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Abstract: - This work analyzes the performances of different feature detectors/descriptors in the context of in-
cremental path estimation from passive stereo vision (Visual Odometry). Several state-of-the-art approaches have
been tested, including a fast Hessian-based feature detector/descriptor developed at INRIM. Tests on both syn-
thetic image sequences and real data show that in this particular application our approach yields results of accuracy
comparable to the others, while being substantially faster and much more reliable.
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1 Introduction

Research in autonomous sensor-based navigation has
received considerable attention in recent years, partic-
ularly in connection with planetary exploration tasks
[1]. A mobile platform (rover) on, say, Mars must be
capable of truly autonomous navigation in a mostly
unknown environment, as its continuous teleopera-
tion from an Earth station is clearly out of question.
This requires that the rover be able to build, based on
sensor measurements, a metric and topological model
of its environment, while simultaneously estimating
its position relative to the environment itself. This
is the task of Simultaneous Localisation and Map-
ping (SLAM) studies [2]. SLAM algorithms have
been proposed, using various kinds of sensors; among
these the vision sensor, being the one that provides the
largest amount of information, has been extensively
studied both in single-camera [3, 4, 5] and in multi-
camera setups [6, 7, 8].

Some navigation tasks, however, may require ac-
curate localisation, i.e. accurate estimation of the
rover path. Indeed, pure dead reckoning (wheel
odometry) usually yields quite poor estimates (due
e.g. to wheel slippage); also, wheel odometry alone
can at most yield a 2D path estimate, so it is not
even sufficient in principle when navigating on a non-
planar surface, and must be complemented by other
independent inputs (e.g. an absolute orientation sen-
sor as in [1]).

On the other hand, vision-based path estimation
(Visual Odometry) is able to yield accurate results
while being intrinsically 3D. In this regard, it is im-
portant to note the following points:

• Any path estimate from onboard visual measure-
ments is necessarily incremental, i.e. resulting

from the sum of smaller motion estimates. It is
therefore of utmost importance that each individ-
ual step be as accurate as possible, to reduce er-
ror accumulation.

• Monocular vision is subject to scale uncertainty,
so, in absence of landmarks of known size (as is
the case in planetary exploration), stereo or other
multi-camera setups are needed.

• As error accumulation in the long run is unavoid-
able, it is important that the rover be able to
recognise places where it has been before, and
to use such information to correct its pose esti-
mate.

In this context, our group at INRIM has devel-
oped a visual odometry algorithm [9, 10, 11, 12]
which relies on the tracking of pointwise image fea-
tures extracted from the images acquired by an on-
board binocular stereo head. At intervals along the
rover trajectory, its motion is estimated by robust bun-
dle adjustment of the tracked features in the four im-
ages (two before and two after the motion). Sev-
eral kinds of point features have been tested to this
end, and a new Fast-Hessian based feature detec-
tor/descriptor, similar to SURF [13] has been devel-
oped.

A déjà vu mechanism for exploiting cyclic paths
has also been devised, by periodically storing ob-
served features and pose estimates, and comparing
currently observed features to stored ones when near
a saved position.

This work focusses on the problem of choosing
the best feature detector/descriptor method, present-
ing the results of several tests both on simulated and
real image data. Sec. 2 summarizes the algorithm and
the main sources of inaccuracy; Sec. 3 focusses on
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feature detectors and descriptors; finally, Sec. 4 re-
ports and discusses the performance of the algorithm
on both simulated and real image sequences.

2 Visual odometry

Our algorithm relies on accumulating relative mo-
tions, estimated from corresponding features in the
images acquired while the rover is moving. Such
estimates are computed at key frames, whose spacing
is a compromise between larger intervals, desirable
both for numerical accuracy and for reducing compu-
tations, and the need for a sufficiently large number of
features, which naturally tend to be lost because go-
ing out of view. The algorithm can be so summarized:

Feature extraction and tracking. Point fea-
tures are extracted at each key frame and left-right
matched. Matched features are then tracked in subse-
quent frames.

Motion estimation. The relative motion of the
rover between the current frame and the last key
frame is estimated by robust bundle adjustment of
matched feature points.

Déjà vu correction. Features and pose estimates
are periodically saved. When the rover believes
to be near a saved position, observed features are
compared to the stored ones, and a pose correction is
possibly computed by bundle adjustment.

The motion estimation and the déjà vu mecha-
nism are described in more detail elsewhere [14]. To
summarize, the relative roto-translation (r, t) of the
rover between two keyframes is found by minimiz-
ing a suitable function of the image-plane backpro-
jection errors of the observed points. For robustness,
a Lorentzian cost function f(e2) = log(1 + e2/σ2)
is used, with σ chosen as a function of the ex-
pected image-plane error. The residual errors are then
compared against a threshold θ (proportional to the
Lorentz σ), and those exceeding that threshold are
marked as outliers. Bundle adjustment is then run
again on the inliers only, using the standard sum-of-
squares error function.

As concerns keyframe determination, in our ap-
proach we have adopted the following strategy:

• start with a predefined maximum inter-frame
step, say 20 frames;

• if the number of tracked points is enough, go on;
else halve the step and retry.

This strategy can be used in a realtime application,
provided that a sufficiently large memory buffer be
available to store the incoming max number of images
between two keyframes.

The above algorithm is subject to the accumula-
tion of the errors made in each individual step. Such
errors essentially come from three distinct sources:

Matching errors: feature points in distinct im-
ages can be wrongly matched. As long as there are
enough matched points, this problem can be allevi-
ated by using a robust estimation method, able to
detect such wrong matches (outliers), as explained
above. It is anyway desirable to start with as many
good matches as possible, and this is influenced by
the choice of feature descriptors.

Localization errors: even neglecting mis-
matches, feature points must be repeatable, i.e. they
must not disappear in different views, and robust
against viewpoint changes, i.e. the image plane lo-
cations of matched features must be the projections
of the same 3D point. This problem can be tackled by
a careful choice of feature detector.

Insufficient features: detected features must
both be numerous and rich in 3D structure, i.e. the
corresponding 3D points must neither lie on some sin-
gular configuration, nor be too spatially concentrated.
The distribution of visual features in the scene is ob-
viously not under control, but again the choice of fea-
ture detector may heavily affect the result.

It must also be noted that each step estimates a
full pose change of the robot (3D rotation r and 3D
translation t). The effects of errors in the rotation
and translation parts are not the same, however, on
the subsequent estimated path. While an error in t
at a particular step just induces an equivalent position
error on the portion of path afterwards, an error in r
induces a position error which grows linearly with the
distance from that point. This means that rotation er-
ror is generally more important than translation error.

It is clear from the above discussion that a key is-
sue for getting reliable and accurate results is the way
image features are detected and represented. This is
the subject of the next Section.

3 Feature detectors and descriptors

In general, (point) feature extraction consists of two
steps:

Detection, aiming at the localisation of visually
salient points in the image, and at the determination
of the apparent size (scale) of the visual feature.

Description, aiming at representing in a compact
form the image behaviour in the vicinity of the
detected point. This representation typically consists
of a fixed number N of values, that can be interpreted
as points in a Euclidean space EN . This way, the
similarity of features from different images can be
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easily computed from Euclidean distance of their
representations.

Good references on state-of-the-art detectors are
in [15, 16]. Usually, detectors act by searching the
image for the extrema of some local function of the
smoothed luminance, such as the Harris operator or
the Hessian (though other criteria may be used, e.g.
edge line intersections). The size (scale) of the feature
is then found at the scale-space extrema of some other
operator (e.g. the Laplacian), possibly followed by an
iterative refinement aiming at finding the affine shape
of the feature, as in [17].

There is as well a vast literature on the subject of
feature descriptors; again, a good reference is [18].

Following the terminology of [16] and [18], we
have tested the following detectors and descriptors
(the italicized acronyms are for subsequent refer-
ence):

Detectors:
• Harris-Laplace detector (harlap)
• Hessian-Laplace detector (heslap)
• Harris-Affine detector (haraff)
• Hessian-Affine detector (hesaff)
• Harris-Hessian-Laplace detector (harhes)
• Edge-Laplace detector (sedgelap)

Descriptors:
• Freeman’s steerable filters (jla)
• Lowe’s Scale Invariant Feature Transform (sift)
• Gradient Location-Orientation Histogram (ex-

tended SIFT) (gloh)
• Van Gool’s moment invariants (mom)
• Spin image (spin)
• cross-correlation of image patches (cc)

In addition to the above, we have as well tested
SURF features [13] and our homebrew CVL features
[19]. Speeded-Up Robust Features use the Hessian
for detecting interest points both in image space and
in scale space. A rotation-invariant (but not affine-
invariant) descriptor of size 64 or 128 is then com-
puted by wavelet analysis of the luminance in an im-
age patch, around the detected point. There is also
a non-rotationally-invariant version (U-SURF) which
has the advantage of faster computation.

Our own feature detector/descriptor [19] (in the
following referred to as CVL) is a simplified form of
SURF: detection is accomplished, as in the latter, by
searching for image (x, y) and scale (σ) extrema of
the Hessian. A descriptor of size 64 is then computed
by mapping a square image area of size 10σ around
(x, y) to size 8 × 8, then normalizing these pixel val-
ues to zero-mean and unit variance. This descriptor
is somehow similar to the cross-correlation (cc) one

mentioned above; it is neither rotation- nor affine-
invariant, but is quite fast to compute (four times
faster than SURF) and has proven quite good for the
visual odometry application.

Figure 1: The ActivMedia P2AT rover with stereo
head and acquisition PC.

Figure 2: Sample stereo pair of the simulated envi-
ronment.
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Figure 3: Simulated paths (coordinates in m).

4 Simulation

The visual odometry algorithm has been implemented
as an application running in real time (when using
our CVL features), on a Linux laptop onboard a small
commercial rover (ActivMedia Pioneer 2AT, Fig. 1).

Assessing the accuracy of the path estimate, how-
ever, would require good measurements of the rover
position (and possibly attitude), at least at every
keyframe. While we have done some tests on rover
paths in a limited area (size ∼ 10m), using optical
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Figure 4: Simulated circular path. Left: position error (m) vs. path length (m), right: rotation error (rad) vs. path
length (m), for various detectors.
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Figure 5: Simulated waving path. Left: position error (m) vs. path length (m), right: rotation error (rad) vs. path
length (m), for various detectors.

targets for independent measurements of the rover po-
sition [19], this is impractical for paths of any useful
size.

We have therefore resorted to simulation. Im-
age sequences of a synthetic Mars-like landscape (see
Fig. 2) have been generated using the free raytracer
POV-Ray [20]. Lens distortion and acquisition noise
were not included in the simulation. The stereo base
(0.24m), head inclination (about 13◦) and imaging pa-
rameters (image size, focal length and rate) were cho-
sen to mimick the actual behaviour of our rover.

Two different trajectories were simulated: a cir-
cular one, with radius 50m, and a waving one of the
same total length (see Fig. 3). Each sequence con-
sisted of 7392 stereo pairs of size 768×576, imaged
with an equivalent focal length of 766 pels (horizontal
FOV ∼ 53◦).

In the following we compare the results of the vi-
sual odometry algorithm using the different feature
detectors/descriptors discussed above. For SURFs

we have used the author’s implementation available
at [13], and for all other feature detectors/descriptors
mentioned in Sec. 3, the extract features.ln
package available at [21].

In our implementation, feature matching is based
on the nearest-neighbor-ratio strategy, i.e. two fea-
tures a and b in different images are matched if b is the
nearest neighbor of a in feature parameter space, and
their distance dab is less then r times that of the sec-
ond nearest neighbor. A lower ratio r discriminates
better among similar features, but obviously yields a
lower number of matches. In the tests here reported,
we have set r = 0.9; although our CVL features gave
significantly better results at r = 0.7, with the latter
value most of the other features did not yield a suffi-
cient number of 4-matches, i.e. features matched over
all the four images of a keyframe pair, over the whole
trajectory.

As concerns motion estimation, the Lorentzian
scale σ and outlier detection threshold θ (Sec. 2) were
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Figure 6: Simulated waving path. Left: position error (m) vs. path length (m), right: rotation error (rad) vs. path
length (m), for various descriptors.

set at σ = 1 pel and θ = 1 pel. The adaptive keyframe
approach was used, with maximum keyframe step 20.

Fig. 4, referring to the circular path, reports (left)
the position error (distance between the estimated
head position and its true value) versus the estimated
path length, using the detectors of Sec. 3 in combina-
tion with the SIFT descriptor, plus SURF and CVL.
For the same tests, Fig. 4 (right) plots the rotation er-
ror, defined as the absolute value of the angle defined
by the rotation matrix R−1

E RT , with RT the true rota-
tion of the stereo head with respect to the initial pose,
and RE the same as estimated by the visual odometry
algorithm.

Similarly, Fig. 5 shows the position and rotation
errors for the waving path, again using the detectors
of Sec. 3 in combination with the SIFT descriptor,
plus SURF and CVL.

As these graphs suggest a better accuracy of the
Harris-Affine detector, more tests have been done us-
ing that detector in combination with several of the
descriptors mentioned in Sec. 3. The results are
shown in Fig. 6, with SURF and CVL added for com-
parison.

Table 1 summarises some relevant statistics, i.e.
the average inter-keyframe step, and average num-
bers of features, namely: total detected features in
each image, 4-matched features and inliers over each
keyframe pair.

These graphs, particularly those of the circular
path, confirm what said in Sec. 2 about the impact
of rotation errors; indeed, the sinusoidal behaviour of
the position error in Fig. 4 looks like a long-term ef-
fect of an early accumulated angular error.

These results show that the CVL detec-
tor/descriptor accuracy is comparable to that of the
Harris-Affine detector, although the latter, with some
descriptors, seems to perform better. However, CVL

features step
0..20

total
0..5000

4-match
0..500

inliers
0..250

circular path

haraff/cc
haraff/gloh
haraff/jla
haraff/mom
haraff/sift
haraff/spin
harhes/sift
harlap/sift
hesaff/sift
heslap/sift
sedgelap/sift
surf
cvl

waving path

haraff/cc
haraff/gloh
haraff/jla
haraff/mom
haraff/sift
haraff/spin
harhes/sift
harlap/sift
hesaff/sift
heslap/sift
sedgelap/sift
surf
cvl

Table 1: Average keyframe step, total features, 4-
matched features and inliers for all the simulation
tests.

yields many more good matches (inliers) than haraff
(Table 1), a big advantage in case of large image
changes, and with some tuning (lower r) CVL per-
forms significantly better than shown in Fig. 6. This
is confirmed by the tests on real data reported in the
next Section.
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Figure 7: INRIM data I: top view of location.

Figure 8: INRIM data I: sample stereo pair of the en-
vironment.

5 Results on real data

5.1 INRIM data I

A stereo sequence was acquired by our Pioneer 2AT
rover (Fig. 1) on a grassy plain within the INRIM
campus (Fig. 7 and Fig. 8). The stereo head consists
in a pair of Basler A312f digital cameras, equipped
with 6mm lenses. The cameras are mounted on
an aluminum slab, as shown in Fig. 1. Each cam-
era provides a stream of CCIR-size (720×576) 8-
bit graylevel images on a IEEE1394 bus. The two
cameras can be accurately synchronized by an exter-
nal trigger signal, provided in our case by the con-
trolling PC through the parallel port. The cameras
are mounted at a nominal center-to-center distance
(stereo baseline) of 236 mm, and the head was cali-
brated using Bouguet’s method [22], with a 0.6×0.6
m checkerboard pattern. Note that the two cameras
are mounted with parallel axes, but the head is slightly
tilted (about 13◦) towards the ground. In fact, a good
estimate of robot motion requires both distant fea-
tures, providing reliable hints about direction, as well
as near ones, which yield more reliable hints about the
distance traveled between keyframes. The arrange-
ment used allows to increment the number of usable
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Figure 9: INRIM data I: CVL-estimated path, top and
side view (coordinates in m). Circles indicate stop
positions.

 0

 2

 4

 6

 8

 10

 0  50  100  150  200  250  300  350

cvl (raw)
cvl (dejavu)

haraff/mom (raw)

Figure 10: INRIM data I: return position error (m) vs.
path length (m).

near features, while cutting off most of the sky area,
which does not provide much useful information.

The rover was sent along a winding path of about
320m total length (Fig. 9), framing a total of 9200
stereo pairs. Since in this case we had no independent
measure of the rover pose, the rover was driven to
pass multiple times through some marked spots (cir-
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Figure 11: INRIM data II: top view of location.

Figure 12: INRIM data II: sample stereo pair of the
environment.

cles in Fig. 9), and the algorithm was forced to put a
keyframe at that positions. This allowed to compute
the accumulated position error at each return to the
same spot. The latter is reported in Fig. 10 vs. the
(estimated) length of path traversed before returning.

This plot compares the results obtained by our
CVL features (with r = 0.7, σ = 2 pel and θ = 1.5
pel) against the best of the other detectors/descriptors,
i.e. Harris-Affine + Moments, with r = 0.9 and the
same σ and θ. The reason for the different r is that
CVL features yield slightly better results at r = 0.7,
while Harris-Affine+Mom does not work at all with
this value (too few good matches).

Note that the points in this graph have been joined
by lines only for the sake of readability, nearby points
on the plot are not necessarily near on the path, and
the error between successive points is simply un-
known..

Fig. 10 also reports the results of applying the
mentioned déjà vu loop-closure algorithm (again with
CVL features).

5.2 INRIM data II

This data set comprises 13347 stereo pairs, collected
by our rover over a path of about 305 m, again within
the INRIM area (Fig. 11). The main differences with
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Figure 13: INRIM data II: CVL-estimated path, top
and side view (coordinates in m). Circles indicate
stop positions.
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Figure 14: INRIM data II: return position error (m)
vs. path length (m).

respect to the data presented above are the differ-
ent season (longer shadows) and ground type (mainly
paved road, see Fig. 12). An even more important
feature, when evaluating the results, is that for most
of its return travel the rover was driven to go approx-
imately over the same path, running backwards. This
means that the images acquired in the forward and
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features step
0..20

total
0..5000

4-match
0..500

inliers
0..250

INRIM path I

cvl (0.7)
cvl (0.9)
haraff/mom

INRIM path II

cvl (0.7)
haraff/mom

Table 2: Average keyframe step, total features, 4-
matched features and inliers for the real-world tests.

backward paths were much similar, so it may be ex-
pected that some systematic errors (due e.g. to cali-
bration) could compensate. This is indeed confirmed
by the results in Fig. 14, where the return position
error with CVL features is about 1/3 of that on the
data in Sec. 5.1 over a similar path length. However,
the results with Harris-Affine + Moments are much
worse, even worse than with the other data set.

Finally, Table 2 summarises the relevant statistics
(step size and numbers of features) for both tests on
INRIM data.

5.3 Oxford data

We have done some test on the “New College
Dataset”, kindly provided to the vision research com-
munity by the Oxford Mobile Robotics Group [23,
24]. The platform used to collect those data is a
two-wheeled vehicle (“Lisa”) built upon a Segway
RMP200 base. A Point Grey Bumblebee camera,
placed at about 1 m over ground and tilted about 13◦

towards ground, provides a 20 Hz stream of greylevel
stereo pairs, with a resolution of 512×384 pixels. The
platform is also equipped with other sensors, among
which a GPS unit aimed at providing absolute posi-
tioning data at more or less regular intervals.

The data set considered here was recorded in
November, 2008, in New College, Oxford (see Figs.
15 and 16) and comprises a total of 52478 stereo
pairs, collected in about 47 minutes over a total path
length of about 2844 m (from dead reckoning data).

Actually, this data set has some undesirable fea-
tures in view of applying our algorithm, namely:

• Camera calibration data are incomplete. The
data set does provide software and data for recti-
fying the images, and also some intrinsic and ex-
trinsic camera parameters, but curiously enough
the focal length is given in mm, instead of pixels
- an information quite useless for processing dig-
itized images. We converted this datum to pixels

Figure 15: Oxford data: aerial view of location (from
[23]).

Figure 16: Oxford data: sample stereo pair.

using the nominal sensor pitch from the manu-
facturer data sheet, yet we believe that the con-
verted value is not accurate (we had to slightly
adjust that value in order to get reconstructed 3D
angles right).

• The Bumblebee camera has a rather limited
base (0.12 m) and relatively low resolution
(512×384), which do not contribute to accuracy
in 3D estimation.

• The platform runs at a relatively high speed. In
spite of the 20Hz sampling rate, this may cause
a severe loss of correspondences, especially in
sharp turns. In the latter situation, moreover, the
slow shutter speed of the camera yields strongly
blurred images, which sometimes cause a com-
plete loss of image correspondences.

• There is no reliable ground truth position data.
The dataset does provide GPS data, but we were
not able to find in the accompanying papers any
assessment of the accuracy of GPS data, which
can sometimes be grossly wrong, as seen in the
plot of Fig. 17. Moreover, there is no way to link
the GPS reference to the robot’s one.

We have nevertheless tried to run our algorithm
on the Oxford data. The results are shown in Fig. 17,
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Figure 17: Oxford data: CVL-estimated path (solid
red line) and GPS path (dotted blue line), top view.
Coordinates in m.

where the visual odometry estimate, obtained using
CVL features, has been superimposed to GPS data,
after a rough manual alignment. Only CVL results
are reported, because none of the other competitors
were able to get outside Epoch A in Fig. 15; the best
was again haraff/mom, reaching a path length of about
732 m, with an average keyframe step of 9, before
algorithm failure due to lack of useful features.

Note that also the CVL visual odometry is inter-
rupted, but after an estimated path length of about
1315m, and with an average keyframe step of 19.
This interruption, due again to lack of good matches,
happens in a sharp turn of the mobile platform. It
should be noted that, in a real application, our visual
odometry algorithm is not expected to be used alone,
but supplemented with other modules able to catch
and correct such situations using data from different
sensors (at worst, wheel odometry).

From Fig. 18 the difference between the CVL es-
timate and GPS data for the first part (Epoch A in
Fig. 15) appears, on the average, well under 5m, i.e.
the order of magnitude of a commercial GPS device
mounted on cars (the spikes are actually GPS errors,
as can be seen from Fig. 17). The final rise of the
curve may be partly imputed to the misalignment of
visual and GPS reference frames.

6 Discussion and conclusion

This work certainly does not pretend to be exhaustive.
The number of tested sequences is too small to allow
a reliable statistical assessment of the behaviour of
the different algorithms. Nevertheless, some conclu-
sion can already be drawn from the results reported
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Figure 18: Oxford data: distance (m) between CVL-
estimated position and GPS position, vs. time (s).

above, in particular from the statistics in Tables 1 and
2. In fact, while each error graph in Sec. 4 represents
a global behaviour on a single sample of all possible
trajectories in all possible environments, the statis-
tics in the Tables are averages over many different
keyframe pairs, with different imaged scenes.

A first conclusion is that, in an application like
our visual odometry algorithm, a high degree of ge-
ometric invariance (rotation, affine etc.) of features
is not necessarily a merit. Indeed, the point of view
(PoV) changes very little among the four images of a
keyframe pair, and scale invariance is enough to take
into account the scale change of near features with the
rover motion.

This is the reason why our CVL features (neither
affine- nor even rotation-invariant) performs at a level
of accuracy comparable to the best affine-invariant
detectors, with the advantages of a much faster com-
putation and greater reliability. The behaviour of
CVL features is quite similar to that of SURF ones,
but with a considerable speedup.

In fact, from Table 1 CVL and SURF appear to
yield both a lower number of initial detected features
(total column, around 1000 per image) and a quite
higher number of useful ones (inliers column, around
200), i.e. of features matched over all the four im-
ages of a keyframe pair. A higher number of inliers
contributes to accuracy and reliability of the estimate,
while a lower number of detected features alleviates
the computational load. Indeed, feature extraction
and matching is the most resource-consuming step of
the algorithm; extraction time grows linearly with the
number of features, and matching time is quadratic.

All this is confirmed by the real-world tests.
While the usual caveats still apply, in Fig. 10 and
Fig. 14 cvl clearly outperforms haraff/mom. Table
2 indicates that the latter yields a lower number of
usable features, and with a more frequent sampling
(average step 6 against 14..16 for data set I, and 12
against 20 for data set II) - neither of these contribute
to accuracy, and the lower step size greatly increases
computations.

Affinely invariant features could be of some help
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in the déjà vu loop-closure mechanism, where image
matching has to be done from much more different
points of view. However, our tests on other real image
sequences, not reported here, indicate that the num-
ber of matches for quite different PoV’s is usually
not enough for a reliable pose estimation with the ap-
proach of Sec. 2. It could be enough, however, for
place recognition and subsequent pose re-estimation
with a different approach (e.g. map-matching).
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