
Mobile robot path planning using exact cell decomposition and 
potential field methods 

 

Dusan Glavaski, Mario Volf, Mirjana Bonkovic 

Faculty of Electrical Enginnering, Mechanical Engineering and Naval Architecture 

University of Split, Ruđera Boškovića bb 

dusan.glavask@fesb.hr, mario.volf@fesb.hr, mirjana.bonkovic@fesb.hr 

 

 
Abstract: - In this paper two classic path planning procedures have been explained and adopted to reduce 

computational time. When studying mobile robotics and robot motion planning, there is always a gap which 

exists between theoretical achievements and practical considerations of the described methods. This paper 

clearly overrides the mentioned problem describing minutely the procedures necessary for practical 

implementations and simulation in the Matlab and MobileSim environment. The algorithms have been 

presented together with their pseudo codes. The simulation results clearly show the advantages and 

drawbacks of each of the method.  
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1. Introduction  
The research in the field of robotics is focused 

on the algorithms used to accomplish 

fundamental tasks. The typical task is path 

planning for which exist numerous software [1], 

[2], [5], [6], [7], [8] as well as hardware [2], [3], 

[4] implementations for problem solving. In this 

paper we compare the efficacy through 

advantages and drawbacks of two methods for 

basic robot motion problem solutions, together 

with a practical implementations using Aria 

programming library, adopted for Amigo Bot 

mobile robot, produced by Active Media 

Robotics Ltd. The solutions are based on the 

classic path planning algorithms, namely exact 

cell decomposition and potential field methods. 

Therefore, the introduction follows with the 

basic motion problem and configuration space 

specifications. In Section 3, the path planning 

algorithms are presented together with the 

pseudo code of the concrete implementations. 

Section 4 presents the simulation results 

whereas Section 5 concludes the paper. 

   

2. Basic motion problem and 

configuration space specifications 
 

In the basic problem, it is assumed that the robot 

is the only moving object in the workspace and 

the dynamic properties of the robot are ignored, 

thus avoiding temporal issues. The motions are 

resticted to non-contact motions, so that the 

issue related to the mechanical interaction 

between two physical objects in contact can be 

ignored. These assumptions essential transform 

the "physical" motion planning problem into a 

purely geometrical path planning problem. The 

geometrical issues are simplified even further 

by assuming that the robot is a single rigid 

object. The motions of this object are only 

constrained by the obstacles. 

The basic motion planning problem resulting 

from these simplifications is the following: 

● Let  be a single rigid object (the robot) 

moving in Euclidean space , called 

workspace, represented as , with =2 or 3. 

● Let be fixed rigid object 

distributed in . These objects are called 

obstacles. 

● Assume that both the geometry of , 

 and the locations of the βi in  are 

accurately known. Assume further that no 

kinematic constrains limit the motions of A (we 

say that A is a free-flying object). 

The problem is: Given an initial position and 

orientation and a goal position and orientation 
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of  in , generate a path  specifying a 

continuous sequence of positions and 

orientations of  avoiding contact with , 

starting at an initial position and orientation, and 

terminating at the goal position and orientation. 

Report failure if no such path exists. 

 

 The underlying idea of the configuration space 

is to represent the robot as a point in an 

appropriate space (the robot’s configuration 

space) and to map the obstacles in this space. 

This mapping transforms the problem of 

planning the motion of a dimensioned object 

into the problem of planning the motion of a 

point. 

Let the robot  (at a certain position and 

orientation)  be described as a compact subset of 

, =2 or 3, and the obstacles  

be closed subsets of . In addition let and  

be Cartesian frames embedded in  and , 

respectively. is a moving frame, while is a 

fixed one. By definition, since  is rigid, every 

point  of  has a fixed position with respect to 

. But as position depends on the position 

and orientation of  relative in . Since the 

's are both rigid and fixed in , every point of 

, for all , has a fixed position with 

respect to . 

A configuration of an arbitrary object is a 

specification of the position of every point of 

this object relative to a fixed reference frame. 

Therefore, a configuration  of  is a 

specification of the position  and orientation  

of with respect to . The configuration 

space of  is the space  of all the configuration 

of . 

The path of  from the configuration  to the 

configuration  is a continuous map: 

 

 

with: 

 

, and . 

 

 and  are the initial and goal 

configurations of the path, respectably. Saying 

that  is a “free-flying” object means that, in the 

absence of obstacles, any path defined as above 

is feasible. 

The above definition of a path does not take 

obstacles into consideration. The set of paths 

which are solutions to the basic problem when 

there are obstacles in the workspace will be 

characterized. 

Every obstacle ,  to , in the work space 

maps in  to a region: 

  

 

  

which is called a . The union of all 

the : 

  

 

is called the , and the set: 

  

 

is called the free space. 

Any configuration in  is called a free 

configuration. 

A free path between two free configurations 

 and  is a continuous map formula. 

Two configurations belong to the same 

connected component of  if and only if 

they are connected by a free path. 

Given an initial and a goal configuration, the 

basic motion planning problem is to generate a 

free path between the two configurations, if they 

belong to the same connected component of 

, and to report failure otherwise. 

A semi-free path is a continuous map formula, 

where formula denotes the closure of . 

Hence, as it moves along such a path, the robot 

may touch obstacles. 
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More details and formal notations have been 

taken from [1]. 

 

 

 

3. Planning methods 
There exist a large number of methods for 

solving the basic motion planning problem. Not 

all of them solve the problem in its full 

generality. Despite many external differences, 

the methods are based on few different general 

approaches which are roadmap, cell 

decomposition and potential field. These 

approaches will be briefly introduced bellow. 

The first type of motion planning algorithm is 

referred to as roadmap method. There are 

several different methods for developing the 

roadmap such as visibility graph and Voronoi 

diagrams. The roadmap method vs. cell 

decomposition has been deeply studied in [2]. In 

this paper we study more deeply cell 

decomposition method and path planning 

algorithms. In the next section these two 

methods have been described more deeply, 

together with the basic idea of the roadmap 

method. 

 

 

3.1 Roadmap 

The roadmap approach to path generation 

consists of reducing the environmental 

information to a network of one-dimensional 

curves, called the roadmap. Once the roadmap 

has been constructed, a path can be calculated 

by connection the initial and final 

configurations to the network and finding a path 

in the roadmap. Examples of roadmap methods 

are the visibility graph, Voronoi diagram, free 

way net and silhouette graphs. 

In general roadmap methods are fast and most 

of them are easy to implement, but they do not 

provide an intrinsic way of describing the 

environmental information [1]. 

 

3.2 Cell decomposition 

The basic idea behind this method is that a path 

between the initial configuration and the goal 

configuration can be determined by subdividing 

the free space of the robot's configuration into 

smaller regions called cells.  After this 

decomposition, a connectivity graph, as shown 

below, is constructed according to the adjacency 

relationships between the cells, where the nodes 

represent the cells in the free space, and the 

links between the nodes show that the 

corresponding cells are adjacent to each other.  

From this connectivity graph, a continuous path, 

or channel, can be determined by simply 

following adjacent free cells from the initial 

point to the goal point.  Cell decomposition can 

be used in path planning in the following way: 

 

1. The free space of the polygonal two-

dimensional configuration space is 

determined. 

2. The free space is partitioned into a 

collection of cells. 

3. A connectivity graph is constructed by 

connecting the cells that share a 

common boundary (a hole in the 

bounding polygon corresponds to a cycle 

in the connectivity graph). 

 

In the on-line phase: 

 

1. A sequence of cells, a channel, which 

the robot must traverse in order to go 

from the initial position to the goal 

position, is obtained from the 

connectivity graph. 

2. A free path is constructed from the 

channel. [9] 

If the robot is not a point and can turn in any 

direction then computing the free space is a 

major part of the calculation. Most methods 

assume a point-sized robot or a convex 

polygonal robot with fixed orientation and 

increase the thickness of the wall by the width 

of the robot. The resulting free space is taken as 

an input. The triangular robot has a fixed 

orientation and a reference point p. Given the 

workspace defined by the interior of the bold 

polygon, the free space of the robot, with 

respect to the point p, is the white area with the 

bold line. However, it now becomes more 

difficult to describe the actual environment 

around a cell and most robots do not have a 

fixed orientation. 
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3.3 Potential field 

Potential field method treats the robot 

represented as a point in configuration space as 

a particle under the influence of an artificial 

potential field U whose local variations are 

expected to reflect the "structure" of the free 

space [1]. 

The potential fields can be imagined either as a 

charged particle navigating through a magnetic 

field or a marble rolling down a hill. The basic 

idea is that behavior exhibited by the 

particle/marble will depend on the combination 

of the shape of the field/hill [10]. Unlike 

fields/hills where the topology is externally 

specified by environmental conditions, the 

topology of the potential fields that a robot 

experiences are determined by the designer. 

More specifically, the designer creates multiple 

behaviors, each assigned a particular task or 

function, represents each of these behaviors as a 

potential field, and combines all of the 

behaviors to produce the robot's motion by 

combining the potential fields. The potential 

function is typically defined over free space as 

the sum of an attractive potential pulling the 

robot toward the goal configuration and a 

repulsive potential pushing the robot away from 

the obstacles. At each iteration an artificial force 

)()( qUqF  introduced by the potential 

function at the current configuration is regarded 

as the most promising direction of motion, and 

path generation proceeds along this direction by 

some increment. 

The potential is calculated as the sum of two or 

more elementary potential functions: 

 

)()()( qUqUqU repatt  

 

The attractive potential field can be simply 

defined as a parabolic well: 

 

2))((
2

1
)( qpeqU goalatt  

 

where e is a positive scaling factor and denotes 

the Euclidean distance. The function is positive 

or null, and attains its minimum at qgoal , where 

Uatt is singular. 

The main idea underlying the definition of the 

repulsive potential is to create a potential barrier 

around the C−obstacle area that cannot be 

traversed by the robots configuration. In 

addition, it is usually desirable that the repulsive 

potential does not affect the motion of the robot 

when it is sufficiently far away from 

C−obstacle. Formula for the repulsive potential: 

 

0

0

0
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1
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1

2
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where  is a positive scaling factor, 0  denotes 

the distance from to the C−obstacle region, and 

is a positive constant called the distance of 

influence of the C−obstacle. 

 

4. Exact cell decomposition 

algorithm 
In this section, the exact cell decomposition 

method which was used for the software 

implementation of the algorithm is introduced. 

Polygonal configuration space method is the 

simple case of exact cell decomposition where 
2C  and the C-obstacle region C  (the 

union of the C-obstacles) forms a polygonal 

region in C. For simplifying the presentation, 

we assume that the robot's free space 

CCC free /   is bounded. Figure 1 depicts 

such a configuration space.  

 
 

Figure 1: Two-dimensional configuration space 

(image taken from [1]) 

 

The decomposition of freeC  and the associated 

connectivity graph is defined as follows: 
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 A convex polygonal decomposition K 

of freeC  is a finite collection of convex 

polygons, called cells, such that the 

interior of any two cells do not intersect  

and the union of all the cells is equal to 

freeC . Two cells  and  in K are 

adjacent if only if  is a line 

segment of non-zero length. 

 The connectivity graph G associated 

with a convex polygonal decomposition 

K of freeC  is the non-directed graph 

specified as follows: 

o G's nodes are the cells in K . 

o Two nodes in G are connected by 

a link if and only if the 

corresponding cells are adjacent. 

 

Consider an initial configuration initq  and a goal 

configuration goalq  in freeC  . The exact cell 

decomposition algorithm for planning a free 

path connecting the two configurations is the 

following: 

1. Generate a convex polygonal 

decomposition K of freeC  . 

2. Construct the connectivity graph G 

associated with K . 

3. Search G for a sequence of adjacent cells 

between initq  and goalq . 

4. If the search terminates successfully, 

return the generated sequence of cells; 

otherwise, return failure. 

 

The output of the algorithm is a sequence 

p,...1  of cells such that 1initq  , pgoalq  

and for every , j  and 1j  are 

adjacent. This sequence is called a channel. 

One simple way to generate a free path 

contained in the interior of the channel produced 

by the search of G is to consider the midpoint 

jQ  of every segment j  and to connect initq  to 

goalq  by a polygonal line whose successive 

vertices are 1Q ,…, )1( pQ . 

The optimal convex decomposition of a polygon 

is computable in polynomial time. The degree 

of a polynomial is proportional to the number of 

vertices n. Unfortunately, the presence of holes 

in the polygon makes this problem NP-hard. 

A non-optimal convex polygonal decomposition 

of freeC  is generated by sweeping a line L 

parallel to the y-axis across freeC . The sweep 

process is interrupted whenever L encounters a 

vertex X of C . A maximum of two vertical 

line segments are created, connecting X to the 

edges of C  that are immediately above and 

immediately below X, as shown in Figure 2. The 

boundary of C  and the erected vertical line 

segments determine a trapezoidal 

decomposition of freeC . Each cell of the 

decomposition is either a trapezoid or a triangle. 

Two cells are adjacent if and only if their 

boundaries share a vertical segment. When such 

a segment is crossed the vertical structure of the 

constraints imposed by C  on the motion of A 

(robot) changes discontinuously. 

Notice that the same algorithm also applies 

when C  is not bounded; the generated 

decomposition then includes cells that extend 

infinitely in the y-axis direction. 

 
 

Figure 2: Trapezoidal decomposition of free 

space (image taken from [1]) 

 

The search of G can be done in various ways. A 

simple breadth-first search takes O(n) time. But 

the produced channel may be far from optimal 

with respect to the Euclidean lengths of the 

paths it contains. One possible alternative is to 

use the A* search algorithm, with a different 

search graph G' specified as follows: 
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 The nodes of G  are initq , goalq , and the 

midpoints jQ  of all the portions of 

boundary shared by adjacent cells. 

 Two nodes are connected by a link if 

and only if they belong to the same cell 

(they can be joined by a straight line 

segment in the cell). 

Each link is weighted by the Euclidean length of 

the straight line segment joining the two nodes. 

If a free path exists, the search produces the 

shortest free path contained in G'. It also 

determines a sequence of cells from which 

another path can be extracted. The search takes 

nn log  time. 

 

5. Potential field algorithm 
The algorithm that is used in the implementation 

is called best-first planning. It consists of 

throwing a fine regular grid of configurations 

across C. The grid is denoted by GC. GC can be 

defined by considering a single chart over C and 

discretizing each of the m corresponding 

coordinate axes. Given a configuration q in the 

m-dimensional grid GC, its p-neighbors are 

defined as all the configurations in GC having at 

most p coordinates differing from those of q, the 

amount of the difference being exactly one 

increment in absolute value. In addition, for 

simplifying the presentation, we make the 

following assumptions: 

 Both initq  and goalq  are configurations in 

GC . 

 If two neighbors in GC are in free space, 

the straight line segment connecting 

them in R also lies in free space. 

 The grid GC is bounded and forms a 

rectangle. 

Best-first planning consists of iteratively 

constructing a tree T whose odes are 

configurations in GC. 

The root of T is initq . At every iteration, the 

algorithm examines the neighbors of the leaf of 

T that has the smallest potential value, retains 

the neighbors not already in T at which the 

potential function is less than some large 

threshold M, and installs the retained neighbors 

in T as successors of the currently considered 

leaf. The algorithm terminates when the goal 

configuration goalq  has been attained or when 

the free subset of GC accessible from qinit has 

been fully explored. Each node in T has a 

pointer toward its parent. If  goalq  is attained, a 

path is generated by racing the pointers from jq  

to 1jq . The pseudo code will now be explained. 

The procedure BFP given below (Table 1.) is a 

formal expression of the best-first planning 

algorithm. In addition to the tree T, BFP uses a 

list OPEN that contains the leaves of T sorted 

by increasing values of the potential function. 

OPEN supports the following three operations: 

FIRST(OPEN), which removes the 

configuration of OPEN having the smallest 

potential value and returns it; INSERT(q, 

OPEN), which inserts the configuration q in 

OPEN; and EMPTY(OPEN), which returns true 

if the list OPEN is empty. 

 
Procedure BFP; 

begin; 

install q_init in T;  

[initially, T is an empty tree] 

INSERT(q_init, OPEN); mark q_init visited; 

[initially, all the configurations in GC are marked "unvisited"] 

SUCCESS <- false; 

while !EMPTY(OPEN) and !SUCCESS do 

begin 

q <- FIRST(OPEN); 

for every neighbour q_c of q in GC do 

if U(q_c)<M and q_c is not visited then 

begin 

install q_c in T with a pointer toward q; 

INSERT(q_c, OPEN); mark q_c visited; 

if q_c = q_goal then SUCCESS <- true; 

end; 

end; 

if SUCCESS then 

return the constructed path by tracing the pointers in T from 

q_goal to q_init; 

else return failure; 

end; 

 

Table 1: Pseudo code of the BFP procedure 

 

This procedure follows a discrete approximation 

of the negated gradient of the potential function 

until it reaches a local minimum. The algorithm 

is guaranteed to return a free path whenever 

there exists on in the free subset of the grid GC 

and to report failure otherwise. 
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6. Implementation 

Implementation was done using ARIA 

programming library, MATLAB, C++, Mapper 

and MobileSim robot simulator. A short 

description for the above (less known) 

programming packages will be given: 

1. ARIA - is an object-oriented, robot control 

applications-programming interface for 

MobileRobots (and ActivMedia) intelligent 

mobile robots. Written in the C++ language, 

ARIA is client-side software for easy, high-

performance access to and management of the 

robot, as well as to the many accessory robot 

sensors and effectors. ARIA includes many 

useful utilities for general robot programming 

and cross-platform (Linux and Windows) 

programming as well. ARIA can be run multi- 

or single-threaded, using its own wrapper 

around Linux threads or Win32 threads. You 

can access ARIA at different levels, from 

simply sending commands to the robot through 

ArRobot to development of higher-level 

intelligent behaviour using Actions.[11] 

2. Mapper – Mapper is application from 

ActivMedia Robotics company which provides 

the tools needed to construct a map of robot's 

real operating space.[11] 

3. MobileSim - is software for simulating 

MobileRobots/ActivMedia platforms and their 

environments, for debugging and 

experimentation with ARIA . It replaces SRIsim 

previously distributed with ARIA. MobileSim 

builds upon the Stage simulator, created by 

Richard Vaughan, Andrew Howard, and others 

as part of the Player/Stage project, with some 

modifications by MobileRobots. [12] 

 

6.1 Best-first path 

The algorithm is implemented using MATLAB 

and ARIA. The source code can be found in [3]. 

The BFP algorithm includes a tree structure. In 

the implementation a tree structure was not used 

because of its complexity. Instead, a so called 

checking function was designed and used. 

Consequently, for every iteration starting at the 

initial point initq  it looks up its p-neighbors. 

Then, it returns the neighbor configuration that 

has the lowest potential value. This returned 

configuration is marked as a1 and b1. The 

current configuration is marked simply as a and 

b. After the configuration with the minimal 

potential value is returned, it is checked if that 

value corresponds to the goal configuration. If it 

does than the path from initial to the goal 

configuration can be constructed. Otherwise, a 

and b become a1 and b1 and the iteration 

process continues. 

Also the GC space is represented as a 100x100 

grid. Every point is accessed through two 

counters I and J representing x and y of the 

configuration. In the example two obstacles are 

introduced: a rectangle and a square. The first 

iteration calculates the repulsive potential from 

every point of C-obstacles to the current point 

(note that the Euclidean distance between every 

point in C-obstacle and the current point must 

first be calculated). Than the attractive potential 

between the current point and the goal 

configuration is calculated. At the end these two 

potentials are added and the value of the 

potential in the current point attained. The 

checking function will now be explained in 

more detail. It takes the matrix of all potential 

values in a 100x100 space, current position (a,b) 

and the maximal configuration in 100x100 

which is naturally (100,100) or (X,Y). Than it 

examines the following conditions: 

1.   if (a>=2)&(b>=2)&(a<X)&(b<Y) 

2.   elseif (a>=2)&(b>=2)&(a<X) % eliminates b+1 

3.   elseif (a>=2)&(a<X)&(b<Y) % eliminates b-1 

4.   elseif (a>=2)&(b>=2)&(b<Y) % eliminates a+1 

5.   elseif (b>=2)&(a<X)&(b<Y) % eliminates a-1 

6.   elseif (a==1)&(b==1) 

7.   elseif (a==X)&(b==1) 

8.   elseif (a==1)&(b==Y) 

9.   elseif (a==X)&(b==Y) 

10. elseif (a==1) 

11. elseif (a==X) 

12. elseif (b==1) 

13.  elseif (b==Y) 

 

These conditions are used to see where the 

current configuration is in the map and to 

generate the p-neighbours A11, A12, A13, A21, 

A23, A31, A32, A33. As you can see A22 is the 

current location. Now the algorithm must return 

the value of the neighbour that has the lowest 

potential value. Before this step is performed 

several conditions must be examined: 
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% A13 A23 A33 

% A12 X A32 

% A11 A21 A31 

if  (A11<A21)&(A11<A31)&(A11<A12)& 

 (A11<A32)&(A11<A13)&(A11<A23)&(A11<A33) 

x=a-1; 

y=b-1; 

elseif  (A21<A31)&(A21<A12)&(A21<A32)& 

 (A21<A13)&(A21<A23)&(A21<A33) 

x=a; 

y=b-1; 

elseif  (A31<A12)&(A31<A32)&(A31<A13)& 

 (A31<A23)&(A31<A33) 

x=a+1; 

y=b-1; 

elseif  (A12<A32)&(A12<A13)&(A12<A23)& 

 (A12<A33) 

x=a-1; 

y=b; 

elseif  (A32<A13)&(A32<A23)&(A32<A33) 

x=a+1; 

y=b; 

elseif  (A13<A23)&(A13<A33) 

x=a-1; 

y=b+1; 

elseif  (A23<A33) 

x=a; 

y=b+1; 

else 

x=a+1; 

y=b+1; 

end 

 

6.1 Polygonal configuration space 

The algorithm is implemented using ARIA 

library and C++ programming language. The 

maps for the simulation are made with the 

Mapper application. Implementation of exact 

cell decomposition algorithm has two separate 

parts: 

1. Graphical analysis and processing of the 

map. 

2. Robot movement through coordinates of 

the shortest path for the given map. 

 

In this paper the focus is on the second step of 

the implementation. It is up to the user of the 

application to calculate the coordinates of all 

possible paths for the given map. 

For input, the application uses file created by 

the user which contains coordinates of all 

possible paths. The file must be formatted in a 

way that one line represents one path and each 

point is divided by a space character from 

another. Each path must contain robots initial 

configuration for purposes of calculating 

Euclidean distance for them. The sample of 

such file can be seen in Table 2. 

 
1.01 1.01 2 1.5 3 1 4 1.5 5 1 6 0.5 6.51 1.52 7.5 4 

1.01 1.01 2 1.5 3 1 4 1.5 5 3.5 6 4.5 6.31 4.02 7.5 4 

1.01 1.01 2 4 4 4 5 3.5 6 4.5 6.31 4.02 7.5 4 

1.01 1.01 2 4 4 4 5 1 6 0.5 6.31 1.52 7.5 4 

 

Table 2: Sample of map configuration file 

Class Coord (Table 3.) is created for purposes 

of storing x and y points for single coordinate: 

 

class Coord { 

public: 

Double xt; 

Double yt; 

Coord(){}; 

Coord(double x, double y) : xt(x), yt(y) {}; 

}; 

 

Table 3: Class Coord 

 

The application reads the contents of file and 

stores data in vector of classes Coord; the 

collection of all paths is stored in vector of 

vectors Paths (Table 4.): 

 
typedef vector<Coord>Dots 

typedef vector<Dots>Paths 

 

Table 4: Vectors used for storing paths 

 

When all the data has been stored the Euclidean 

distance is calculated for each path and these 

values are used to determine the shortest path: 

 
double distance (Dots d) { 

double dist, tmp; 

for (Dots::size_type i=0; i < d.size();i++) { 

for (Dots::size_type j=i+1; j<=i+1; j++ ) 

tmp += pow((d[i].xt - d[j].xt),2) + pow((d[i].yt - 

d[j].yt),2); 

} 

dist = sqrt(tmp); 

return dist; 

} 

 

Table 5: Function for calculating Euclidean 

distance of paths 
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Once the shortest path has been chosen it is 

stored in a file called shortest. The initial 

configuration of robot isn't stored in this file (it 

is only used for the calculation of distance from 

initial to goal configuration of the robot). While 

creating the map user can position the robot 

anywhere in the free space. When the 

simulation 

is started MobileSim uses robots initial 

configuration as the beginning of the coordinate 

system (0,0). To solve this problem offset has to 

be subtracted from each point in the coordinates 

before moving of the robot occurs. Notice that 

the initial configuration of the robot 

(coordinates of robots starting point) represents 

the offset. ARIA with needed classes and 

methods is initialized for purposes of 

controlling robot movement (Table 6.).  

 
Aria::init()  

ArArgumentParser 

parser(&argc, argv) 

 

parser.loadDefaultArguments()  

ArSimpleConnector 

simpleConnector(&parser) 

 

ArRobot robot  

ArSonarDevice sonar  

ArAnalogGyro gyro(&robot)  

robot.addRangeDevice(&sonar)  

 

Table 6: Initialization of ARIA classes and 

method 

 

The method gotoPoseAction.setGoal(ArPose(x, y)) is 

used for the movement of the robot. The 

setGoa(ArPosegoal) method sets a new goal of the 

robot and sets the action to go to the given goal. 

This action goes to a given ArPose coordinate 

very naively. The action drives straight towards 

a given ArPose and it stops when it gets close 

enough to the goal. setGoal method is used for 

giving a new goal to the robot, while 

haveAchievedGoal is used to check if the robot has 

achieved the given goal. ArPose takes 

coordinates in millimetres. For this reason the 

coordinates of the paths given in a file should be 

multiplied by 1000, because the values in the 

file are given in metres (Mapper application 

uses metres as coordinate values). The whole 

procedure can be seen in Table 7. 

 

7. Simulation results 

7.1. Best-first path 

The algorithm is simulated in Matlab and on 

MobileSim as well. For the purpose of the 

simulation a map with two rectangle obstacles is 

used. In the example which follows, the goal 

point is (8,8). Figure 3 illustrates only the 

repulsive potential.  

It can be easily seen that the repulsive potential 

does not depend on the position of the goal 

configuration. Figure 4 represents only the 

attractive potential. The difference between 

these two graphs is that the attractive potential 

depends on the position of the goal 

configuration.  

 
 

if (gotoPoseAction.haveAchievedGoal()) { 

shortest >> x; 

shortest >> y; 

if(shortest.eof()) 

break; 

x=x-x_offset; //offset rescission 

y=y-y_offset; 

x=x*1000; //conversion of coordinates to millimetres 

y=y*1000; 

gotoPoseAction.setGoal(ArPose(x, y)); //sending robot to 

the next calculated goal 

} 

 

Table 7: Procedure of robot movement 

 

Adding up repulsive (negative) and attractive 

(positive) potential fields, a graph which can be 

seen in the Figure 5, is attained. Similarly, as in 

previous example, Figure 6 shows how the 

algorithm works when it is embedded in 

MobileSim. The movement of the robot depends 

on the potential function. It determines the value 

of the potential in each point of space. Also the 

C-obstacle region is controlled with the distance 

of influence. If it has a large value than the C-

obstacle space spreads out in space creating a 

potential barrier that can not be traversed by the 

robot. If a goal configuration is inside the radius 

of the distance of radius than the algorithm 

would run for infinity. This is one problem that 

we must pay a close attention to. Another 

problem is the local minima. The local minima 

is a point in which the value of the potential 

equals zero but it is not a goal point. 
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Aside from obvious problems potential field 

method is the simplest and wittiest technique for 

robot motion planning. Its main attribute is its 

simplicity. 

 

 

 

 
a) 

 

 
b) 

Figure 3: Potential field in case where there 

are two obstacles: a) perspective 

representation; b) plane view 

 

 

 
Figure 4: The map represents the attractive 

potential 

 

 

 
 

Figure 5: Attractive+repulsive potential 

field+free path 
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Figure 6: Trace of the path generated in 

MobileSim 

 

 

7.2 Polygonal configuration space 

MobileSim application was used for the 

simulation of the algorithm. The application 

works from a command line. A user must pass 

three arguments to application: 

 Name of the file with coordinates of all 

possible paths for a certain map 

 Wanted speed of the robot (mm/s) 

 Close distance (used to set the distance 

which is close enough to the goal (mm)). 

The program prints out values of all possible 

paths, values of Euclidean distances and the 

coordinates of the shortest path. The motion and 

path of the robot can be seen in the MobileSim 

application. It is easily noticed that the robots 

path is determined by the midpoints Qj of 

segments j  . The path of the robot is highly 

influenced by the layout of the obstacles in free 

space. The distance between obstacles and the 

edge of robots free space determines how 

widely 

the robot avoid an obstacle (Figure 7). During 

the simulation problems occurred with higher 

speed values on certain maps. The robot would 

rotate too fast and miss its next goal, resulting in 

a random circular movement of the robot around 

the missed coordinate (Figure 8). Similar 

problems occurred when the robot would come 

too close to the obstacle during the rotation. The 

possible solutions to this problem are lowering 

robots speed or increasing close distance 

through application arguments. 

 

 

 
 

 

Figure 7: Path generated by the application 

(simulation in MobileSim) 

 

 
 

Figure 8: Robot movement problem as a high 

speed result 
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Figure 9: Path generated by polygonal 

configuration space method 

 

This method, in most cases, avoids obstacles 

more widely than other methods, while the 

paths not being significantly longer. The paths 

generated by this method are usually 

significantly better than those generated using 

the visibility graph method. The simulation on 

the same map as shown in the best-first path 

chapter can be seen in Figure 9. 

The main disadvantage of this method is hard 

implementation of map analysis and processing. 

On the other hand, it is very logical and easy to 

understand. 

 

8. Conclusion 

 

Two typical methods used in robot motion 

planning were shown. Potential field method 

was originally developed as an on-line collision 

avoidance approach, applicable when the robot 

does not have prior knowledge of the obstacles, 

but senses them during motion execution. 

Emphasis was put on real-time efficiency, rather 

than on guaranteeing the attainment of the goal. 

It may get stuck at a local minimum of the 

potential function other than the goal 

configuration. However, the idea underlying 

potential field can be combined with graph 

searching techniques. Then, using a prior model 

of the workspace, it can be turned into 

systematic motion planning approach and this 

was done in the previous examples. In contrast 

to potential field method the exact cell 

decomposition method is not meant for real time 

path planning. It is a graphical method used 

when a prior model of the workspace is known. 

The method guarantees finding a free path if 

one exists and if it is attainable by the robot. 
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