented. The modules were 
designed in VHDL language and simulated using 
the ModelSim 6.3f software. 
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(a) 

 

 
(b) 

 

 
(c) 

 

 
(d) 

 

 
(e) 

Fig. 14. (a) Adder/Subtractor simulation. (b) Multiplier simulation. (c) Data storage simulation. (d) Data 
transmission simulation. (e) Control module simulation. 
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The proposed architecture is composed by the 
following components or modules: 
 

• An adder-subtractor. 
• A multiplier. 
• A serial data input/output 
• Memory registers 
• Control 

 
Every processor has an ALU composed by an adder-
subtractor of 64 bits and a multiplier of 32 bits. 
Moreover, every processor contains a memory of 6 
registers of 64 bits, four registers to store the four 
elements needed to compute the 2x2 determinant, 
one register to store the resulting determinant and 
the final register stores the processor number. The 
data of every processor is sent sequentially. This 
task is performed by a component inside each 
processor. The master processor manages the data 
distribution between the processors by using a 
counter. All the modules were programmed in 
VHDL language and it includes standard IEEE 
libraries. In the simulations of the designed VHDL 
modules presented in this paper, a clock period of 
100 ns was considered. 

 5.2.1. Adder-subtractor 
 

The adder and the subtractor contained in the ALU 
of the processor are used for the computation of the 
determinant in (1). The adder is able to add and 
subtract negative and positive numbers in a range of 
0 to 264. Internally, this block is composed by an 
adder, a subtractor, a multiplexor, flip flops and 
logic stages. Fig. 15(a) depicts the formed block 
obtained from the synthesis of this module. It can be 
observed the inputs and outputs of the module. 

 

5.2.2. Multiplier 
 

The designed multiplier is able to multiply two 
positive or negative numbers. This module is 
important to the computation of the determinant. 
The multiplicand and the multiplier numbers can be 
32 bits number or a decimal number in the range of 
0 to 232, the result is a 64 bits number. This module 
is composed by flip flops type D, multipliers, 
CLB´s, and IO´s. The block corresponding to this 
module is shown in Fig. 15(b). 

 

5.2.3. Memory registers of 64 bits  
 

The memory registers of 64 bits are used for data 
storage. Every processor has eight registers that 
compose its memory. Only one register is fixed and 
it contains the processor number. The other registers 
store the data required in the computation of the 
determinant given in (1).  The block of this module 
is shown in Fig. 15(c). 
 

 

5.2.4 Serial data input/output 
 

This module performs the sending and reception of 
data between processors. This module sends and 
receives information in serial form. Data of 64 bits 
is sent and received for mathematical operations. 
Also, the processor number, that identifies each 
processor, is sent using this module. Fig. 15(d) 
shows the resulting block of the data input/output 
module. 

 

5.2.5 Data sending controller 
 

The master processor manages the data sending to 
every processor. First, the master processor sends a 
number of identification, called processor number, 
to every processor. Once all the processors have 
been identified, the master processor can send the 
elements required for the computation of the 
determinant. The data sending controller module 
was designed to identify each processor. The block 
of this module is shown in Fig. 15(e). The synthesis 
of the modules describes in this section are shown in 
Table 2. 
 

Table 2 
Number of components per Processor 

 
Module Total 

Gates 
CLB´s IOB´s Shift Mult 

18x18 
FF Lut 

4 
input 

Adder-
subtractor 765 32 193   64 64 
Multiplier 17829 56 129  4 64 111 
Memory 
registers 515  129   64  
Data 
input/output 267 2 4 4  1  
Control 756 42 12   33 47 
Total 
Components 

20132 132 467 4 4 226 222 
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Fig. 15. (a) Adder-subtractor block, (b) Multiplier block, (c) Memory register block, (d) Data input/output 
block, (e) Data sending controller block. 

 

6 Experimental results 
 

In this paper, a parallel architecture, named here 
Division-Free Parallel Architecture (DFPA), was 
designed. A comparison of the obtained results 
against the results reported in [12] is presented. In 
[12], a parallel architecture for linear equation 
solution using the LU algorithm, named here 
“Parallel LU” is described. This architecture uses a 
40 Mhz frequency for different matrix sizes. 
Table 3 shows a comparison of the obtained times 

of the DFPA against Parallel LU. An improvement 
factor is also presented. If this factor is greater than 
one, then the DFPA is better than the Parallel LU. 

Table 3 
Comparison DFPA vs Parallel LU 

 
Matrix DFPA (sec) Parallel LU  (sec) Improve 

24 1.36E-04 6.84E-04 5.02 
30 1.70E-04 1.41E-03 8.26 
36 2.04E-04 1.17E-03 5.73 
42 2.38E-04 1.66E-03 6.96 
48 2.72E-04 3.00E-03 11.02 
54 3.06E-04 4.89E-03 15.94 
96 5.45E-04 1.67E-02 30.58 
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Fig. 16 shows a plot of the results presented in 
Table 3, where DFPA shows a better performance 
than Parallel LU. 
 

 
 

Fig. 16. Comparison DFPA vs parallel LU 
 
Also, Fig. 17 shows the improvement factor of the 
DFPA against the architectures presented in [12]. It 
can be seen in the figure that DFPA is faster than 
the Parallel LU architecture. 
 

 
Fig. 17. Improvement DFPA vs parallel LU 

 
Moreover, the architecture presented in [13], named 
here “Pipeline LU”, was compared against the 
proposed architecture. Also, a comparison with the 
architecture Pipeline LU against a 1.6 Ghz Pentium 
M processor is presented in [13] and used in this 
paper for comparison purposes. Table 4 presents the 
comparison of computation time for matrices 
between 100 and 1000 equations. It can be seen in 
the table that the DFPA and Pipeline LU 
architectures use a 100 Mhz frequency. 
The comparison of the results presented in Table 4 
is depicted in Fig. 18. The graph clearly illustrates 
that the proposed DFPA architecture is faster than 
the Pipeline LU in the computation of the system 
solution. 
 
 
 

Table 4 
Comparison DFPA vs Pipelien LU (time ms) 

 

Matrix DFPA 
100  
Mhz 

Pipeline 
LU 100 

Mhz 
Pentium 

M 
(1.6 GHz) 

Improve 
vs 

Pentium 

Improve 
vs 

Pipeline 
LU 

100 0.227 0.46 9.11 40.13 2.03 
300 0.681 8.76 134.20 197.06 12.86 
500 1.14 40.50 661.00 579.82 35.53 
800 1.82 167.60 2984.50 1639.84 92.09 
1000 2.27 328.40 7871.50 3467.62 144.67 

 

Fig. 18. Comparison DFPA vs pipeline LU and 
Pentium M 

 
Also, Fig. 19 shows the improvement factor of the 
DFPA against the architectures presented in [10]. It 
can be seen in the figure that DFPA is faster than 
the Pentium M processor and the Pipeline LU 
architecture. In fact, it can be seen in Fig. 18 that for 
the solution of a system with 1000 equations, DFPA 
is 3,500 times faster than the Pentium M processor 
and 150 times faster than Pipeline LU 
approximately. 

 
 

Fig. 19. Improvenmet DFPA vs pipeline LU and 
Pentium M 

7 Conclusion 
 
During the revision of mathematical algorithms for 
the solution of linear equation systems, the methods 
that use division require a major processing time 
and its implementation in hardware produces 
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complex architectures. However, the division free 
method proposed by Bareiss [8] presented many 
advantages for parallelization. For this reason, this 
method was selected and it is the base of the 
proposed parallel architecture in a FPGA. 
The parallelization of the division free Gaussian 
elimination methods produces a simple independent 
process that can be implemented in identical 
processors and its hardware implementation is easily 
constructed by using basic algebraic operations. The 
obtained algorithmic complexity is O(n2) under a 
scheme of n2 processors that solve a linear equation 
system of n order. 
The performed simulations of the modules that 
compose a processor show a low time results in 
nano-seconds for this kind of computations. 
Finally, the construction of VHDL modules for 
digital systems and its simulation were developed 
by using the ModelSim 6.3f software, whereas the 
Xilinx ISE 8.1i software was used for the synthesis 
of the matricial processor. 
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