
Parallel Architecture for the Solution of Linear Equations Systems
Based on Division Free Gaussian Elimination Method Implemented in

FPGA

R. MARTINEZ, D. TORRES, M. MADRIGAL, S. MAXIMOV
Program of Graduated and Investigation in Electrical Engineering as the Morelia Institute Technology

Av. Tecnológico 1500, Col. Lomas de Santiaguito, Morelia, Michoacán

MEXICO
ruben.martinez08@cfe.gob.mx http://elec.itmorelia.edu.mx

Abstract: - This paper presents a parallel architecture for the solution of linear equations systems based on the
Division Free Gaussian Elimination Method. This architecture was implemented in a Field Programmable Gate
Array (FPGA). The division-free Gaussian elimination method was integrated in identical processors in a FPGA
Spartan 3 of Xilinx. A top-down design was used. The proposed architecture can handle IEEE 754 single and
double precision floating-point data and the architecture was implemented in 240 processors. Also, an algorithmic
complexity of O(n2) was obtained using a n2 processors scheme that perform the solution of the linear equations.
Moreover, the parallel division-free Gaussian elimination method, the architecture´s data distribution and the
internal processor-element (PE) architecture are presented. Finally, this paper presents the obtained simulation
results and synthesis of the modules designed in very high-speed integrated circuit hardware description
language (VHDL) using 40 and 100 Mhz frequencies.

Key-Words: - Field Programmable Gate Array (FPGA), Parallel Processing, Parallel Architectures, linear
systems equations, Division Free Gaussian elimination Method.

1 Introduction
Linear systems are commonly found in many
scientific fields, and they can range from a few to
millions variables. Consequently, for large linear
equation systems, the system solution involves long
computational times. For this reason, parallel
processing emerges as a good option for the solution
of linear systems [1]. In the past years, many
methods for the solution of linear system have been
proposed. These methods present many advantages
and drawbacks and the selection of the method rests
in the problem to be solved [2]. The technological
development in parallel processing, computer
systems and electronic digital devices have evolved
engineering. The design of new parallel
architectures for the solution of engineering
problems is becoming popular due to the advantages
of parallel processing [3]. For instance, repetitive
process can be executed simultaneously in order to
reduce computational efforts. Therefore, the
application of parallel techniques in methods for
linear systems solutions can improve significantly
its performance [5]-[7].
Recently, parallel processing has been applied for
the solution of problems in image processing, finite

element, mathematical algorithms and power
electrical systems [9]. It is important to say that due
to the behavior and mathematical modeling of some
physical systems, its solution of can be parallelized
[10, 11].
Section 2 presents the mathematical model of the
one-step division-free Gaussian elimination method
as well as its equations, conditions, algorithmic
complexity and computational algorithm. The data
distribution between processor elements (PEs) at
each iteration is shown in Section 3. Section 4
presents the proposed parallel architecture, named
here Division-Free Parallel Architecture (DFPA). It
also depicts the vertical and horizontal processing
performed by PEs. The implementation in FPGA of
the proposed architecture, the obtained simulations
and synthesis of every module of the designed
architecture is presented in Section 5. Section 6,
shows the performed tests, obtained results and
comparatives of the behavior of the proposed
architecture against other architectures reported in
the literature. Finally, Section 7 presents the
conclusions.

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS R. Martinez, D. Torres, M. Madrigal, S. Maximov

ISSN: 1109-2734 832 Issue 10, Volume 8, October 2009

2 One-Step Division-Free Bareiss
Method

Recently, many researches are focused in the design
of parallel algorithms and parallel architectures which
are square-root-free and division-free [1, 8,]. The
main reason is that the division operation is time and
space consuming. Moreover, the division operation
presents numerical instability and a critical
accumulative effect of roundoff error for large input
matrices [8]-[9]. The characteristics of the one-step
division-free method make it suitable for its
implementation in an array of processors. Let a linear
system of equations be given by.

(), 1 ,ijA a i j n= ≤ ≤ ,

(), 1 , 1ijb a i n n j m= ≤ ≤ + ≤ ≤

 nmjniax ij −≤≤≤≤= 1,1),(.

To solve Ax b= , the matrix A should be reduced to a
diagonal form or a triangular form with subsequent
back substitution.

In general, the algorithm that reduces the matrix A to
a diagonal form is more complex than the algorithm
that reduces it to a triangular form. In this paper, the
one-step division-free Gaussian elimination algorithm
is used to reduce the matrix A to a diagonal form.
The one-step division-free Gaussian elimination
algorithm is described in (1).

(0)

(1)

() (1) (1)

(1) (1)

, 1 , 1 ;

1 , 1 , ;

,

,

ij ij

k
ij

k k k
ij kk kj

k k
ik ij

a a i n j m

k n i n k j m

a if i k

a a a
otherwise

a a

−

− −

− −

= ≤ ≤ ≤ ≤

≤ ≤ ≤ ≤ ≤ ≤

⎧ =
⎪⎪= ⎨
⎪
⎪⎩

 (1)

At each iteration, it is possible to compute all the 2x2
determinants at the same time. Consequently,
computation of the determinants is given by nd where
nd is the number of determinants to be computed in
one iteration, n is the number of rows and m is the
number of columns of matrix A. Equation (2) shows
the algorithm complexity.

nd n m= ⋅ (2)

where O(n) is the algorithmic complexity for the
number of determinants to compute in each
iteration, n is the number of rows, m is the number
of columns, and m = n+1; then:

2nd n n= + (3)

Since the major exponent in (3) is 2n , the
algorithmic complexity is O(2n). Data dependency
exists in each iteration. Since iteration k+1 requires
the data computed in the preceding iteration, the
iteration k has to be previously computed.

2.1 Proposed Architecture

The proposed architecture consists in an array of
processors distributed in a matrix form, where the
number of PEs is 2n .
A master processor is in charge of the data
distribution between PEs. The master processor
distributes the data that will be used for each PE
during the first iteration.
The PE performs sums and multiplications to
compute a 2x2 determinant. The PEs require eight
memory locations: the first four to store the four
variables, the fifth and sixth location to store the
multiplication results, the seventh position to store
the sum and the eighth location to store the PE
identification number. Each processor can be
uniquely identified by its position onto the processor
grid.

Algorithm: One step division free method
for (k=0; k<n; k++)
 for (i=0; i<n; i++) // Row
 for (j=0;j<n+1; j++) // Column
 if (k==i)
 D[i][j]=C[k][j];
 else
 D[i][j]=(C[k][k]*C[i][j])-(C[i][k]*C[k][j]);
 end if
 end for
 end for
 for (p=0; p<n; p++) // matrix C
 for (q=0;q<n+1; q++)
 C[p][q]=D[p][q];
 end for
 end for
end for //end program

3 Data distribution
The first task needed to perform the algorithm is the
data distribution. The data is send to each processor;
therefore the processor can perform its internal
operations. The master processor sequentially sends
the data to the first n processors.
The number of the executed iteration is considering
as the position of the processor into the grid.
Therefore, each processor computes the data
according to its position. For instance, the processor
P11 computes the element a11, the processor P12
computes the element a12, and successively every

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS R. Martinez, D. Torres, M. Madrigal, S. Maximov

ISSN: 1109-2734 833 Issue 10, Volume 8, October 2009

processor Pij computes its corresponding element
ija . At the beginning of the algorithm, the data from

the original matrix is taken as the input data for the
iteration 0. Consider k as the number of iteration, i
as the number of row and j as the number of
column. The processors are distributed in a matrix
form shown in Fig 1.

Fig. 1. Distribution of the processor in matrix form.

The data that correspond to the position is stored at
each processor. For instance, the processor P11 store
the element 11a , the processor P12 store the element

12a , and successively. The master processor sends
the input data to every processor. Fig. 2 shows the
data distribution.

Fig. 2. Data distribution of elements ija into the

processors ijP .
The elements 11 12 13 1, ,. ... na a a a for the first iteration are
exactly the same for the iteration 0. The first row of
the new matrix corresponding to iteration 1 is equal
to the first row of the original matrix; therefore, its
computation is not required. These elements are
stored in the master processor, one by one until

reach the n elements. The element 11a is stored in its
corresponding processor ijP when k i≠ . If

1k = then all the processors need the term 11a due to
this element is used in the computation of all the
determinants required for the computation of the
new value in the next iteration of the algorithm.
Moreover, this element is stored in all the processor
in a single clock cycle. Fig. 3 shows this
distribution.

Fig. 3. Data distribution of the elements kka into the

processors ijP .
For the rows a special condition has to be
considered. Each processor needs the element that
corresponds to the row number into the matrix and
the current iteration. For instance, for row 2 and
iteration 1, the element a21 is stored in all the
processor located in row 2 of the matrix of
processors. This special data distribution is shown in
Fig. 4.

Fig. 4. Data distribution in the rows of the matrix of

processors.
The columns also have a common data that is stored
in all the processor located in the same column. For

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS R. Martinez, D. Torres, M. Madrigal, S. Maximov

ISSN: 1109-2734 834 Issue 10, Volume 8, October 2009

example, for column 2 and iteration 1, the element
12a is stored in all the processors corresponding to

that column number. This behavior is present in
every column. Fig. 5 depicts this data distribution.

Fig. 5. Data distribution in the columns of the

architecture.

The data distribution presented in this section is
performed to compute the first iteration of the
algorithm. The data stored in each processor is used
to compute the determinants that produce the new
input data required for the next iteration k+1.

4 Parallel Architecture of the
Processor

This section presents the proposed architecture
DFPA, based in the Bareiss method, for the solution
of linear equations. Also, the vertical and horizontal
processing into the array of PEs is described. The
proposed architecture is composed by an array of
PEs, each PE compute the Bareiss determinant
defined in (1). The processors are arranged as a grid.
Fig. 6, depicts the processor grid.

Fig. 6. Matrix form of the grid of EPs.

Every PE into the DFPA Architecture receives the

Bareiss coefficients through the rows of the grid. The
processor 1nPE receives the coefficient ina and
successively for the rest of processors until the
processor mnEP receives the coefficient mna . These
coefficients conforms the Bareiss determinant
coefficients. Once the four coefficients are received
in each PE the determinant is computed. This
processing is performed in horizontal form as shown
in Fig. 7.

Fig. 7. Horizontal processing of the coefficients by
rows.

The coefficient 11a is sent to every PE using the
processor element 11EP . At first, this coefficient is
sent in vertical form to every 1nEP , then each
processor sends this coefficient in horizontal form to
all the rows in the grid of PEs as shown in Fig. 8. The
horizontal processing is used for the Bareiss
determinant computation. After that, the result is sent
to the others processors for the computation of the
next iteration.

Fig. 8. Processing of element 11a .

Fig. 9 shows the vertical processing. Once the first
determinant at each iteration is computed, the vertical
processing is performed to compute and send the
obtained results to the rest of processors in vertical

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS R. Martinez, D. Torres, M. Madrigal, S. Maximov

ISSN: 1109-2734 835 Issue 10, Volume 8, October 2009

form. The vertical processing comprises of sending
the first row 11 12 13, 1(, , ...)na a a a to the PEs arranged in
the following rows on the processor grid. This
procedure permits the Bareiss determinant of the next
iteration to be constructed.

Fig. 9. Vertical processing of the coefficients in the

first row of the proposed architecture.

A horizontal processing is performed to compute and
send the first column coefficients 11 21 31, 1(, , ...)ma a a a
to the rest of the PEs arranged in subsequent columns
on the grid as shown in Fig. 10. This procedure
completes the Bareiss determinant for iteration 1.

Fig. 10. Horizontal processing of the coefficients in

the first column of the proposed architecture.

Fig. 11 depicts the allocation of the coefficients onto
the PEs grid for any iteration. Also, it can be seen in
the figure how the different determinants are
conformed.
A PE basically consists of a multiplier, an adder and
an accumulator. The PE receives four 32-bits data to
solve a Bareiss determinant performing two
multiplications and a sum. Also, each received data is
stored into a register in the internal memory of the
processor.

Fig. 11. EP processing for iteration n.

Similarly, the multiplication results are stored into
two registers and the sum result in another register.
Consequently, each PE is composed of eight
registers. In order to solve the linear equation system,
the PEs need to communicate with their processor
neighbors. Fig. 12 shows the internal blocks that
compose a PE.

Fig. 12. Processor Element.

5 FPGA Implementation of the
Proposed Architecture
The synthesis of the designed modules of the
proposed architecture (DFPA) can handle IEEE 754
single and double precision floating-point data. The
simulations were performed using the ModelSim
6.3f software and VHDL language. Also, the VHDL
language includes IEEE standard libraries for
arithmetic operations and data conversion functions
[9].

5.1. VHDL Simulations

These libraries were used for the design of the
modules presented in this section. The designed
Processor diagram block is presented in Fig. 13. It
can be observed that this processor is composed by
the five modules described before.

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS R. Martinez, D. Torres, M. Madrigal, S. Maximov

ISSN: 1109-2734 836 Issue 10, Volume 8, October 2009

Fig. 13. Processor diagram block.

5.1.1. Adder/Subtractor Module

The designed Adder can sum and/or subtract
positive and negative double precision floating-
point numbers. In [8], a detailed description of
floating-point numbers implemented in FPGAs is
presented. Fig. 14(a) shows the simulation of the
sum of two numbers in ModelSim 6.3f software. It
can be seen in the figure the result and the time
needed for the computation of the sum that, in this
case, is 4,000 ns approximately.

5.1.2. Multiplier Module

This module computes the multiplication of two
positive/negative numbers. This operation is
required for the Bareiss determinant computation in
the designed parallel architecture. This module
requires two 32-bits single precision floating-point
numbers to obtain a 64-bits double precision
floating-point number as result. Fig. 14(b) shows the
simulation of a 32-bits multiplication, its result and
the execution time (1,500 ns).
5.1.3 Memory Register Module

The memory module is essential for the storage of
the coefficients of the Bareiss determinant, the sum
result and the multiplication result during the
determinant computation. This module consists of
eight 64-bits registers and is basically the processor
memory of each PE.
Fig. 14(c) shows the simulation of this module
where a data is stored in a memory register in 1,325
ns.

5.1.4 Communication Module

This module was designed for serial data
transmission between processors. The PEs send and
receive 64-bits data to perform mathematical

operations. Also, the master processor sends an
identification number to every PE. Fig. 14(d) shows
that the transmission time for a 64-bits data is 6,300
ns.

5.1.5 Control Module

This module manages the data transmission between
processors. Each PE uses this module for the
identification of neighbors to sending their results.
The time needed for sending a control data is 100
ns, as shown in Fig. 14(e).

Table 1, shows the total execution time for the 2x2
determinant computations per processor. The result
is obtained in 21.7 µs. Since all determinants are
computed simultaneously, the time needed for the
execution of the Bareiss algorithm per iteration is
21.7 µs multiplied by n.

Table 1
Times Measurements.

Description Operations Time per

operation
(sec)

Total time
per

operation
(sec)

Adder-subtractor 1 4000x10-9 4000x10-9
Multiplier 2 1500x10-9 3000x10-9
Memory registers 6 1500x10-9 9000 x10-9
Data input/output 4 1325 x10-9 5300 x10-9
Control 4 100x10-9 400x10-9
Total Time 21700 x10-9

5.2. FPGA implementation

A FPGA device, also named LCA (Logic Cell
Array) is used for the processing phase. The
FPGA’s consist in a bidimentional matrix composed
of configurable block that can be connected by
general resources of interconnection [7, 9].
The synthesis of the architecture was developed in
the Xilinx ISE 8.1i software for FPGAs of the
Spartan 3 family of Xilinx, to obtain the number of
Gates, IOBs, CLBs, Slices, Shift, Flip Flops, and
LUTs. The connection diagrams between digital
components with different abstraction levels were
also obtained.
In this section, the synthesis of the modules of
proposed parallel architecture, based in the
parallelization of the one-step division free Gaussian
elimination, is presented. The modules were
designed in VHDL language and simulated using
the ModelSim 6.3f software.

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS R. Martinez, D. Torres, M. Madrigal, S. Maximov

ISSN: 1109-2734 837 Issue 10, Volume 8, October 2009

(a)

(b)

(c)

(d)

(e)

Fig. 14. (a) Adder/Subtractor simulation. (b) Multiplier simulation. (c) Data storage simulation. (d) Data
transmission simulation. (e) Control module simulation.

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS R. Martinez, D. Torres, M. Madrigal, S. Maximov

ISSN: 1109-2734 838 Issue 10, Volume 8, October 2009

The proposed architecture is composed by the
following components or modules:

• An adder-subtractor.
• A multiplier.
• A serial data input/output
• Memory registers
• Control

Every processor has an ALU composed by an adder-
subtractor of 64 bits and a multiplier of 32 bits.
Moreover, every processor contains a memory of 6
registers of 64 bits, four registers to store the four
elements needed to compute the 2x2 determinant,
one register to store the resulting determinant and
the final register stores the processor number. The
data of every processor is sent sequentially. This
task is performed by a component inside each
processor. The master processor manages the data
distribution between the processors by using a
counter. All the modules were programmed in
VHDL language and it includes standard IEEE
libraries. In the simulations of the designed VHDL
modules presented in this paper, a clock period of
100 ns was considered.

 5.2.1. Adder-subtractor

The adder and the subtractor contained in the ALU
of the processor are used for the computation of the
determinant in (1). The adder is able to add and
subtract negative and positive numbers in a range of
0 to 264. Internally, this block is composed by an
adder, a subtractor, a multiplexor, flip flops and
logic stages. Fig. 15(a) depicts the formed block
obtained from the synthesis of this module. It can be
observed the inputs and outputs of the module.

5.2.2. Multiplier

The designed multiplier is able to multiply two
positive or negative numbers. This module is
important to the computation of the determinant.
The multiplicand and the multiplier numbers can be
32 bits number or a decimal number in the range of
0 to 232, the result is a 64 bits number. This module
is composed by flip flops type D, multipliers,
CLB´s, and IO´s. The block corresponding to this
module is shown in Fig. 15(b).

5.2.3. Memory registers of 64 bits

The memory registers of 64 bits are used for data
storage. Every processor has eight registers that
compose its memory. Only one register is fixed and
it contains the processor number. The other registers
store the data required in the computation of the
determinant given in (1). The block of this module
is shown in Fig. 15(c).

5.2.4 Serial data input/output

This module performs the sending and reception of
data between processors. This module sends and
receives information in serial form. Data of 64 bits
is sent and received for mathematical operations.
Also, the processor number, that identifies each
processor, is sent using this module. Fig. 15(d)
shows the resulting block of the data input/output
module.

5.2.5 Data sending controller

The master processor manages the data sending to
every processor. First, the master processor sends a
number of identification, called processor number,
to every processor. Once all the processors have
been identified, the master processor can send the
elements required for the computation of the
determinant. The data sending controller module
was designed to identify each processor. The block
of this module is shown in Fig. 15(e). The synthesis
of the modules describes in this section are shown in
Table 2.

Table 2
Number of components per Processor

Module Total

Gates
CLB´s IOB´s Shift Mult

18x18
FF Lut

4
input

Adder-
subtractor 765 32 193 64 64
Multiplier 17829 56 129 4 64 111
Memory
registers 515 129 64
Data
input/output 267 2 4 4 1
Control 756 42 12 33 47
Total
Components

20132 132 467 4 4 226 222

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS R. Martinez, D. Torres, M. Madrigal, S. Maximov

ISSN: 1109-2734 839 Issue 10, Volume 8, October 2009

Fig. 15. (a) Adder-subtractor block, (b) Multiplier block, (c) Memory register block, (d) Data input/output
block, (e) Data sending controller block.

6 Experimental results

In this paper, a parallel architecture, named here
Division-Free Parallel Architecture (DFPA), was
designed. A comparison of the obtained results
against the results reported in [12] is presented. In
[12], a parallel architecture for linear equation
solution using the LU algorithm, named here
“Parallel LU” is described. This architecture uses a
40 Mhz frequency for different matrix sizes.
Table 3 shows a comparison of the obtained times

of the DFPA against Parallel LU. An improvement
factor is also presented. If this factor is greater than
one, then the DFPA is better than the Parallel LU.

Table 3
Comparison DFPA vs Parallel LU

Matrix DFPA (sec) Parallel LU (sec) Improve

24 1.36E-04 6.84E-04 5.02
30 1.70E-04 1.41E-03 8.26
36 2.04E-04 1.17E-03 5.73
42 2.38E-04 1.66E-03 6.96
48 2.72E-04 3.00E-03 11.02
54 3.06E-04 4.89E-03 15.94
96 5.45E-04 1.67E-02 30.58

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS R. Martinez, D. Torres, M. Madrigal, S. Maximov

ISSN: 1109-2734 840 Issue 10, Volume 8, October 2009

Fig. 16 shows a plot of the results presented in
Table 3, where DFPA shows a better performance
than Parallel LU.

Fig. 16. Comparison DFPA vs parallel LU

Also, Fig. 17 shows the improvement factor of the
DFPA against the architectures presented in [12]. It
can be seen in the figure that DFPA is faster than
the Parallel LU architecture.

Fig. 17. Improvement DFPA vs parallel LU

Moreover, the architecture presented in [13], named
here “Pipeline LU”, was compared against the
proposed architecture. Also, a comparison with the
architecture Pipeline LU against a 1.6 Ghz Pentium
M processor is presented in [13] and used in this
paper for comparison purposes. Table 4 presents the
comparison of computation time for matrices
between 100 and 1000 equations. It can be seen in
the table that the DFPA and Pipeline LU
architectures use a 100 Mhz frequency.
The comparison of the results presented in Table 4
is depicted in Fig. 18. The graph clearly illustrates
that the proposed DFPA architecture is faster than
the Pipeline LU in the computation of the system
solution.

Table 4
Comparison DFPA vs Pipelien LU (time ms)

Matrix DFPA
100
Mhz

Pipeline
LU 100

Mhz
Pentium

M
(1.6 GHz)

Improve
vs

Pentium

Improve
vs

Pipeline
LU

100 0.227 0.46 9.11 40.13 2.03
300 0.681 8.76 134.20 197.06 12.86
500 1.14 40.50 661.00 579.82 35.53
800 1.82 167.60 2984.50 1639.84 92.09
1000 2.27 328.40 7871.50 3467.62 144.67

Fig. 18. Comparison DFPA vs pipeline LU and
Pentium M

Also, Fig. 19 shows the improvement factor of the
DFPA against the architectures presented in [10]. It
can be seen in the figure that DFPA is faster than
the Pentium M processor and the Pipeline LU
architecture. In fact, it can be seen in Fig. 18 that for
the solution of a system with 1000 equations, DFPA
is 3,500 times faster than the Pentium M processor
and 150 times faster than Pipeline LU
approximately.

Fig. 19. Improvenmet DFPA vs pipeline LU and
Pentium M

7 Conclusion

During the revision of mathematical algorithms for
the solution of linear equation systems, the methods
that use division require a major processing time
and its implementation in hardware produces

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS R. Martinez, D. Torres, M. Madrigal, S. Maximov

ISSN: 1109-2734 841 Issue 10, Volume 8, October 2009

complex architectures. However, the division free
method proposed by Bareiss [8] presented many
advantages for parallelization. For this reason, this
method was selected and it is the base of the
proposed parallel architecture in a FPGA.
The parallelization of the division free Gaussian
elimination methods produces a simple independent
process that can be implemented in identical
processors and its hardware implementation is easily
constructed by using basic algebraic operations. The
obtained algorithmic complexity is O(n2) under a
scheme of n2 processors that solve a linear equation
system of n order.
The performed simulations of the modules that
compose a processor show a low time results in
nano-seconds for this kind of computations.
Finally, the construction of VHDL modules for
digital systems and its simulation were developed
by using the ModelSim 6.3f software, whereas the
Xilinx ISE 8.1i software was used for the synthesis
of the matricial processor.

References

[1] Shietung Peng, Stanislav Sedukhin, Parallel

Algorithm and Architecture for Two-step
Division-free Gaussian Elimination, IEEE
Transactions, 0-7803-4229-1/97, 1997, pp.
489-502.

[2] Fernando Pardo Carpio, Arquitecturas
Avanzadas, Universidad de Valencia, España,
Enero 2002.

[3] M. J. Beauchamp, Scott Hauck, Keith D.
Underwood and Scott Hemment, Arquitectural
Modifications to Enhance the Floating-Point
Performance of FPGA´s, IEEE Transactions
on VLSI Systems, Vol. 16 No. 2, February
2008, pp. 177-187.

[4] D. Torres, Herve Mathias, Hassan Rabah, and
Serge Weber, A new concept of a mono-
dimensional SIMD/MIMD parallel
architecture based in a Content Addressable
Memory, WSEAS, Transactions on Systems,
Issue 4, Volume 3, p. 1757-1762 ISSN 1109-
2777, 2004.

[5] Rubén Martínez Alonso, Domingo Torres
Lucio, Paralelización del Algoritmo del
Método de Bareiss Libre de División para
Solución de Sistemas de Ecuaciones Lineales
de Ingeniería Eléctrica, 4th International
Congress and 2nd National Congress of
Numerical Methods in Engineering and

Applied Sciences ISBN 978-84-96736-08-5,
Morelia, Michoacán, México, 17-19, Enero
2007.

[6] Ronald Scrofano, Ling Zhuo, Vicktor K.
Prasanna, Area-Efficient Arithmetic
Expression Evaluation Using deeply Pipelined
Floating-Point Cores, IEEE Transactions on
VLSI Systems, Vol. 16, No. 2, February 2008,
pp. 167-176.

[7] Xilinx, DS099. Spartan-3 Family, complete
data sheet, http:www.xilinx.com, product
specification.

[8] Bareiss E. H. Sylvester`s Identity and
Multistep Integer-Preserving Gaussian
Elimintation, Mathematics of Computation,
22, 1968, pp. 565-578.

[9] R. Martínez, D. Torres, M. Madrigal, S.
Maximov, Parallel Processors Architecture in
FPGA for the Solution of Linear Equations
Systems, 8th WSEAS, Int. Conf. on System
Science and Simulation in Engineering
(ICOSSSE '09), October 2009.

[10] Jeng-Kuang Hwang , Yuan-Ping Li, Modular
design and implementation of FPGA-based
tap-selective maximum-likelihood channel
estimator, WSEAS, Transactions on Signal
Processing, v.4 n.12, p. 667-676, December
2008.

[11] K. Tanigawa, T. Hironaka, M. Maeda, T.
Sueyoshi, K. Aoyama, T. Koide and H.J.
Mattausch, Performance Evaluation of
Superscalar Processor with Multi-Bank
Register File and an Implementation Result,
WSEAS, Transactions on Computer, Issue 9,
Vol. 5, 1993-2000 (2006).

[12] Xiaofang Wang and Sotirios G. Ziavras,
Parallel Direct Solution of Linear Equations
on FPGA-Based Machines, IEEE
Proceedings Symposium, (IPDPS 2003)
Parallel and distributed Processing, 2003.

[13] Vikash Daga, Gokul Govindu, Viktor
Prasanna, Efficient Floating-Point based
Block LU Decomposition on FPGAs, ERSA
2005, pp.137-148. Las Vegas Nevada, USA,
pp. 137-148, June, 21-24. 2004.

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS R. Martinez, D. Torres, M. Madrigal, S. Maximov

ISSN: 1109-2734 842 Issue 10, Volume 8, October 2009

	29-778
	29-780
	29-788
	29-849

