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Abstract: This paper analyses transformer loss of life attending to the realistic variability of both 
structural and functional parameters. The article begins with the modelling of load and ambient 
temperature profiles, by means of chronological series theory. A simple additive model is proposed 
and validated with realistic data, loss of life resulting from probabilistic functional and structural 
parameters is analysed through a sensitivity study. 
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1 Introduction 
This paper is devoted to load and ambient 
temperature (functional parameters) profiles 
modelling and to the sensitivity study of thermal 
and loss of life models relatively to functional and 
structural parameters. The functional parameters 
modelling will be based on realistic data and is 
developed on section §2. It is not objective of this 
section to exhaustively apply time series theory in 
modelling realistic load and ambient temperature 
profiles. Such complete analysis is out of the scope 
of this work. The objective is, based on data 
representing the load profiles of realistic 
distribution transformers and ambient temperature 
profiles, to obtain sufficiently accurate models that 
will give physical support to the probabilistic 
models that will be used on section §3. Loads 
modelling and forecasting play a fundamental role 
in power systems planning and management; due to 
its connection with weather characteristics, loads 
and weather modelling are joined subjects of some 
works, [1], [9] and [3-4]. Provided a transformer 
thermal model is chosen, deterministic hot-spot 
temperature can easily be computed, given the 
input profiles of load and ambient temperature. 
When analysing the time series representative of a 
given transformer load (or the time series of a 
localised ambient temperature), one can visualise a 
cycling (deterministic) behaviour (daily, weekly, 
monthly, seasonally) to which is superposed a 
random behaviour. Such input profile structure will 

be reflected on consequent hot-spot temperature 
profile: deterministic and random components. 
Apart from specific characteristics and 
improvements that transformer thermal model may 
reflect, the validity of deterministic input profiles is 
questionable, due to unpredictable (random) 
changes that realistic profiles do present. This fact 
determines a probabilistic analysis of the system, 
which is developed on section §3.  
 
2 Functional Parameters Modelling 
2.1 Time Series Descriptive Techniques 
Despite the diversity of approaches, methodologies 
and end-use applications, when studying realistic 
load and weather data profiles, one can always 
identify trends (deterministic) components, to 
which are superposed irregular (random) 
behaviours. Deterministic data can be described by 
an explicit mathematical relationship (a 
mathematical model). Provided no unforeseen 
event in the future will influence the phenomenon 
producing the data set under consideration, for 
identical experience conditions, the mathematical 
model will reproduce the same exact data set, no 
matter how many times the experiment is repeated. 
Random data values are unpredictable in a future 
instant in time, and therefore must be described in 
terms of probability statements and statistical 
averages, rather than by explicit mathematical 
relationships. In practice problems, involving 
random variables, one must not expect to obtain the 
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theoretical results, namely, a purely random 
variable. Main reason is that a random variable is a 
theoretical concept, which can not be reproduced 
(simulated) in practice; only samples of random 
variables can numerically be simulated. The 
statistics of samples only asymptotically (with the 
increasing length of the sample) tend to random 
variable statistics. A random variable can be 
viewed as a sample of infinite length. 
 

 
Fig. 1: Annual time series representing daily maximal 

ambient temperatures. Data from 2005. 
 
Time series representative of load and ambient 
temperature profiles do present deterministic and 
random characteristics simultaneously, Fig.1. Such 
a data set, presenting concomitant time and random 
characteristics is referred as a stochastic process. 
Time plot will often show up the most important 
properties of a time series [8] and [18]. It was 
predictable and can be visually confirmed that 
ambient temperature time series do exhibit a 
seasonal effect that, although not representative on 
the sample, is expected to be cyclic. Possible long-
term trends will not be considered since, although 
might be present, the sample length is insufficient 
to allow this kind of analysis. A common model to 
described time series as the one represented on 
Fig.1, is the additive model of the form [8], [10], 
and [14]: 

trantt xxx += det ,                           (1) 
 

where tdetx  represents the deterministic cyclic 
component and tranx  the random component. 
Most of the time series theory concerns stationary 
time series, which, intuitively, is a time series 
where no systematic temporal variations in mean 
and variance occur. From the analysis of series 
residuals, after removing the seasonal effects (and 
trends when existent), one may conclude that it is 
possible to model residuals by means of a 
stationary stochastic process. Several approaches, 
methodologies and tests can be used to detect time 
series characteristics such as cyclic variations, 
stationary, randomness, [11], [20-21] and [6]. 
However, a complete and powerful tool is provided 
by the autocorrelation function. If xt and yt are two 

samples, length N, of two stationary ergodic 
processes, an estimator of their correlation function 

)(ˆ kxyρ  is, according to [8] and [20]: 
 

)0(ˆ
)(ˆ

)(ˆ
xy

xy
xy VOC

kVOC
k =ρ ,                          (2) 

 

where )(ˆ kVOC xy  denotes an estimator of the 
covariance function 
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with x  and y  representing the samples averages 
given by: 
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when xt ≡ yt, expression (4) represents the 
autocorrelation function and (3) the autocovariation 
function. When is clear the variable it refers to, the 
estimator of the autocorrelation function will be 
denoted by xρ̂ (k) or simply by ρ̂ (k) and the 
estimator of the autocovariation by CÔVx(k) or 
simply by CÔV(k). The analysis of the 
corresponding sample autocorrelogram (plot of the 
autocorrelation coefficients as a function of time 
lag k), often provides fully insight into the 
probabilistic model that describes the data. The 
autocorrelation function is a measuring of 
correlation (link) between series data values at 
different time distances apart. For a random 
variable, correlation coefficients must be null for 
any lag k but k=0. It should be remarked that, 
mathematically, the maximal time lag k in (2) is 
limited to N/2, although [8] states that N/4 is the 
usual limit. Information contained in the sample 
time series may not always be sufficient to 
completely characterise it. Fig.2(a) represents the 
autocorrelogram of the one-year time series of data 
represented on Fig.1. And although yearly cyclic 
variations are expected to occur, the 
autocorrelogram does not evidence them. However, 
by increasing the sample size to a two years length, 
the respective autocorrelogram being represented 
on Fig.2(b), clearly evidences an almost sinusoidal 
variation, which, although expected, should be 
confirmed with a longer size sample. If a time 
series could be described by a purely deterministic 
sinusoidal function of the form: 
 

tXxt ω= cos ,                                 (5) 
 

where X and (ω  are constants, its autocorrelation 
would evidence this cyclic variation, since for large 
sample lengths (N →∞) it would tend to: 
 

tk ω=ρ cos)( .                              (6) 
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Following the evidences of Fig.2 autocorrelogram 
and International Standards [12] suggestion, the 
deterministic component, xdet t , of model (1) was 
assumed to be given by a generic deterministic 
sinusoidal variation represented by: 
 

)cos(det xddt txxx ϕ+ωΔ+= ,         (7) 
 

where dx , dxΔ and  xϕ  are constants. 

 
   a) 

 
b) 

Fig. 2: Autocorrelogram of daily maximal ambient 
temperatures in (a) 2005 and (b) 2004 and 2005. 

                                                                                                                                                            
From the analysis of time series residuals (random 
component tranx ) Fig.3(a) and respective 
autocorrelogram, Fig.3(b), one can extract clues 
towards its modelling. The interpretation of 
autocorrelogram does require considerably 
experience in time series analysis and, according to 
[8] and [22], this is one of the hardest aspects of 
time series analysis. 
 

 
a) 

 
b) 

Fig. 3: Random component (a) and respective 
autocorrelogram (b) of maximal ambient temperature in 

2005. 
 
Plot diagram of random component, Fig.3(b), 
shows no evident cyclic or mean variations; as a 
first approximation, variable could be taken as 
random. However a more accurate analysis, shows 
that autocorrelogram represented on Fig.3(b) is not 
typical of a random variable since it should be ρ (0) 
=1 and ρ (k)=0 for 0≠∀k . Apart from small 
amplitude and of high frequency (probably) 
cyclicvariations, one can find considerably high 

)(ˆ kρ  values for initial time lags, k=1...6. To 
determine the best model that fits a given sample 
autocorrelation function, the methodology proposed 
by [7] consists in, comparing sample 
autocorrelation function with the theoretical 
autocorrelation function of several models, and 
choose the one which best agrees with the sample 
autocorrelation function. Most common models are 
the AutoRegressive models (AR), the moving 
Average Models (MA) and mixed models such as 
AutoRegressive Moving Average models (ARMA) 
and Autoregressive Integrated Moving Average 
models (ARIMA). As far as the objective of this 
work is concerned, one will limit oneself to present 
the AR model. The process {Xt} is said to be AR of 
order m if, given a purely random process {Zt}with 
null mean and variance 2

Zσ  [8] and [2]: 

tmtmtt Zx...xx +α++α= −−11 ,              (8) 
 

where, 1α ... mα , are constants. 
For first order AR processes (also referred as 
Markov process [8]) the estimator of 1α  denoted by  

1α̂ , is [8]: 
  ( )01 ρ=α ˆˆ .                       (9) 

 

Autocorrelogram of Fig.3 is suspicious to 
correspond to a first order AR model since initial 

)(ˆ kρ  values appear to decrease geometrically [5] 
and [8]. If time series tranx  is a sample of a first 
order AR process { tranX }, it must be: 
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ttrandtrand ZXX +α= −11 .                      (10) 
 

Using estimator (9) and sample tranx the resulting zt 

sample (being zt a sample of the random variable 
Zt) and corresponding autocorrelogram are 
represented on Fig.4. To determine whether Figure 
4 corresponds to a sample autocorrelogram of a 
random variable (ρ (k)=0 for k> 0) or not, 
confidence intervals must be determined. For large 
N values, being the sample autocorrelation )(ˆ kρ  
normally distributed with [14] and [19]: 
 

)()(ˆ kk ρ=μρ  and ))0(ˆ21(1
)(ˆ ρ+≈σρ Nk  for  k>0 (11) 

 

a ( )%1 Sα− confidence interval for )(ˆ kρ , being 

Sα  the significance level of the test, is given by: 

 P ( ) ( ) SS
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for k>0 being ( )Sα−Φ− 11   the inverse of the 
standardised normal distribution evaluated 
at ( )Sα−1 . Attending to (11), and that for a random 
variable it is (ρ (k)=0 for k>0), probability 
expression (12) is traduced by the statement: 
 
   ( ) ( )

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
α−Φρ+α−Φρ+−∈ρ −−

SSk NN
1))0(ˆ21(1;1))0(ˆ21(1ˆ 11  

for k>0                                            (13) 
 

On Figure 4, limits of (13) with Sα =5% are also 
represented. 

 
a) 

 
b) 

Fig. 4: Variable 
tranz (a) and respective  

autocorrelogram (b). 

If ( )%1 Sα− of the )(ˆ kρ  values, with k>0, are 
within (13) limits, )(ˆ kρ is accepted as 
representative of the autocorrelation of a random 
variable and therefore, zt is accepted as a random 
variable. A second step for the complete modelling 
of time series xt, is the determination of random 
variable zt distribution function. This is achieved by 
testing the probability density functions (pdf) of 
theoretical (expected) random variables against the 
realistic (observed) pdf one obtains for zt. These 
tests are referred as goodness-of-fit tests, [2], [5], 
[11] and [20]. A key element associated to 
statistical tests is itsp-value. According to [15] test 
formulation, the p-value represents the maximal 
significance level at which the hypothesis should be 
accepted. Its value measures the closeness of the 
observed pdf relatively to the theoretical pdf, the p-
value will be as close to the unity as the observed 
pdf is close to the theoretical pdf. Justification to 
give relevance to AR models resides on their 
physical base. They represent memory systems in 
the sense that values at instant t are influenced by 
the memory of previous values at t-1,..., t-m. Due to 
earth thermal inertia, ambient temperature is 
expected to be a function of near past ambient 
temperatures; due to its correlation with ambient 
temperature similar behaviour can be expected on 
the load profiles of distribution transformers. 
 
2.2 Case Studies 
Previously described techniques were applied to 
four time series, representing maximal, MΘ , 
minimal, mΘ , average, avΘ , and half-amplitude 

amΘ  values of daily ambient temperature in the 
Craiova region on the years 2002 to 2005, being: 
 

( ) 2/mMav Θ+Θ≡Θ and  ( ) 2/mMav Θ−Θ≡Θ . (14) 
 

Samples length is, therefore, N=365. In order to 
keep exposition as clear as possible, the previous 
generic notations x and z of §2.1 will be used, being 

amavmMzx ΘΘΘΘ≡ ,,,, . By means of discrete 
Fourier transformer, parameters xdd xx Δ, , xϕ and  of 
deterministic model represented by (7), were 
determined [13] and [16]. Resulted random 
residuals, tranx , were analysed and, although 
respective autocorrelograms revealed the presence 
of an AR model, the histogram of tranx  amplitudes 
passed a Chi-Square test regarding a Gaussian 
distribution. If model: 
 

         +ϕ+ωΔ+= )cos( xddt txxx N )ˆ,ˆ( xx σμ ,    (15) 
 

where 0ˆ =μx is valid, xt can be considered as a non-
stationary random variable, which mean is time 
dependent, )(t

txμ , according to: 
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       )cos()( xddx txxt
t

ϕ+ωΔ+=μ                   (16) 
 

and which standard deviation, generically denoted 
by )(t

txσ , results, in fact, in a time independent 
(stationary) function: 

    xx t
t

σ=σ ˆ)( .                                (17) 
From (16) and (17) one can obtain the variation 
coefficient, )(tCV

tx : 
 

)cos(
ˆ

)(
)(

)(
xdd

x

x

x
x txxt

t
tCV

t

t

t ϕ+ωΔ+
σ

=
μ

σ
≡ ,     (18) 

 

which mean value, )(tCV tx , is: 

d

x
x

x
tCV t

σ
=

ˆ
)( .                          (19)  

 

From )(tCV tx  values one can realise the degree of 
xt concentration around its mean ( )t

txμ . 
Deterministic model parameters, dd xx Δ,  and xϕ , 
estimators of residuals first moment, xμ̂  and xσ̂ , 
mean value of variation coefficient, txCV , and p-
value from the Chi-Square test, are resumed in 
Table 1, for the 4 analysed years. 
 
Table 1: Deterministic model parameters, random 
component 

tranx  first moment estimators and p-value, 
for ambient temperature time series. 

 [ ]Cxd
0  [ ]Cxd

0Δ  [ ]radxϕ  [ ]Cx
0μ̂

 

2002 
MΘ  

 
20.935 

 
7.109 

 
2.829 

 
0.000 

mΘ  12.395 5.384 2.657 0.000 

avΘ  16.233 6.237 2.753 0.000 

amΘ  4.275 1.009 -2.969 0.000 

2003 
MΘ  

 
20.027 

 
6.803 

 
2.821 

 
0.000 

mΘ  12.455 5.339 2.733 0.000 

avΘ  16.247 6.067 2.783 0.000 

amΘ  3.789 0.777 3.125 0.000 

2004 
MΘ  

 
21.011 

 
6.283 

 
2.733 

 
0.000 

mΘ  12.975 4.699 2.531 0.000 

avΘ  16.993 5.465 2.647 0.000 

amΘ  4.021 0.963 3.243 0.000 

2005 
MΘ  

 
22.111 

 
6.797 

 
2.810 

 
0.000 

mΘ  14.011 4.639 2.606 0.000 

avΘ  18.059 5.687 2.725 0.000 

amΘ  4.051 1.223 -3.082 0.000 

 [ ]Cx
0σ̂  )(tCV tx [p.u.] p-value[%] 

2002 
MΘ  

 
3.529 

 
0.169 

 
53 

mΘ  2.084 0.167 40 

avΘ  2.435 0.145 77 

amΘ  1.567 0.366 52 

2003 
MΘ  

 
3.368 

 
0.169 

 
22 

mΘ  2.356 0.187 90 

avΘ  2.485 0.154 32 

amΘ  1.505 0.395 97 

2004 
MΘ  

 
3.162 

 
0.152 

 
9 

mΘ  2.183 0.169 11 

avΘ  2.331 0.136 75 

amΘ  1.395 0.345 83 

2005 
MΘ  

 
3.527 

 
0.158 

 
81 

mΘ  2.654 0.188 75 

avΘ  2.728 0.150 47 

amΘ  1.512 0.375 8 
 
For these four analysed years, the model reproduces 
very well each year, although the number of 
considered years is insufficient to drawn 
generalised conclusions or forecasts for the coming 
years. All samples passed with relatively high p-
values Chi-square tests regarding the hypotheses of 
being Gaussian distributed. From the low values of 

txCV  (one can conclude that random component 

tranx  is relatively concentrated around the 
deterministic component. The histograms and 
respective theoretical probabilistic density 
functions (pdf) of a Gaussian distribution with 
parameters xμ̂ and xσ̂  are represented on Figure 5 
and Fig.6. A deeper analysis of tranx  residuals with 
respective autocorrelation functions revealed the 
presence of possible first order AR models. The 
resulted zt variables, once the first order AR model 
was removed, were studied. All passed a 
randomness test with a confidence level of 5%. 
Concerning the probabilistic distributions, in some 
cases zt variable get closer to the Gaussian 
distribution, in others get far from the Gaussian 
distribution, even failing a Chi-square test at 5% 
level of confidence. These results indicate that 
more elaborate models are required to fully 
modelling these time series. First moment 
estimators, zμ and zσ̂ , of zt variables, as well as the 
p-value of the Chi-square test concerning a 
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Gaussian distribution, are represented on Table 2. 

 
   a) 

 
   b) 

Fig. 5: Histogram and respective Gaussian pdf for 
random component of MΘ  (a) and mΘ  (b). Data from 

2005. 

 
   a) 

 
   b) 

Fig. 6: Histogram and respective Gaussian pdf for 
random component of avΘ  (a) and amΘ  (b).  

Data from 2005. 

By comparing xσ̂  and zσ̂  values one concludes 
that the taking into consideration of the first order 
AR model, reduces the variance level of random 
component ( zσ̂ < xσ̂ ). However, it is 1ˆ/ˆ ≈σσ zx  
meaning that supplementary information carried by 
the AR model is quite reduced. 
 
Table 2: Random component tranz  first moment 
estimators and p-value, for ambient temperature time 
series. 

 [ ]Cx
0σ̂ [ ]Cx

0σ̂  p-value 
[%] 

zx σσ ˆ/ˆ  
[p.u.]

2002  

MΘ  

 
0.000 

 
2.556 

 
43 

 
1.381 

mΘ 0.000 1.613 78 1.289 

avΘ  0.000 1.612 7 1.505 

amΘ  0.000 1.361 4 1.153 

2003 

MΘ  
 
0.000 

 
2.447 

 
12 

 
1.373 

mΘ  0.000 1.963 3 1.203 

avΘ  0.000 1.752 64 1.416 

amΘ  0.000 1.330 7 1.131 

2004  

MΘ  
 
0.000 

 
2.373 

 
14 

 
1.333 

mΘ  0.000 1.742 70 1.255 

avΘ  0.000 1.672 1 1.393 

amΘ  0.000 1.211 75 1.149 

2005  

MΘ  
 
0.000 

 
2.390 

 
75 

 
1.473 

mΘ  0.000 1.982 19 1.336 

avΘ  0.000 1.753 87 1.555 

amΘ  0.000 1.281 99 1.185 
 
Although model traduced by: 
 

+ρ+ϕ+ωΔ+= −10ˆ)cos( txdt xtxxx N )ˆ,ˆ( xx σμ (20) 
 

where 0ˆ =μ z  results more precise for some of the 
analysed time series, the model traduced by:  
 

+ϕ+ωΔ+ )cos( xdd txx  N )ˆ,ˆ( xx σμ ,      (21) 
 

where 0ˆ =μx  can describe in a more generic way, 
although less accurate, the time series 
representative of maximal, minimal, average and 
half-amplitude values of daily ambient 
temperatures of analysed years. A similar analysis 
was performed for the load profiles of two 
distribution transformers, denoted by ES1 and BI1. 
Available data includes daily maximal, KM, 
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minimal, Km, average, Kav, and half-amplitude, Kam, 
load factor for the 2003, 2004 and 2005 years, 
being, analogously to ambient temperature: 
 

( ) 2/mMav KKK +≡  and ( ) 2/mMav KKK −≡ . (22) 
 

During this period no structural network changes 
occurred in the network. As an example, maximal 
and minimal load factor values of ESI transformer, 
relatively to 2005, are represented on Fig.7. The 
loads served by this transformer are, mainly, of the 
residential type with a small component of industry. 
Similar to ambient temperature modelling, the 
previous generic notations x and z will be used, 
being amavmM KKKKzx ,,,, ≡ . Deterministic cyclic 
component was assumed to follow also a sinusoidal 
variation as represented on (7) and resulted 
residuals, tranx , were studied. Table 3 resumes 
obtained values for deterministic model parameters, 

dx , dxΔ and xϕ , estimators of residuals first 
moment, xμ̂  and xσ̂ , and p-value from the Chi-
Square test regarding a Gaussian distribution of the 
residuals. 
 

 
Fig. 7: Annual time series representing daily maximal 
(denoted with +) and minimal (denoted with -) load 

factor of distribution transformer ESI. Data from 2005. 
 
Table 3: Deterministic model parameters, random 
component tranx first moment estimators and p-value, 
for ESI distribution transformer. 

 dx  [p.u.] dxΔ  [p.u.] xϕ  [rad] 

2003 
MK  

 
 
0.611 

 
 
0.053 

 
 
-0.029 

mK  0.277 0.016 0.292 

avK  0.443 0.034 0.025 

amK  0.165 0.023 -0.157 

2004 
MK  

 
 
0.582 

 
 
0.055 

 
 
0.115 

mK  0.273 0.016 0.571 

avK  0.426 0.037 0.209 

amK  0.156 0.023 -0.042 

2005 
MK  

 
 
0.602 

 
 
0.035 

 
 
-0.932 

mK  0.281 0.016 -0.773 

avK  0.440 0.025 -0.879 

amK  0.157 0.009 -1.089 

 

 xμ̂  [p.u.]  xσ̂ [p.u.] 
txCV  

[p.u.] 

p-value
 [%] 

2003 
MK  

 
 
0.000 

 
 
0.045 

 
 
0.074 

 
 
47 

mK  0.000 0.025 0.086 0 

avK  0.000 0.033 0.074 35 

amK  0.000 0.018 0.104 15 

2004 
MK  

 
 
0.000 

 
 
0.049 

 
 
0.085 

 
 
59 

mK  0.000 0.026 0.095 19 

avK  0.000 0.035 0.079 11 

amK  0.000 0.019 0.121 85 

2005 
MK  

 
 
0.000 

 
 
0.040 

 
 
0.065 

 
 
25 

mK  0.000 0.018 0.061 12 

avK  0.000 0.024 0.053 0 

amK  0.000 0.019 0.118 67 

 
On Fig.7, time series representative of MK  "looks" 
much more disperse than the mK  time series, which 
is a common fact in the three analysed years. 
Minimal values of distribution transformer load 
profiles are very well defined by (usually) night 
loads, corresponding to "base" equipment which is 
almost constant if no structural changes or 
accidents occur in the transformer network, while 
maximal values traduce temporary overloads due to 
residential/industrial activity. From txCV values, 
represented on Table 3, one realises that load 
profiles are much more concentrated around 
respective deterministic components, than ambient 
temperature profiles are. Globally, results resumed 
on Table 3 can be considered as good although 
residuals from mK in 2003 and avK  in 2005 can not 
be considered to follow a Gaussian distribution. In 
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fact, from the study of the autocorrelation function, 
one realises the presence of higher frequencies than 
the fundamental frequency (annual) on the 
deterministic sinusoidal model (7). This was an 
expected occurrence since load profiles are 
constrained to a much great diversity of factors 
than ambient temperature profiles are. One can 
detect, for example, the increasing appearance of a 
second harmonic (bi-annual) reflecting the 
increase in loads due to air-conditioning 
equipment during summer period. However, one 
should recall the purpose of this work: to give a 
physical justification for theoretical load and 
ambient temperature profiles used in following 
simulations and not fully modelling these profiles. 
The histograms and respective theoretical pdf’s of 
Gaussian distributions with parameters xμ̂ and xσ̂  
reproduced on Table 3 are represented on Figure 8 
and Fig.9, for the 2005 data set. The great 
dispersion of KM time series relatively to Km time 
series can be visualised by the limits of histograms 
represented on Fig.8. 
 

 
   a) 

 
   b) 

Fig. 8: Histogram and respective Gaussian pdffor 
random component tranx of KM (a) and Km (b). ESI 

transformer and data from 2005. 
 
The hypothesis that random component tranx  of 
time series representative of load profiles could be 
modelled by an AR model, did not give as good 

results as with ambient temperature profiles. This 
fact is due, in part, to the already referred presence 
of other cyclic (bi-annual) variations in xran which 
were not taken into consideration on the 
deterministic model (7). Results are resumed on 
Table 4. Results obtained with the second analysed 
distribution transformer, referred as BI1, are 
resumed on Table 4, where zμ̂ values were omitted 
since it is zμ̂ = xμ̂ =0 for all samples. 
 

 
   a) 

 
   b) 

Fig. 9: Histogram and respective Gaussian pdffor 
random component tranx  of amK  (a) and avK  (b). ESI 

transformer and data from 2005. 
 
This transformer serves an area where loads are of 
residential and industrial types, in similar 
proportions. Residuals 

tranx after removing the 
deterministic cyclic variation are not as normally 
distributed as residuals resulting from the ESI load 
profiles; in the 12 presented samples, 3 of them 
even fail the respective chi-square test. This fact 
does not invalidate the generic model represented 
by (20). 
 
Table 4: Random component 

tranz first momment 
estimators and p-value, for ESI load profiles. 

 [ ]Cz
0μ̂ [ ]Cx

0σ̂  p-value[%] zx σσ ˆ/ˆ  
[p.u.]
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2003 
MK  

 
0.000 

 
0.033 

 
5 

 
1.417 

mK  0.000 0.011 11 1.987 

avK  0.000 0.017 12 1.819 

amK  0.000 0.015 24 1.097 

2004  
MK  

 
0.000 

 
0.034 

 
15 

 
1.455 

mK  0.000 0.022 0 1.183 

avK  0.000 0.022 0 1.620 

amK  0.000 0.018 53 1.075 

2005  
MK  

 
0.000 

 
0.032 

 
6 

 
1.223 

mK  0.000 0.011 84 1.427 

avK  0.000 0.016 56 1.337 

amK  0.000 0.015 11 1.155 
 
Table 5: Deterministic model parameters, random 
components tranx    and tranz first moment estimators and 
p-values, for BI1 distribution transformer. 

 dx  
[p.u.] 

dxΔ  
[p.u.] 

xϕ  
[rad]

xμ̂  
[p.u.] 

xσ̂  
[p.u.]

2003 
MK  

 
0.351 

 
0.075 

 
-0.196 

 
0.000 

 
0.035 

mK  0.166 0.014 -0.147 0.000 0.015 

avK  0.258 0.046 -0.189 0.000 0.023 

amK  0.093 0.033 -0.206 0.000 0.017 

2004  
MK  

 
0.375 

 
0.068 

 
-0.088 

 
0.000 

 
0.037 

mK  0.188 0.011 0.545 0.000 0.015 

avK  0.282 0.039 -0.001 0.000 0.027 

amK  0.095 0.031 -0.238 0.000 0.019 

2005  
MK  

 
0.391 

 
0.071 

 
-0.019 

 
0.000 

 
0.033 

mK  0.201 0.016 0.091 0.000 0.015 

avK  0.296 0.043 -0.001 0.000 0.022 

amK  0.097 0.029 -0.051 0.000 0.011 
 

 
txCV  

[p.u.] 

p-value 
  [%] 

[ ]Cz
0σ̂

 

p-value 
[%] 

zx σσ ˆ/ˆ  
[p.u.]

2003 
MK  

 
0.102 

 
63 

 
0.033 

 
51 

 
1.118 

mK  0.083 31 0.012 1 1.307 

avK  0.089 61 0.017 21 1.236 

amK  0.171 5 0.016 14 1.028 

2004  
MK  

 
0.095 

 
6 

 
0.027 

 
0 

 
1.387 

mK  0.085 5 0.015 0 1.195 

avK  0.101 0 0.023 0 1.264 

amK  0.191 0 0.018 0 1.068 

2005  
MK  

0.081 21 0.019 0 1.726 

mK  0.079 0 0.011 1 1.546 

avK  0.078 9 0.014 0 1.915 

amK  0.116 88 0.009 4 1.263 
 
Since 2004 is the year which data give the worst 
results, meaning lower p-values on the chi-square 
test for a Gaussian distribution of residuals, 
histograms of 

tranx  residuals and respective 
theoretical pdf’s are represented on Fig.10 and  
Fig.11. 
 

 
   a) 

 
   b) 

Fig. 10: Histogram and respective Gaussian pdf for 
random component xran of KM (a) and Km (b). BI1 

transformer and data from 2004. 
 
Although not passing the Chi-square test, the 
statistical distribution of random component 

tranx  
relativeley to 2004 KM, Km, Kav, and Kam, values, is 
not far from a Gaussian distribution as can be 
visualised on Fig.10 and Fig.11. Although more 
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elaborated models are required to fully model the 
load profiles of distribution transformers, it has 
been shown that (21) can be considered as a good 
generic model. 

 
a) 

 
b) 

Fig. 11: Histogram and respective Gaussian pdf for 
random component Xran of K(a) and Kam (b). 

BI1 transformer and data from 2004. 
 
2.3 Global Model 
On this section a global model to represent the 
whole set of maximal, minimal and average 
temperatures (or load factors) along the year, will 
be described. The model is based on the previously 
studied avx and xam time series where kx ,Θ≡ and 
is defined as a linear combination of these two: 
 

amGavt xxx α+= ,                    (23) 
 

being Gα  a real number and  [ ]1,1−∈αG . 
From avx and xam definition, (14) and (22), one can 
realise that the chosen Gα range, determines (23) to 
model variables from minimal to maximal values 
according to: 

MtmG xxx ≤≤⇒≤α≤− 11           (24) 
 

If both avx and xam time series, can be assumed to 
follow a deterministic and random components 
according to (21), and attending to (23), xt model 

will also result with deterministic and random 
components: 

trantt xxx += det                            (25) 
with: 

)cos(det xdd txxx ϕ+ωΔ+=           (26) 
),0( xtran Nx σ=                      (27) 

 

Each of the parameters dx , dxΔ ,  and xϕ can be 
analytically determined and result as: 
 

damGavd xxx ˆˆˆ α+=                   (28) 

( ) ( ) )cos(222
amxavxamavGamavd dddd

xxxxx ϕ−ϕΔΔα+Δα+Δ=Δ  (29) 

π±
ϕΔα+ϕΔ

ϕΔα+ϕΔ
=ϕ

)cos()cos(
)sin()sin(

amxamavxav

amxamavxav
x

dd

dd

xx
xx

arctg  (30) 

and  
( ) ( ) ),,(222

randrandamav amGavxxx xxCoV α+ασ+σ=σ  (31) 
 

where ),,(
randrand amGav xxCOV α denotes the cova-

riance  (covariance function (3) with null time lag, 
k=0) between the random components 

randavx and 

randamG xα . If profiles perfectly fitted model 
represented by (21), random components  

randavx and 
randavx would result as random variables 

and therefore uncorrelated from each other. Under 
this condition, (31) could be replaced by: 
 

( ) ( )22
amav xxx ασ+σ≈σ .                    (32) 

 

Since (21) is only an approximate model of profiles 
evolution, covariation between random components 

randavx and 
randamx is considerably. Since correlation 

is an image of covariation but normalised by 
variables respective variations, the strength of the 
link between 

randavx  and 
randamx  result clearer if 

correlation values are represented instead of 
covariation, Fig.12. 
 

 
Fig. 12: Correlation between random 

components
randavx and

randamx . 
 

The usefulness of this global model resides on 
modelling compactness it traduces; by means of 
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Gα  parameter 11 ≤α≤− G , this single model is able 
to reproduce ambient temperature (or load factor 
profiles) models previously derived, from minimal 
to maximal values. Numerical validation of this 
model is not reproduced here, since obtained values 
are in agreement with those reproduced on Table 1, 
Table 3 and Table 5.  
 
2.4 Ambient Temperature and Load Profiles 
Correlation 
From the time evolution of load and ambient 
temperature profiles the distribution transformers 
are subjected to, one can infer a relationship 
between them. For the analysed cases, when 
ambient temperature drops, loads increase, and 
when ambient temperature increases, transformer 
loads decrease. The strength of this relationship 
between loads and ambient temperature is 
measured by the correlation between them. Since 
models have a deterministic and a random part (21), 
correlation coefficient between each of these 
components, will be determined, to evidence that 
correlation between time series is mainly due to 
their deterministic components; random 
components are practically independent 
(uncorrelated) from each other. Correlation 
coefficients between transformer ESI load profile 
and 2004 ambient temperature are represented on 
Table 6. Correlation between deterministic parts is 
clearly stronger than between random parts. The 
negative sign traduces the fact that, for the analysed 
data, models are inversely correlated; the ambient 
temperature increase implies loads decrease and 
vice-versa. 
 
Table 6: ESI deterministic and random correlation for 
2004 data set. 

Ambient 
Temperature 

ESl Load Profile 
           Deterministic                          Random 
maximal   average   minimal       maximal    average      minimal 

-0.471 -0.715 -0.771 

-0.569 -0.793 -0.841 

D
et

er
m

in
ist

ic
 

-0.636 -0.843 -0.885 

 

-0.074 -0.089 -0.087 

-0.111 -0.135 -0.135 

R
an

do
m

 

  maximal 
 

average 
 

minimal 
 

  maximal 
 

average 
 

minimal 
 

 

-0.112 -0.143 -0.143 

 
Correlation strength increases as walking towards 
maximal values, which means that loads, and in 
particular, maximal ones, are much more 
"sensitive" to maximal ambient temperature than 
minimal ambient temperature. In fact, minimal 
loads along the year are almost constant and they 
traduce, in practice, a "base" load that is almost 

invariant with ambient temperature changes and 
depends most upon load characteristics of 
transformers distribution network. Previous 
considerations about correlation result clearer on 
Fig.13(a), where Table 6 deterministic and random 
correlation values are graphically represented.   
 

 
 a) 
 

 
b) 

Fig. 13: Deterministic and random correlation between 
ambient temperature and ESI (a) andBIl (b) profiles. 

Data from 2004. (Table 6 for ESI transformer). 
 

Although correlation coefficients are all negative, 
on Fig.13 correlation axis is in reverse order, so that 
graph visualisation results clearer. Similar 
relationship between deterministic and random 
correlation values can be obtained from BI1 
transformer data, Fig.13(b), and from 2003 and 
2005 data sets, Fig.14 and Fig.15. 
 

 
   a) 
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   b) 
Fig. 14: Deterministic and random correlation between 

ambient temperature and ESI (a) and Bll (b) 
profiles. Data from 2003. 

 
     a) 

 
     b) 
Fig. 15: Deterministic and random correlation between 
ambient temperature and ESI (a) and Bll (b) profiles. 

Data from 2005. 
 
The constancy in the sign of correlation between 
random parts (all negatives in 2004 or all positives 
in ESI 2004) is an indication that random 
components randx  of these profiles still carry 
deterministic behaviours that were not removed by 
the assumed deterministic model (21). If profiles 
were perfectly modelled by (21), correlation 
between any random component would result as 
null. Attending to the magnitude of correlation 
between deterministic parts and random parts, and 

to results presented on section §2.2 one can 
consider that 
 

+ϕ+ωΔ+= )cos( xddt txxx  N )ˆ,ˆ( xx σμ ,   (33) 
 

is a generic sufficiently accurate model to traduce 
the load annual evolution of distribution 
transformers as well as ambient temperature. On 
next section, simulated load and ambient 
temperature profiles with random components will 
be used, to study the sensitivity of transformer 
thermal and loss of life models presented on [17], 
to such functional parameters. 
 
3 Functional Parameters Sensitivity 
3.1 Probabilistic Formulation 
3.1.1 Input Profiles 
System inputs, K and aΘ , are the transformer load 
and ambient temperature profiles which, by 
assumption, can be represented by an additive 
model of deterministic and random components, of 
the form: 
 

  ranKKK += det  and ranaaa Θ+Θ=Θ
det

.   (34) 
 

In fact, possible correlation can occur between K 
and T. In this general case, a non-stationary model 
must be considered. In this work this increase in 
model complexity will not be considered, since 
when the correlation exists, it derives, mainly, from 
a strong link between deterministic components 
(i.e. concomitant sinusoidal load and ambient 
temperature variations) and a weakest link between 
corresponding random components, as shown on 
section §2.4. The objective of this study is, under 
stationary conditions, to determine, on the output 
variable (LOL), its deterministic and random 
components, based on the previously referred 
additive model. 
 
3.1.2 Methodology 
The data acquisition frequency of a continuous type 
system must be carefully defined since it plays an 
important role on posterior analysis of data. 
Namely, the data acquisition set must represent 
faithfully the signal and, from this data set, one 
must be able to "rebuilt" the original signal in a 
univocal way. The sampling theorem states that a 
continuous signal which Fourie Transform exists 
and is null out of the frequency interval [-f,f], 
should be sampled at a frequency fs such that: 
 

ffs 2>                                 (35) 
 

Reciprocally, if the sampling frequency is fs, no 
information can be inferred from the sampled data 
set, about signal occurrences with frequencies 
above the Nyquist, fN, frequency, given by:  
 

2/sN ff = ,                              (35) 
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Usually, in the case of long term forecasting, the 
acquisition period of data for analyses is long 
enough and therefore it is possible to neglect 
variables rapid fluctuations having a period of the 
same order of involved thermal time constants. 
Typically, it is τ0=3 h and the windings constant   τw 
≈5 to 10 minutes, [1], [12], [16] and [22]. Taking 
into account that input variables are approximately 
stationary, this simplification represents a second 
argument to consider a probabilistic stationary 
model, instead of a stochastic dynamic one. Both 
transformer thermal and ageing models, are 
strongly non-linear ones, which will determine the 
non-preservation of inputs statistical distribution 
structure [2-3], [20] and [21]. Nevertheless, 
provided each mathematical transformation can be 
defined as a one-to-one function (with inverse) of 
an input random variable which pdf is known, 
output variable pdf can be analytically determined, 
either directly either with recourse of characteristic 
functions. However, this methodology is not 
suitable for the system under study, since some 
transformations do not have an analytical exact 
expression for its inverse function: 
 

)(xy ϕ= ,                                  (37) 
 

which must be determined numerically. 
The methodology used to estimate the stochastic 
output variable LOL, once the random inputs K and 

aΘ are defined, is based on realistic characteristics 
of distribution transformers load profiles and 
ambient temperature ones. As already shown on 
section §2.2, in a statistical sense, K and aΘ  can be 
considered as unimodal random variables 
concentrated around their modal values (mode) [15] 
and [20] which means a reduced variation 
coefficient xCV . Under this condition, it will be 
assumed as valid the linearisation of (37) in the 
vicinity of its input expected value xμ , which first 
three terms are: 
 

( ) 2
2

2

][)(][)(
xxxxx x

x
xx

x
xy

xx
μ−

∂
ϕ∂

+μ−
∂
ϕ∂

+μϕ≈ μ=μ= .(38) 
 

From (39) one can obtain estimators for y moments, 
denoted by yμ̂  and yσ̂ , as functions of x moments, 

denoted by xμ and xσ . Second order estimators 
will be given by: 
 

( ) 2
2

2 )(
2
1ˆ xxxy xx

x
σ

∂
ϕ∂

+μϕ=μ μ=                (39) 

4
2

2

2
2

2
2 )(

2
1)(ˆ xxxxy xx x

x
x
x

σ⎥
⎦

⎤
⎢
⎣

⎡
∂
ϕ∂

+σ⎥⎦
⎤

⎢⎣
⎡

∂
ϕ∂

=σ μ=μ=  (40) 

 

The errors one commits by considering the first 
order estimators, against the second order ones, can 

be approximately bounded by: 
 

)(
1)(

2
1

2

2
2

x
xx xx

x
μϕ∂

ϕ∂
σ=ε μ=μ                and                           

2

2

2
2

)(
1)(

2
1

2

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

∂
ϕ∂∂

ϕ∂
σ=ε

μ=

μ=σ

x

x

x

xx

x
xx

x .        (41) 

 

If the linearisation of (37) is assumed to be valid, it 
will also lead to the preservation of input variable 
statistical structure. Being the x variable pdf 
defined, the output variable y will present a similar 
structure and its pdf can be determined, 
approximately, with recourse of its first moments, 
which estimators are given by (39) and (40). 
 
3.2 Approximate Analytical Model  
3.2.1 Linearisation Error 
In order to evaluate the validity of the linearisation 
traduced by (38), the errors με and 2σ

ε , (39) and 
(40), for a range of xμ  and xσ corresponding to 
realistic values of distribution transformer load 
profiles, were studied: ]5.1,1.0[∈μx  and   

]8.0,01.0[∈σx . To xμ =0.1 p.u. corresponds a very 
low load, while xμ =1 p.u. corresponds to an 
overload of limited duration. The resulting variation 
coefficient ranges, approximately: [ ]8,007.0∈xCV . 
  

 
a) 

 
b) 

Fig. 16: First order linearisation error (a) με  and 2σ
ε (b).  

 
Numerical results, presented on Fig.16, are 
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determinant in concluding for the importance of 
second order estimators, as xCV increases, 
traducing the limits of linearisation procedure, 
based on first order estimators. 
 
3.2.2 Stationary Normal Inputs 
Considering that both system input variables are 
normally distributed, with parameters: 
 
 

~k N ),( kk σμ and ~aΘ N ),( kk σμ ,       (42) 
 

resulting that 
hsΘμ̂  will present an approximately 

Normal distribution, which estimated parameters 
are:  

ahshs ΘΔΘΘ μ+μ=μ ˆˆ ,                            (43) 
222 ˆˆˆ

ahshs ΘΔΘΘ σ+σ=σ  ,                            (44) 
 

since mutual independence between random parts 
was admitted. Under a probabilistic fonnulation, 
where time dependence does not exists and for 
stationary statistical distributions Vag is identical to 
LOL, and therefore [27], being hsΘ   approximately 
Normal, LOL will result strictly as a lognormal 
distributed random variable: 
        

( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

σ
μ−

−
πσ

= 2

2

ˆ2
ˆ)ln(exp

2ˆ
1)(

LOL

LOL

LOL

LOLLOLpdf ,(45) 

where   

 ( )98ˆ
6
2lnˆ −μ=μ ΘhsLOL   and  

hsLOL Θσ=μ ˆ
6
2lnˆ . (46) 

 
2.2.3 Stationary Uniform Inputs 
Input variables are considered to be uniformly 
distributed: 
 

~K U ],[ 21 KK  and ~aΘ  U ),(
aa ΘΘ σμ .     (47) 

 

Their first moments are given by: 
 

2
12 XX

X
+

=μ and 
32

12 XX
X

−
=σ ,            (48) 

 

and the resulting variation coefficient by: 
 

12

12

3
1

XX
XXCVX +

−
= ,                     (49) 

 

with aKX Θ≡ , . In this case, analytic pdf of output 
variable LOL is unknown because hsΘ  is a 
bounded random  variable. 
 
3 Conclusions 
The modelling of the time series representative of 
annual evolution of ambient temperature and 
transformer load showed that a non-complex 
additive model of deterministic and random 
components could genetically model such time 

series. Good results were obtained considering the 
deterministic component as a time varying function 
represented by a constant value (mean annual 
value) to which a first order sinusoidal function is 
added (annual cyclic variation). The model can 
easily be extended to daily, weekly or seasonally 
sinusoidal variations. Resulted residuals still 
denoted the presence of deterministic cyclic 
behaviours of higher than the first order but, 
generally, they could be approximate to random 
variables closely following a Gaussian distribution. 
Most detailed models, such as the autorregressive 
models were experienced. They proved to mostly 
precise model some of the analysed time series but 
they could not be generalised for the analysed 
sample of profiles. The correlation between 
ambient temperature and distribution transformer 
load was also analysed. For the studied cases, the 
results obtained by splitting this analysis into 
correlation between deterministic components and 
correlation between random components, showed 
that ambient temperature and distribution 
transformer load were inversely correlated and that 
this correlation derives mainly from a strong link 
between deterministic components rather than from 
random components. Due to their relative values, 
correlation between random components is 
practically negligible, compared to that between 
deterministic components. Due to the strongly non-
linearity of transformer thermal and loss of life 
models the statistical structure of input variables 
(load and ambient temperature) is not preserved on 
the output variable (loss of life). Moreover, the 
analytical determination of output statistical pdf is 
not possible either directly either with recourse of 
characteristic functions, since some mathematical 
transformations do not have an analytical exact 
expression for its inverse. Since, in a statistical 
sense, load variable is of reduced variability, 
meaning concentrated around its mean, a second 
order linearisation of the model, valid in the 
vicinity of load mean, was developed.  
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