
Mobile robot path planning using exact cell decomposition and
potential field methods

Dusan Glavaski, Mario Volf, Mirjana Bonkovic

Faculty of Electrical Enginnering, Mechanical Engineering and Naval Architecture

University of Split, Ruđera Boškovića bb

dusan.glavask@fesb.hr, mario.volf@fesb.hr, mirjana.bonkovic@fesb.hr

Abstract: - In this paper two classic path planning procedures have been explained and adopted to reduce

computational time. When studying mobile robotics and robot motion planning, there is always a gap which

exists between theoretical achievements and practical considerations of the described methods. This paper

clearly overrides the mentioned problem describing minutely the procedures necessary for practical

implementations and simulation in the Matlab and MobileSim environment. The algorithms have been

presented together with their pseudo codes. The simulation results clearly show the advantages and

drawbacks of each of the method.

Key-Words: - path planning, mobile robot, exact cell decomposition, potential field

1. Introduction
The research in the field of robotics is focused

on the algorithms used to accomplish

fundamental tasks. The typical task is path

planning for which exist numerous software [1],

[2], [5], [6], [7], [8] as well as hardware [2], [3],

[4] implementations for problem solving. In this

paper we compare the efficacy through

advantages and drawbacks of two methods for

basic robot motion problem solutions, together

with a practical implementations using Aria

programming library, adopted for Amigo Bot

mobile robot, produced by Active Media

Robotics Ltd. The solutions are based on the

classic path planning algorithms, namely exact

cell decomposition and potential field methods.

Therefore, the introduction follows with the

basic motion problem and configuration space

specifications. In Section 3, the path planning

algorithms are presented together with the

pseudo code of the concrete implementations.

Section 4 presents the simulation results

whereas Section 5 concludes the paper.

2. Basic motion problem and

configuration space specifications

In the basic problem, it is assumed that the robot

is the only moving object in the workspace and

the dynamic properties of the robot are ignored,

thus avoiding temporal issues. The motions are

resticted to non-contact motions, so that the

issue related to the mechanical interaction

between two physical objects in contact can be

ignored. These assumptions essential transform

the "physical" motion planning problem into a

purely geometrical path planning problem. The

geometrical issues are simplified even further

by assuming that the robot is a single rigid

object. The motions of this object are only

constrained by the obstacles.

The basic motion planning problem resulting

from these simplifications is the following:

● Let be a single rigid object (the robot)

moving in Euclidean space , called

workspace, represented as , with =2 or 3.

● Let be fixed rigid object

distributed in . These objects are called

obstacles.

● Assume that both the geometry of ,

 and the locations of the βi in are

accurately known. Assume further that no

kinematic constrains limit the motions of A (we

say that A is a free-flying object).

The problem is: Given an initial position and

orientation and a goal position and orientation

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Dusan Glavaski, Mario Volf, Mirjana Bonkovic

ISSN: 1109-2734 789 Issue 9, Volume 8, September 2009

mailto:dusan.glavask@fesb.hr
mailto:mario.volf@fesb.hr
mailto:mirjana.bonkovic@fesb.hr

of in , generate a path specifying a

continuous sequence of positions and

orientations of avoiding contact with ,

starting at an initial position and orientation, and

terminating at the goal position and orientation.

Report failure if no such path exists.

 The underlying idea of the configuration space

is to represent the robot as a point in an

appropriate space (the robot’s configuration

space) and to map the obstacles in this space.

This mapping transforms the problem of

planning the motion of a dimensioned object

into the problem of planning the motion of a

point.

Let the robot (at a certain position and

orientation) be described as a compact subset of

, =2 or 3, and the obstacles

be closed subsets of . In addition let and

be Cartesian frames embedded in and ,

respectively. is a moving frame, while is a

fixed one. By definition, since is rigid, every

point of has a fixed position with respect to

. But as position depends on the position

and orientation of relative in . Since the

's are both rigid and fixed in , every point of

, for all , has a fixed position with

respect to .

A configuration of an arbitrary object is a

specification of the position of every point of

this object relative to a fixed reference frame.

Therefore, a configuration of is a

specification of the position and orientation

of with respect to . The configuration

space of is the space of all the configuration

of .

The path of from the configuration to the

configuration is a continuous map:

with:

, and .

 and are the initial and goal

configurations of the path, respectably. Saying

that is a “free-flying” object means that, in the

absence of obstacles, any path defined as above

is feasible.

The above definition of a path does not take

obstacles into consideration. The set of paths

which are solutions to the basic problem when

there are obstacles in the workspace will be

characterized.

Every obstacle , to , in the work space

maps in to a region:

which is called a . The union of all

the :

is called the , and the set:

is called the free space.

Any configuration in is called a free

configuration.

A free path between two free configurations

 and is a continuous map formula.

Two configurations belong to the same

connected component of if and only if

they are connected by a free path.

Given an initial and a goal configuration, the

basic motion planning problem is to generate a

free path between the two configurations, if they

belong to the same connected component of

, and to report failure otherwise.

A semi-free path is a continuous map formula,

where formula denotes the closure of .

Hence, as it moves along such a path, the robot

may touch obstacles.

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Dusan Glavaski, Mario Volf, Mirjana Bonkovic

ISSN: 1109-2734 790 Issue 9, Volume 8, September 2009

More details and formal notations have been

taken from [1].

3. Planning methods
There exist a large number of methods for

solving the basic motion planning problem. Not

all of them solve the problem in its full

generality. Despite many external differences,

the methods are based on few different general

approaches which are roadmap, cell

decomposition and potential field. These

approaches will be briefly introduced bellow.

The first type of motion planning algorithm is

referred to as roadmap method. There are

several different methods for developing the

roadmap such as visibility graph and Voronoi

diagrams. The roadmap method vs. cell

decomposition has been deeply studied in [2]. In

this paper we study more deeply cell

decomposition method and path planning

algorithms. In the next section these two

methods have been described more deeply,

together with the basic idea of the roadmap

method.

3.1 Roadmap

The roadmap approach to path generation

consists of reducing the environmental

information to a network of one-dimensional

curves, called the roadmap. Once the roadmap

has been constructed, a path can be calculated

by connection the initial and final

configurations to the network and finding a path

in the roadmap. Examples of roadmap methods

are the visibility graph, Voronoi diagram, free

way net and silhouette graphs.

In general roadmap methods are fast and most

of them are easy to implement, but they do not

provide an intrinsic way of describing the

environmental information [1].

3.2 Cell decomposition

The basic idea behind this method is that a path

between the initial configuration and the goal

configuration can be determined by subdividing

the free space of the robot's configuration into

smaller regions called cells. After this

decomposition, a connectivity graph, as shown

below, is constructed according to the adjacency

relationships between the cells, where the nodes

represent the cells in the free space, and the

links between the nodes show that the

corresponding cells are adjacent to each other.

From this connectivity graph, a continuous path,

or channel, can be determined by simply

following adjacent free cells from the initial

point to the goal point. Cell decomposition can

be used in path planning in the following way:

1. The free space of the polygonal two-

dimensional configuration space is

determined.

2. The free space is partitioned into a

collection of cells.

3. A connectivity graph is constructed by

connecting the cells that share a

common boundary (a hole in the

bounding polygon corresponds to a cycle

in the connectivity graph).

In the on-line phase:

1. A sequence of cells, a channel, which

the robot must traverse in order to go

from the initial position to the goal

position, is obtained from the

connectivity graph.

2. A free path is constructed from the

channel. [9]

If the robot is not a point and can turn in any

direction then computing the free space is a

major part of the calculation. Most methods

assume a point-sized robot or a convex

polygonal robot with fixed orientation and

increase the thickness of the wall by the width

of the robot. The resulting free space is taken as

an input. The triangular robot has a fixed

orientation and a reference point p. Given the

workspace defined by the interior of the bold

polygon, the free space of the robot, with

respect to the point p, is the white area with the

bold line. However, it now becomes more

difficult to describe the actual environment

around a cell and most robots do not have a

fixed orientation.

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Dusan Glavaski, Mario Volf, Mirjana Bonkovic

ISSN: 1109-2734 791 Issue 9, Volume 8, September 2009

3.3 Potential field

Potential field method treats the robot

represented as a point in configuration space as

a particle under the influence of an artificial

potential field U whose local variations are

expected to reflect the "structure" of the free

space [1].

The potential fields can be imagined either as a

charged particle navigating through a magnetic

field or a marble rolling down a hill. The basic

idea is that behavior exhibited by the

particle/marble will depend on the combination

of the shape of the field/hill [10]. Unlike

fields/hills where the topology is externally

specified by environmental conditions, the

topology of the potential fields that a robot

experiences are determined by the designer.

More specifically, the designer creates multiple

behaviors, each assigned a particular task or

function, represents each of these behaviors as a

potential field, and combines all of the

behaviors to produce the robot's motion by

combining the potential fields. The potential

function is typically defined over free space as

the sum of an attractive potential pulling the

robot toward the goal configuration and a

repulsive potential pushing the robot away from

the obstacles. At each iteration an artificial force

)()(qUqF introduced by the potential

function at the current configuration is regarded

as the most promising direction of motion, and

path generation proceeds along this direction by

some increment.

The potential is calculated as the sum of two or

more elementary potential functions:

)()()(qUqUqU repatt

The attractive potential field can be simply

defined as a parabolic well:

2))((
2

1
)(qpeqU goalatt

where e is a positive scaling factor and denotes

the Euclidean distance. The function is positive

or null, and attains its minimum at qgoal , where

Uatt is singular.

The main idea underlying the definition of the

repulsive potential is to create a potential barrier

around the C−obstacle area that cannot be

traversed by the robots configuration. In

addition, it is usually desirable that the repulsive

potential does not affect the motion of the robot

when it is sufficiently far away from

C−obstacle. Formula for the repulsive potential:

0

0

0

)(0

)(,
1

)(
1

2

1

)(

qif

qifq
qU rep

where is a positive scaling factor, 0 denotes

the distance from to the C−obstacle region, and

is a positive constant called the distance of

influence of the C−obstacle.

4. Exact cell decomposition

algorithm
In this section, the exact cell decomposition

method which was used for the software

implementation of the algorithm is introduced.

Polygonal configuration space method is the

simple case of exact cell decomposition where
2C and the C-obstacle region C (the

union of the C-obstacles) forms a polygonal

region in C. For simplifying the presentation,

we assume that the robot's free space

CCC free / is bounded. Figure 1 depicts

such a configuration space.

Figure 1: Two-dimensional configuration space

(image taken from [1])

The decomposition of freeC and the associated

connectivity graph is defined as follows:

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Dusan Glavaski, Mario Volf, Mirjana Bonkovic

ISSN: 1109-2734 792 Issue 9, Volume 8, September 2009

 A convex polygonal decomposition K

of freeC is a finite collection of convex

polygons, called cells, such that the

interior of any two cells do not intersect

and the union of all the cells is equal to

freeC . Two cells and in K are

adjacent if only if is a line

segment of non-zero length.

 The connectivity graph G associated

with a convex polygonal decomposition

K of freeC is the non-directed graph

specified as follows:

o G's nodes are the cells in K .

o Two nodes in G are connected by

a link if and only if the

corresponding cells are adjacent.

Consider an initial configuration initq and a goal

configuration goalq in freeC . The exact cell

decomposition algorithm for planning a free

path connecting the two configurations is the

following:

1. Generate a convex polygonal

decomposition K of freeC .

2. Construct the connectivity graph G

associated with K .

3. Search G for a sequence of adjacent cells

between initq and goalq .

4. If the search terminates successfully,

return the generated sequence of cells;

otherwise, return failure.

The output of the algorithm is a sequence

p,...1 of cells such that 1initq , pgoalq

and for every , j and 1j are

adjacent. This sequence is called a channel.

One simple way to generate a free path

contained in the interior of the channel produced

by the search of G is to consider the midpoint

jQ of every segment j and to connect initq to

goalq by a polygonal line whose successive

vertices are 1Q ,…,)1(pQ .

The optimal convex decomposition of a polygon

is computable in polynomial time. The degree

of a polynomial is proportional to the number of

vertices n. Unfortunately, the presence of holes

in the polygon makes this problem NP-hard.

A non-optimal convex polygonal decomposition

of freeC is generated by sweeping a line L

parallel to the y-axis across freeC . The sweep

process is interrupted whenever L encounters a

vertex X of C . A maximum of two vertical

line segments are created, connecting X to the

edges of C that are immediately above and

immediately below X, as shown in Figure 2. The

boundary of C and the erected vertical line

segments determine a trapezoidal

decomposition of freeC . Each cell of the

decomposition is either a trapezoid or a triangle.

Two cells are adjacent if and only if their

boundaries share a vertical segment. When such

a segment is crossed the vertical structure of the

constraints imposed by C on the motion of A

(robot) changes discontinuously.

Notice that the same algorithm also applies

when C is not bounded; the generated

decomposition then includes cells that extend

infinitely in the y-axis direction.

Figure 2: Trapezoidal decomposition of free

space (image taken from [1])

The search of G can be done in various ways. A

simple breadth-first search takes O(n) time. But

the produced channel may be far from optimal

with respect to the Euclidean lengths of the

paths it contains. One possible alternative is to

use the A* search algorithm, with a different

search graph G' specified as follows:

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Dusan Glavaski, Mario Volf, Mirjana Bonkovic

ISSN: 1109-2734 793 Issue 9, Volume 8, September 2009

 The nodes of G are initq , goalq , and the

midpoints jQ of all the portions of

boundary shared by adjacent cells.

 Two nodes are connected by a link if

and only if they belong to the same cell

(they can be joined by a straight line

segment in the cell).

Each link is weighted by the Euclidean length of

the straight line segment joining the two nodes.

If a free path exists, the search produces the

shortest free path contained in G'. It also

determines a sequence of cells from which

another path can be extracted. The search takes

nn log time.

5. Potential field algorithm
The algorithm that is used in the implementation

is called best-first planning. It consists of

throwing a fine regular grid of configurations

across C. The grid is denoted by GC. GC can be

defined by considering a single chart over C and

discretizing each of the m corresponding

coordinate axes. Given a configuration q in the

m-dimensional grid GC, its p-neighbors are

defined as all the configurations in GC having at

most p coordinates differing from those of q, the

amount of the difference being exactly one

increment in absolute value. In addition, for

simplifying the presentation, we make the

following assumptions:

 Both initq and goalq are configurations in

GC .

 If two neighbors in GC are in free space,

the straight line segment connecting

them in R also lies in free space.

 The grid GC is bounded and forms a

rectangle.

Best-first planning consists of iteratively

constructing a tree T whose odes are

configurations in GC.

The root of T is initq . At every iteration, the

algorithm examines the neighbors of the leaf of

T that has the smallest potential value, retains

the neighbors not already in T at which the

potential function is less than some large

threshold M, and installs the retained neighbors

in T as successors of the currently considered

leaf. The algorithm terminates when the goal

configuration goalq has been attained or when

the free subset of GC accessible from qinit has

been fully explored. Each node in T has a

pointer toward its parent. If goalq is attained, a

path is generated by racing the pointers from jq

to 1jq . The pseudo code will now be explained.

The procedure BFP given below (Table 1.) is a

formal expression of the best-first planning

algorithm. In addition to the tree T, BFP uses a

list OPEN that contains the leaves of T sorted

by increasing values of the potential function.

OPEN supports the following three operations:

FIRST(OPEN), which removes the

configuration of OPEN having the smallest

potential value and returns it; INSERT(q,

OPEN), which inserts the configuration q in

OPEN; and EMPTY(OPEN), which returns true

if the list OPEN is empty.

Procedure BFP;

begin;

install q_init in T;

[initially, T is an empty tree]

INSERT(q_init, OPEN); mark q_init visited;

[initially, all the configurations in GC are marked "unvisited"]

SUCCESS <- false;

while !EMPTY(OPEN) and !SUCCESS do

begin

q <- FIRST(OPEN);

for every neighbour q_c of q in GC do

if U(q_c)<M and q_c is not visited then

begin

install q_c in T with a pointer toward q;

INSERT(q_c, OPEN); mark q_c visited;

if q_c = q_goal then SUCCESS <- true;

end;

end;

if SUCCESS then

return the constructed path by tracing the pointers in T from

q_goal to q_init;

else return failure;

end;

Table 1: Pseudo code of the BFP procedure

This procedure follows a discrete approximation

of the negated gradient of the potential function

until it reaches a local minimum. The algorithm

is guaranteed to return a free path whenever

there exists on in the free subset of the grid GC

and to report failure otherwise.

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Dusan Glavaski, Mario Volf, Mirjana Bonkovic

ISSN: 1109-2734 794 Issue 9, Volume 8, September 2009

6. Implementation

Implementation was done using ARIA

programming library, MATLAB, C++, Mapper

and MobileSim robot simulator. A short

description for the above (less known)

programming packages will be given:

1. ARIA - is an object-oriented, robot control

applications-programming interface for

MobileRobots (and ActivMedia) intelligent

mobile robots. Written in the C++ language,

ARIA is client-side software for easy, high-

performance access to and management of the

robot, as well as to the many accessory robot

sensors and effectors. ARIA includes many

useful utilities for general robot programming

and cross-platform (Linux and Windows)

programming as well. ARIA can be run multi-

or single-threaded, using its own wrapper

around Linux threads or Win32 threads. You

can access ARIA at different levels, from

simply sending commands to the robot through

ArRobot to development of higher-level

intelligent behaviour using Actions.[11]

2. Mapper – Mapper is application from

ActivMedia Robotics company which provides

the tools needed to construct a map of robot's

real operating space.[11]

3. MobileSim - is software for simulating

MobileRobots/ActivMedia platforms and their

environments, for debugging and

experimentation with ARIA . It replaces SRIsim

previously distributed with ARIA. MobileSim

builds upon the Stage simulator, created by

Richard Vaughan, Andrew Howard, and others

as part of the Player/Stage project, with some

modifications by MobileRobots. [12]

6.1 Best-first path

The algorithm is implemented using MATLAB

and ARIA. The source code can be found in [3].

The BFP algorithm includes a tree structure. In

the implementation a tree structure was not used

because of its complexity. Instead, a so called

checking function was designed and used.

Consequently, for every iteration starting at the

initial point initq it looks up its p-neighbors.

Then, it returns the neighbor configuration that

has the lowest potential value. This returned

configuration is marked as a1 and b1. The

current configuration is marked simply as a and

b. After the configuration with the minimal

potential value is returned, it is checked if that

value corresponds to the goal configuration. If it

does than the path from initial to the goal

configuration can be constructed. Otherwise, a

and b become a1 and b1 and the iteration

process continues.

Also the GC space is represented as a 100x100

grid. Every point is accessed through two

counters I and J representing x and y of the

configuration. In the example two obstacles are

introduced: a rectangle and a square. The first

iteration calculates the repulsive potential from

every point of C-obstacles to the current point

(note that the Euclidean distance between every

point in C-obstacle and the current point must

first be calculated). Than the attractive potential

between the current point and the goal

configuration is calculated. At the end these two

potentials are added and the value of the

potential in the current point attained. The

checking function will now be explained in

more detail. It takes the matrix of all potential

values in a 100x100 space, current position (a,b)

and the maximal configuration in 100x100

which is naturally (100,100) or (X,Y). Than it

examines the following conditions:

1. if (a>=2)&(b>=2)&(a<X)&(b<Y)

2. elseif (a>=2)&(b>=2)&(a<X) % eliminates b+1

3. elseif (a>=2)&(a<X)&(b<Y) % eliminates b-1

4. elseif (a>=2)&(b>=2)&(b<Y) % eliminates a+1

5. elseif (b>=2)&(a<X)&(b<Y) % eliminates a-1

6. elseif (a==1)&(b==1)

7. elseif (a==X)&(b==1)

8. elseif (a==1)&(b==Y)

9. elseif (a==X)&(b==Y)

10. elseif (a==1)

11. elseif (a==X)

12. elseif (b==1)

13. elseif (b==Y)

These conditions are used to see where the

current configuration is in the map and to

generate the p-neighbours A11, A12, A13, A21,

A23, A31, A32, A33. As you can see A22 is the

current location. Now the algorithm must return

the value of the neighbour that has the lowest

potential value. Before this step is performed

several conditions must be examined:

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Dusan Glavaski, Mario Volf, Mirjana Bonkovic

ISSN: 1109-2734 795 Issue 9, Volume 8, September 2009

% A13 A23 A33

% A12 X A32

% A11 A21 A31

if (A11<A21)&(A11<A31)&(A11<A12)&

 (A11<A32)&(A11<A13)&(A11<A23)&(A11<A33)

x=a-1;

y=b-1;

elseif (A21<A31)&(A21<A12)&(A21<A32)&

 (A21<A13)&(A21<A23)&(A21<A33)

x=a;

y=b-1;

elseif (A31<A12)&(A31<A32)&(A31<A13)&

 (A31<A23)&(A31<A33)

x=a+1;

y=b-1;

elseif (A12<A32)&(A12<A13)&(A12<A23)&

 (A12<A33)

x=a-1;

y=b;

elseif (A32<A13)&(A32<A23)&(A32<A33)

x=a+1;

y=b;

elseif (A13<A23)&(A13<A33)

x=a-1;

y=b+1;

elseif (A23<A33)

x=a;

y=b+1;

else

x=a+1;

y=b+1;

end

6.1 Polygonal configuration space

The algorithm is implemented using ARIA

library and C++ programming language. The

maps for the simulation are made with the

Mapper application. Implementation of exact

cell decomposition algorithm has two separate

parts:

1. Graphical analysis and processing of the

map.

2. Robot movement through coordinates of

the shortest path for the given map.

In this paper the focus is on the second step of

the implementation. It is up to the user of the

application to calculate the coordinates of all

possible paths for the given map.

For input, the application uses file created by

the user which contains coordinates of all

possible paths. The file must be formatted in a

way that one line represents one path and each

point is divided by a space character from

another. Each path must contain robots initial

configuration for purposes of calculating

Euclidean distance for them. The sample of

such file can be seen in Table 2.

1.01 1.01 2 1.5 3 1 4 1.5 5 1 6 0.5 6.51 1.52 7.5 4

1.01 1.01 2 1.5 3 1 4 1.5 5 3.5 6 4.5 6.31 4.02 7.5 4

1.01 1.01 2 4 4 4 5 3.5 6 4.5 6.31 4.02 7.5 4

1.01 1.01 2 4 4 4 5 1 6 0.5 6.31 1.52 7.5 4

Table 2: Sample of map configuration file

Class Coord (Table 3.) is created for purposes

of storing x and y points for single coordinate:

class Coord {

public:

Double xt;

Double yt;

Coord(){};

Coord(double x, double y) : xt(x), yt(y) {};

};

Table 3: Class Coord

The application reads the contents of file and

stores data in vector of classes Coord; the

collection of all paths is stored in vector of

vectors Paths (Table 4.):

typedef vector<Coord>Dots

typedef vector<Dots>Paths

Table 4: Vectors used for storing paths

When all the data has been stored the Euclidean

distance is calculated for each path and these

values are used to determine the shortest path:

double distance (Dots d) {

double dist, tmp;

for (Dots::size_type i=0; i < d.size();i++) {

for (Dots::size_type j=i+1; j<=i+1; j++)

tmp += pow((d[i].xt - d[j].xt),2) + pow((d[i].yt -

d[j].yt),2);

}

dist = sqrt(tmp);

return dist;

}

Table 5: Function for calculating Euclidean

distance of paths

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Dusan Glavaski, Mario Volf, Mirjana Bonkovic

ISSN: 1109-2734 796 Issue 9, Volume 8, September 2009

Once the shortest path has been chosen it is

stored in a file called shortest. The initial

configuration of robot isn't stored in this file (it

is only used for the calculation of distance from

initial to goal configuration of the robot). While

creating the map user can position the robot

anywhere in the free space. When the

simulation

is started MobileSim uses robots initial

configuration as the beginning of the coordinate

system (0,0). To solve this problem offset has to

be subtracted from each point in the coordinates

before moving of the robot occurs. Notice that

the initial configuration of the robot

(coordinates of robots starting point) represents

the offset. ARIA with needed classes and

methods is initialized for purposes of

controlling robot movement (Table 6.).

Aria::init()

ArArgumentParser

parser(&argc, argv)

parser.loadDefaultArguments()

ArSimpleConnector

simpleConnector(&parser)

ArRobot robot

ArSonarDevice sonar

ArAnalogGyro gyro(&robot)

robot.addRangeDevice(&sonar)

Table 6: Initialization of ARIA classes and

method

The method gotoPoseAction.setGoal(ArPose(x, y)) is

used for the movement of the robot. The

setGoa(ArPosegoal) method sets a new goal of the

robot and sets the action to go to the given goal.

This action goes to a given ArPose coordinate

very naively. The action drives straight towards

a given ArPose and it stops when it gets close

enough to the goal. setGoal method is used for

giving a new goal to the robot, while

haveAchievedGoal is used to check if the robot has

achieved the given goal. ArPose takes

coordinates in millimetres. For this reason the

coordinates of the paths given in a file should be

multiplied by 1000, because the values in the

file are given in metres (Mapper application

uses metres as coordinate values). The whole

procedure can be seen in Table 7.

7. Simulation results

7.1. Best-first path

The algorithm is simulated in Matlab and on

MobileSim as well. For the purpose of the

simulation a map with two rectangle obstacles is

used. In the example which follows, the goal

point is (8,8). Figure 3 illustrates only the

repulsive potential.

It can be easily seen that the repulsive potential

does not depend on the position of the goal

configuration. Figure 4 represents only the

attractive potential. The difference between

these two graphs is that the attractive potential

depends on the position of the goal

configuration.

if (gotoPoseAction.haveAchievedGoal()) {

shortest >> x;

shortest >> y;

if(shortest.eof())

break;

x=x-x_offset; //offset rescission

y=y-y_offset;

x=x*1000; //conversion of coordinates to millimetres

y=y*1000;

gotoPoseAction.setGoal(ArPose(x, y)); //sending robot to

the next calculated goal

}

Table 7: Procedure of robot movement

Adding up repulsive (negative) and attractive

(positive) potential fields, a graph which can be

seen in the Figure 5, is attained. Similarly, as in

previous example, Figure 6 shows how the

algorithm works when it is embedded in

MobileSim. The movement of the robot depends

on the potential function. It determines the value

of the potential in each point of space. Also the

C-obstacle region is controlled with the distance

of influence. If it has a large value than the C-

obstacle space spreads out in space creating a

potential barrier that can not be traversed by the

robot. If a goal configuration is inside the radius

of the distance of radius than the algorithm

would run for infinity. This is one problem that

we must pay a close attention to. Another

problem is the local minima. The local minima

is a point in which the value of the potential

equals zero but it is not a goal point.

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Dusan Glavaski, Mario Volf, Mirjana Bonkovic

ISSN: 1109-2734 797 Issue 9, Volume 8, September 2009

Aside from obvious problems potential field

method is the simplest and wittiest technique for

robot motion planning. Its main attribute is its

simplicity.

a)

b)

Figure 3: Potential field in case where there

are two obstacles: a) perspective

representation; b) plane view

Figure 4: The map represents the attractive

potential

Figure 5: Attractive+repulsive potential

field+free path

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Dusan Glavaski, Mario Volf, Mirjana Bonkovic

ISSN: 1109-2734 798 Issue 9, Volume 8, September 2009

Figure 6: Trace of the path generated in

MobileSim

7.2 Polygonal configuration space

MobileSim application was used for the

simulation of the algorithm. The application

works from a command line. A user must pass

three arguments to application:

 Name of the file with coordinates of all

possible paths for a certain map

 Wanted speed of the robot (mm/s)

 Close distance (used to set the distance

which is close enough to the goal (mm)).

The program prints out values of all possible

paths, values of Euclidean distances and the

coordinates of the shortest path. The motion and

path of the robot can be seen in the MobileSim

application. It is easily noticed that the robots

path is determined by the midpoints Qj of

segments j . The path of the robot is highly

influenced by the layout of the obstacles in free

space. The distance between obstacles and the

edge of robots free space determines how

widely

the robot avoid an obstacle (Figure 7). During

the simulation problems occurred with higher

speed values on certain maps. The robot would

rotate too fast and miss its next goal, resulting in

a random circular movement of the robot around

the missed coordinate (Figure 8). Similar

problems occurred when the robot would come

too close to the obstacle during the rotation. The

possible solutions to this problem are lowering

robots speed or increasing close distance

through application arguments.

Figure 7: Path generated by the application

(simulation in MobileSim)

Figure 8: Robot movement problem as a high

speed result

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Dusan Glavaski, Mario Volf, Mirjana Bonkovic

ISSN: 1109-2734 799 Issue 9, Volume 8, September 2009

Figure 9: Path generated by polygonal

configuration space method

This method, in most cases, avoids obstacles

more widely than other methods, while the

paths not being significantly longer. The paths

generated by this method are usually

significantly better than those generated using

the visibility graph method. The simulation on

the same map as shown in the best-first path

chapter can be seen in Figure 9.

The main disadvantage of this method is hard

implementation of map analysis and processing.

On the other hand, it is very logical and easy to

understand.

8. Conclusion

Two typical methods used in robot motion

planning were shown. Potential field method

was originally developed as an on-line collision

avoidance approach, applicable when the robot

does not have prior knowledge of the obstacles,

but senses them during motion execution.

Emphasis was put on real-time efficiency, rather

than on guaranteeing the attainment of the goal.

It may get stuck at a local minimum of the

potential function other than the goal

configuration. However, the idea underlying

potential field can be combined with graph

searching techniques. Then, using a prior model

of the workspace, it can be turned into

systematic motion planning approach and this

was done in the previous examples. In contrast

to potential field method the exact cell

decomposition method is not meant for real time

path planning. It is a graphical method used

when a prior model of the workspace is known.

The method guarantees finding a free path if

one exists and if it is attainable by the robot.

9. References
[1] Latombe, J., "Robot Motion Planning", 1991.

[2] Lucia Vacariu, Flaviu Roman, Mihai Timar, Tudor

Stanciu, Radu Banabic, Octavian Cret, Software and

Hardware Implementation of Mobile Robot Path

Planning, WSEAS Transactions on Systems and

Control, Issue 2, Volume 2, February 2007.

[3] O. Hachour AND N. Mastorakis, Avoiding obstacles

using FPGA –a new solution and application ,5th

WSEAS international conference on automation &

information (ICAI 2004) , WSEAS transaction on

systems, issue9 ,volume 3 , Venice , italy15-17 ,

November 2004 , ISSN 1109-2777, pp2827-2834 .

[4] O. Hachour AND N. Mastorakis, FPGA

implementation of navigation approach, WSEAS

international multiconference 4th WSEAS

robotics,distance learning and intelligent

communication systems (ICRODIC2004), in Rio de

Janeiro Brazil, October 1-15 , 2004, pp2777.

[5] M. Šeda, A Comparison of Roadmap and Cell

Decomposition Methods in Robot Motion Planning,

WSEAS Transactions on Systems and Control, Vol.

2, Issue 2, 2007, pp. 101-108.

[6] Planning Algorithms, Steven M. LaValle,2006,

Cambridge University Press, ISBN 0-521-86205-1.

Available online at http://planning.cs.uiuc.edu/

[7] Principles of Robot Motion: Theory, Algorithms,

and Implementation, H. Choset, W. Burgard, S.

Hutchinson, G. Kantor, L. E. Kavraki, K. Lynch,

and S. Thrun, MIT Press, April 2005.

[8] Mark de Berg, Marc van Kreveld, Mark Overmars,

and Otfried Schwarzkopf (2000). Computational

Geometry (2nd revised ed.). Springer-Verlag. ISBN

3-540-65620-0. Chapter 13: Robot Motion Planning:

pp.267–290.

[9] Nora H. Sleumer, Nadine Tschichold-Gűrman, 1999,

"Exact cell decomposition of arrangements used for

path planning in robotics",

http://www.inf.ethz.ch/publications/abstract.php3?n

o=tech-reports/3xx/329

[10] Michael A. Goodrich, 2000, “Potential fields

tutorial”,

http://borg.cc.gatech.edu/ipr/files/goodrich_potential

_fields.pdf

[11] www.activmediarobotics.com

[12] www.wikipedia.com

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Dusan Glavaski, Mario Volf, Mirjana Bonkovic

ISSN: 1109-2734 800 Issue 9, Volume 8, September 2009

http://en.wikipedia.org/wiki/Special:BookSources/0521862051
http://planning.cs.uiuc.edu/
http://en.wikipedia.org/w/index.php?title=Mark_de_Berg&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=Marc_van_Kreveld&action=edit&redlink=1
http://en.wikipedia.org/wiki/Mark_Overmars
http://en.wikipedia.org/w/index.php?title=Otfried_Schwarzkopf&action=edit&redlink=1
http://en.wikipedia.org/wiki/Springer-Verlag
http://en.wikipedia.org/wiki/Special:BookSources/3540656200
http://en.wikipedia.org/wiki/Special:BookSources/3540656200
http://en.wikipedia.org/wiki/Special:BookSources/3540656200
http://www.activmediarobotics.com/
http://www.wikipedia.com/

	29-677
	29-688
	29-726
	29-747

