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Abstract: -This work is based on a previous Fast Frequency Hopping Spread Spectrum (FFHSS) transceiver 
designed for wireless optical communications. The core of the transmitter was a discrete Direct Digital 
Synthesizer (DDS). In the first prototype the DDS control and the digital synchronization signal were generated 
using a Programmable Logic Device (PLD), besides a discrete external filter was necessary to eliminate high 
frequency components of digital synchronization signal and generate analog synchronization signal. The 
FFHSS and analog synchronization signals were emitted by two separated Light Emitting Diodes (LED) to 
avoid adding them with discrete analog circuits. The peak emission wavelength of the LED was 650 
nanometers. The objective of this work is redesign the modulator on a Field Programmable Gate Array (FPGA) 
using System Generator from Xilinx and analyse the performances of this design methodology. System 
Generator is one design tool in Simulink of Matlab. It allows fast design of digital systems using block 
diagrams. The compilation generates the files necessary for the Integrated System Environment (ISE) for 
FPGA of Xilinx, where the description of the circuit is obtained in a standard hardware description language. In 
ISE it is possible to compile the hardware description language files, simulate the system, assign pins, obtain 
the program file and program the FPGA. 
 
 
Key-Words: - spread spectrum, modulator, DDS, FPGA, System Generator, Xilinx, Simulink, HDL, floating 
point, fixed point. 
 
1 Introduction 
A Field Programmable Gate Array (FPGA) [1] [2] 
[3] is a digital integrated circuit that is configured 
by the designer from a personal computer, without 
sending it to the manufacturer, it can be 
reprogrammed even if it has been placed in the 
printing circuit board. The FPGA is programmed by 
downloading a file called bitstream to an internal or 
external memory in the system. A FPGA consists in 
a two dimension array of digital configurable 
resources which can perform arithmetic and logic 
functions. Data dimensions in FPGA are flexible 
and highly parallel architectures can be built, for 
these reasons FPGA are suitable for Digital Signal 
Processing (DSP). 
     The Xilinx company is one of the most extended 
manufacturer of FPGA. Xilinx offers System 
Generator [4] that is one design tool in Simulink of 
Matlab. System Generator allows the fast design of 
systems using block diagrams, and its simulation 
even before the compilation. The compilation 
generates the files necessary for the Integrated 

System Environment (ISE) [5] of Xilinx for FPGA, 
where the description of the circuit is obtained in a 
standard hardware description language (HDL). 
These languages are Verilog [6] and Very High 
Speed Integrated Circuit Hardware Description 
Language (VHDL) [7]. In ISE it is possible to 
compile the hardware description language files, 
and simulate the system behavioral or timing 
analysis. Afterwards the program file can be 
generated for the chosen device, this file can be 
downloaded from the computer to the board where 
the FPGA is included. Finally, the performance of 
the design system must be checked with electronic 
measure equipment. 
     This work is based on a previous designed 
transceiver [8] for Fast Frequency Hopping Spread 
Spectrum (FFHSS) [9] [10] for wireless optical 
communications [11]. The core of the transmitter 
was a discrete Direct Digital Synthesizer (DDS) 
[12] from Analog Devices [13]. The objective of 
this work is redesign the FFHSS modulator with 
System Generator and analyse the performances of 
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this design methodology: the integration and 
flexibility are improved, the design time is 
minimizing and the system has less power 
consumption. 
 
 
2 Design methodology 
System Generator version 10.1 was used in this 
design. When System Generator is installed some 
Blocksets (see Fig. 1) are included in Simulink of 
Matlab (version R2007a). Each block is configured 
opening its dialog window, this permits fast and 
flexible designs. 
 

 

Fig. 1. System Generator Blocksets in Simulink. 
 
     The FPGA boundary from the Simulink 
simulation model is defined by Gateway In and 
Gateway Out blocks. The Gateway In block 
converts the floating point input to fixed point 
format, saturation and rounding modes can be 
defined by the designer. The Gateway Out block 
converts the FPGA fixed point format to Simulink 
double numerical precision. 

     In System Generator the designer does not 
perceive the signals as bits, instead the bits are 
grouped in signed or unsigned fixed point format. 
The operators force signals to change automatically 
to the appropriate format in the outputs. A block is 
not a hardware circuit necessarily, it relates with 
others blocks to generate the appropriate hardware. 
The designer can include blocks described in a 
hardware description language, finite state machine 
flow diagram, Matlab files, etc. The System 
Generator simulations are bit and cycle accurate, 
this means results seen in simulation exactly match 
the results seen in hardware. The Simulink signals 
are shown as floating point values, which makes 
easier to interpret them. The System Generator 
simulations are faster than traditional hardware 
description language simulators, and the results are 
easier to analyze. Otherwise the VHDL and Verilog 
code are not portable to others FPGA 
manufacturers, the reason of this is that System 
Generator uses Xilinx primitives which take 
advantages of the device characteristics. 
     System Generator can be used for algorithm 
exploration or design prototyping, for estimating the 
hardware cost and performance of the design. Other 
possibility is using System Generator for designing 
a portion of a big system and join with the rest of 
the design. Finally, System Generator can 
implement a complete design in a hardware 
description language. Designs in System Generator 
are discrete time systems, the signals and blocks 
generate automatically the sample rate, however a 
few blocks set the sample rate implicitly or 
explicitly. System Generator supports multirates 
circuits and some blocks can be used for changing 
the sample rate. 
     Often an executable specification file is created 
using the standard Simulink Blocksets (see Fig. 2). 
The specification file can be designed using floating 
point numerical precision and not hardware detail. 
Once the functionality and basic dataflow have been 
defined, System Generator can be used to specify 
the hardware implementation details for the Xilinx 
devices. System Generator uses the Xilinx DSP 
Blockset from Simulink and will automatically 
invoke Xilinx Core Generator to generate highly 
optimized netlists for the building blocks. System 
Generator can execute all the downstream 
implementation tools to get a bitstream file for 
programming the FPGA device. An optional 
testbench can be created using test vectors extracted 
from the Simulink environment for using with ISE 
simulators. 
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Fig. 2. System Generator design flow. 
 
     Every system designed with System Generator 
must contain a System Generator block (see Fig. 3) 
and it specifies how simulation and code generator 
can be used. 
 

System
Generator  

Fig. 3. System Generator block and its dialog window. 
 
     Firstly, in System Generator block the type of 
compilation can be specified to obtain: HDL netlist, 
Bitstream for programming, etc. Secondly, the 
FPGA type can be chosen. The Target directory 
defines where the compilation writes the files of ISE 
project. The Synthesis tool specifies which tool is 
chosen for synthesizing the circuit: Synplify, 

Synplify Pro [14] or Xilinx Synthesis Tool (XST). 
In Hardware description language the designer can 
choose between VHDL or Verilog. Finally, Clock 
Options defines the period of the clock, its input pin 
location, the mode of multirate implementation and 
the Simulink system period which is the greatest 
common divisor of the sample periods that appear in 
the system. In Block icon display is specified the 
type of information to be displayed on the block 
icon. 
     When the designer clicks on Generate in dialog 
window of System Generator block the structural 
description files in a hardware description language 
are obtained, and a project is created for ISE version 
10.1. In ISE, it is possible to check the syntax of the 
hardware description language files (see Fig. 4). The 
first step in the compilation process is synthesizing 
the system. The synthesis tool used is XST, it is an 
application that synthesizes hardware description 
language designs to create Xilinx specific netlist 
files called NGC files. The NGC file is a netlist that 
contains both logical design data and constraints. 
The NGC file takes the place of both Electronic 
Data Interchange Format (EDIF) and Netlist 
Constraints File (NCF) files. In synthesis options 
optimization goal for area or speed can be fixed; by 
default, this property is set to speed optimization. 
Similarly, optimization effort can be established as 
normal or high effort, in last case additional 
optimizations are performed to get best result for the 
target FPGA device. Synthesis report can be 
analyzed by the designer; moreover, the designer 
can view Register Transfer Level (RTL) schematic 
or technology schematic. After synthesizing the 
system the design is implemented in three stages: 
translate, map and place and route. The translation 
process merges all the input netlists and design 
constraint information and outputs a Xilinx Native 
Generic Database (NGD) file. Then the output NGD 
file can be mapped to the targeted FPGA device 
family. The map process takes the NGD file, runs a 
design rule checker and maps the logic design to a 
Xilinx FPGA device. The results appears in a Native 
Circuit Design (NCD) file, which is used for placing 
and routing. The place and route process takes a 
NCD file and produces a new NCD file to be used 
by the programming file generator. The generate 
programming file process runs the Xilinx bitstream 
generation program BitGen to produce a bit file for 
Xilinx device configuration. Finally, the configure 
target device process uses the bit file to configure 
the FPGA target device. 
     Behavioral simulations are possible in the design 
before synthesis with the simulate behavioral model 
process. This first pass simulation is typically 
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performed to verify RTL or behavioral code and to 
confirm the designed function. Otherwise, after 
placed and routed the design on the chip, timing 
simulations are possible. This process uses the post 
place and route simulation model and a Standard 
Delay Format (SDF) file. The SDF file contains true 
timing delay information of the design. 
 

 
 

Fig. 4. Overview of design flow of Integrated System 
Environment. 

 
 
3 Previous designed FFHSS 
transceiver 
In this section the previous FFHSS transceiver (see 
Fig. 5 and 6) for wireless optical communications is 
described and its block diagram is shown. 

Fig. 5. Block diagram of previous designed FFHSS 
transceiver. 

 
 

Fig. 6. Hardware of previous designed FFHSS 
transceiver. 

 
 
3.1 Designed transmitter 
In the first prototype (see Fig. 7) the DDS control 
signals and digital synchronization signal were 
generated using a Programmable Logic Device 
(PLD). Besides an external discrete filter was 
necessary to eliminate the high frequency 
components of digital synchronization signal and 
get an analog synchronization signal. The FFHSS 
and synchronization signals were emitted by two 
separated optical emitters to avoid summing them 
with discrete analog circuits. 

 

 
Fig. 7. Block diagram of previous designed transmitter. 

      
     The discrete DDS (see Fig. 8) is a digital system 
excepting the final Digital to Analog Conversor 
(DAC), its output signal is a sampled signal at 180 
MHz, the emitted FFHSS signal is smoothed by the 
100 MHz bandwidth of the optical emitter. In the 
DDS used the output frequency is fixed by the 
expression (1), where fDDS_CLK is the frequency of 
the DDS clock (180 MHz), N is the number of bits 
of the tuning word (32 bits) and Word is a decimal 
value of 32 bit frequency tuning word. 

 
fout=(Word·fDDS_CLK) /2N                   (1) 

 

Demodulated 
data Transmitter 

Binary  
data 
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Receiver 
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Fig. 8. Block diagram of DDS AD9851 from Analog 
Devices. 

 
 
3.2 Designed receiver 
In the receiver (see Fig. 9) the signals were 
separated by discrete filters, the synchronization is 
reached after adjusting a discrete circuits chain. The 
synchronization of the receiver makes possible to 
demodulate the FFHSS signal with two discrete 
DDS as local oscillators. These two DDS are the 
same type as the transmitter. In the receiver the 
control of these DDS is made with the same PLD 
type as the transmitter. The demodulator is a double 
branch structure of discrete circuits, each branch is 
formed by a mixed and an envelope detector, and its 
intermediate frequency is the standar value of 10,7 
MHz. 

 

 
Fig. 9. Block diagram of previous designed receiver. 

 
 
4 New modulator design 
In this section the new modulator design with the 
new methodology is described, it coincides with the 
previous designed transmitter (see Fig. 7) except the 
optical emitters and the output DAC of the discrete 
DDS. 
 
 
 
 

4.1 Design and simulation with System 
Generator 
The present work consists in redesign the FFHSS 
modulator and the generation of analog 
synchronization signal with System Generator. The 
block diagram of the designed system is in Fig. 10. 
It is formed by an internal data generator, a code 
generator, and two DDS to generate the FFHSS and 
synchronization signals. An external clock of 180 
MHz is needed for the system. 

 
SYNCHRONOUS FFHSS MODULATOR

Scope 5

Scope 4

Scope 3

Scope 2

Scope 1

S_31 _BEFORE
 Out 

SYNCHRONIZATION
 Out 

SINC_DATA_PN
 Out 

LENGTH
 Out 

F_DDS

clk

F_CHIP
 Out 

FFHSS_SYNCHRONIZATION
 Out 

FFHSS
 Out 

FB

 Out 

DDS_SYNCHRONIZATION

LENGTH SYNCHRONIZATION

DDS_FFHSS

 DATA_CODE_16_STATE

 DATA_DDS

FFHSS

DATA_PN
 Out 

DATA_GENERATOR

FB

SINC _DATA_PN

DATA_PN

CODE_GENERATOR

DATA

F_CHIP

CODE_31_STATE

CODE_16_STATE

 DATA_CODE_16_STATE

S_31_BEFORE

LENGTH

CODE _31 _STATE
 Out 

CODE _16_STATE
 Out 

AddSub

a

b
a + b

System
Generator

 DATA_DDS
 Out 

 DATA_CODE _16_STATE
 Out 

 

Fig. 10. Block diagram of synchronous FFHSS modulator 
designed with System Generator. 

 
 
4.1.1 Pseudorandom data generator 
The internal data generator (see Fig. 11) avoids 
using an external data source, it was designed using 
a Linear Feedback Shift Register block (LFSR) as 
pseudorandom generator of 15 bits long at 500 
kilobits per second. In the pseudorandom data 
generator a pulse is generated each time the 
sequence begins, this provides a high quality 
periodic signal to synchronize the oscilloscope. In 
Fig. 12 the clock, the  data synchronization pulse 
and the pseudorandom data are shown after 
Simulink simulation. 
 

Scope 1

SINC_DATA_PN
 Out 

FB

 Out 

DATA_PN
 Out 

DATA_GENERATOR

FB

SINC_DATA_PN

DATA_PN

 
 

Fig. 11. Internal data pseudorandom generator. 
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Fig. 12. Pseudorandom data generator signals: a) clock at 
bit rate, b) the  data synchronization pulse, c) the 
pseudorandom binary data. 
 
 
4.1.2 Pseudorandom code generator 
The pseudorandom  code generator is shown in Fig. 
13 and its Simulink simulation is on Fig. 14. The 
code rate is called chip frequency (signal a in Fig. 
14), its value is 1,5 Megachips per second, 
consequently three codes are generated by each data 
bit. The code generator is based on a LFSR of 31 
states 5 bits width (signal b in Fig. 14). In the 
pseudorandom code generator a pulse is generated 
each time the sequence begins (signal e in Fig. 14). 
A five bits code (signal d in Fig. 14) is obtained 
with the four most significant bits of the 
pseudorandom code generator (signal c in Fig. 14) 
and the data bit as most significant bit. 
 

FB

DATA_PN

Scope 2
S_31_BEFORE

 Out 

LENGTH
 Out 

F_CHIP
 Out 

CODE_GENERATOR

DATA

F_CHIP

CODE_31_STATE

CODE_16_STATE

 DATA_CODE_16_STATE

S_31_BEFORE

LENGTH

CODE _31_STATE
 Out 

CODE_16_STATE
 Out 

 DATA_CODE_16_STATE
 Out 

 
 

Fig. 13. Pseudorandom code generator. 
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Fig. 14. Pseudorandom code generator signals: a) chip 
frequency, b) pseudorandom  code 5 bits width, c) 4 most 
signicants bits of pseudorandom code 5 bits width, d) 
data joined  with 4 most signicants bits, e) the previous 
stage to “11111”, f) square signal which marks the code 
length. 
 

4.1.3 FFHSS signal generation 
For each group of five bits (signal d in Fig. 14) a 
sampled sinusoidal signal is generated according 
with Table 1. 
 

Code Frequency 
(MHZ) Code Frequency 

(MHZ) 
00000 24.384 10000 48.960
00001 25.920 10001 50.496 
00010 27.456 10010 52.032 
00011 28.992 10011 53.568 
00100 30.528 10100 55.104 
00101 32.064 10101 56.640 
00110 33.600 10110 58.176 
00111 35.136 10111 59.712 
01000 36.672 11000 61.248 
01001 38.208 11001 62.784 
01010 39.744 11010 64.320 
01011 41.280 11011 65.856 
01100 42.816 11100 67.392 
01101 44.352 11101 68.928 
01110 45.888 11110 70.464 
01111 47.424 11111 72.000 

 
Table 1. Transmitted frequencies for the FFHSS signal. 

 
     In Fig. 15 the DDS that generates the FFHSS 
signal is shown. The DDS clock is the system clock 
(180 MHz), therefore with an external filter a pure 
senoidal signal can be synthesized until a bit less 
than 90 MHZ. 
 

 DATA_CODE _16_STATE

 DATA_CODE _16 _STATE

Scope 3F_DDS

clk

FFHSS
 Out 

DDS_FFHSS

 DATA_CODE_16_STATE

 DATA_DDS

FFHSS

 DATA_DDS
 Out 

 
 

Fig. 15. DDS that generates FFHSS signal. 
 

     The input for the Xilinx DDS block must be the 
division between the synthesized frequency and the 
DDS clock. The equation (2) shows the meaning of 
this relation. Consequently, the DDS block fixes the 
number of bits N according with the rest of the DDS 
parameters: spurious free dynamic range, resolution, 
implementation mode, etc. 
 

fout/ fDDS_CLK=Word /2N                   (2) 
 
     The five bits (signal a in Fig. 16) are transformed 
to the format of the input of Xilinx DDS block 
(signal b in Fig. 16). This last operation is an 
unsigned fixed point integer to unsigned fixed point 
decimal conversion. In signal c of Fig. 16 five chip 
times of FFHSS signal are shown. In Fig. 17 there is 
one chip time, and the DDS clock can be analyzed. 

 

a) 
 
 
 

b) 
 
 
 

c) 
 
 
d) 
 
 
e) 
 
 
 

f) 

 

a) 
 
 
 

b) 
 
 
 
c) 
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Fig. 16. Signals in DDS that generates the FFHSS signal 
(five chip times): a) five bits DDS input, b) input for 
Xilinx DDS block, c) FFHSS signal. 
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Fig. 17. Signals in DDS that generates the FFHSS signal 
(one chip time): a) five bits DDS input, b) input for 
Xilinx DDS block , c) FFHSS signal, d) 180 MHz DDS 
clock. 
 
 
4.1.4 Synchronization signal generation 
In the pseudorandom code generator a square signal 
is generated with a 50% duty cycle (signal f in Fig. 
14). This square signal has a semiperiod with the 
same duration as the pseudorandom code length. 
The square signal is the DDS input that generates 
the synchronization signal (see Fig. 18), it 
modulates in phase to a 9 MHz carrier (see Fig. 19). 
The phase modulated signal carries information 
about the beginning of the pseudorandom code and 
its chip frequency because its carrier is a multiple of 
1.5 MHz. Finally, the FFHSS and the 
synchronization signals are added with an AddSub 
block in Fig. 18. 
 

LENGTH

LENGTH

FFHSS

FFHSS

Scope 5

Scope 4
SYNCHRONIZATION

 Out 

FFHSS_SYNCHRONIZATION
 Out 

DDS_SYNCHRONIZATION

LENGTH SYNCHRONIZATION

AddSub

a

b
a + b

 
 

Fig. 18. DDS for synchronization generation and final 
adder. 
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Fig. 19. Signals in DDS that generates the 
synchronization signal: a) square input signal, b) 
synchronization signal. 
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Fig. 20. Inputs and output of final adder: a) FFHSS 
signal, b) synchronization signal, c) the above signals 
added together. 
 
     It must be noted that data and chip rates were 
changed softness from the initial prototype values, 
where the clock of the discrete DDS and the PLD 
clock were independents, and one frequency was not 
multiple of the other one. For the chosen FPGA 
device a master clock must exist, the rest of the 
clocks are generated by frequency division, the data 
and chip rates were changed softness to reach this 
condition. Others FPGA devices allow in its clocks 
generator block an integer multiplication factor, 
which joined with the division factor forms a 
rational number as multiplication factor. 
 
 
4.2 Simulation and compilation with ISE 
After the system has been simulated with Simulink 
it can be compiled with System Generator. The 
chosen device is a Virtex4 FPGA, and the hardware 
description language is VHDL. A project is then 
generated for ISE, which include the structural 
description of the system using several files. The 
syntax of the VHDL files can be checked, and the 
synthesis and behavioral simulation of the system 
can be done (see Fig. 21 and 22). After that, the 
implementation of the design allows the timing 
simulation of the modulator (see Fig. 23). Lastly, 
the programming file is generated for the chosen 
FPGA.
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Fig. 21. A long behavioral simulation of synchronous FFHSS modulator using ISE (49 microseconds). 

 
Fig. 22. A short behavioral simulation of synchronous FFHSS modulator using ISE (192.5 nanoseconds). 

 
Fig. 23. Timing simulation of synchronous FFHSS modulator using ISE (152 nanoseconds). 

 
    The files obtained in this design occupy about 5 
thousand lines of VHDL code, and 7 thousand in 
Verilog. The ISE software provides a power 
estimator that indicates a dissipation of 0.34 watts in 
the FPGA, and an estimated temperature of 29.8 
degrees centigrade. This represents a power savings 
of 86% with respect the initial prototype. The FPGA 
core is supplied with 1.2 volts and the input-outputs 

pins support the LVCMOS 2.5 volts standard (Low 
Voltage Complementary Metal Oxide 
Semiconductor). The occupation rate of hardware in 
the FPGA is about 1% for logical resources and 
20% for input-output pins, however the occupation 
rate for pins can be reduced until 10% if internal 
signals are not checked. The timing simulation 
demonstrates that 250 MSPS can be reached. 
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4.3 The chosen board 
In the moment of writing this document Xilinx does 
not offer boards with enough performance of Digital 
to Analog Conversor (DAC). The design needs at 
least a 7 bits DAC, its rate conversion must reach 
180 megasamples per second (MSPS), which is the 
sample rate of the transmitted signal. It can be 
verified that several boards exist for the proposed 
system with enough features, these boards have 
been developed for companies which are specialized 
in FPGA kits. These kits include the necessary 
FPGA or even better and several 14 bits DAC at 480 
MSPS. Three DAC are necessary is besides the 
FFHSS and synchronization signal are monitored. 
Another solution is to connect two boards, one of 
them with the FPGA and the other with the DAC 
stage. 
     Finally, the proposed board (see Fig. 24) is the 
ICS-8560A-100 of GE Fanuc [15]. Its block 
diagram is in Fig. 25, it includes two 16 bits DAC at 
400 MSPS. At the moment of writing this work has 
not been possible to buy this board. Programming 
the FPGA and capturing results in the laboratory is 
proposed as future work. 
 

 
 

Fig. 24. The proposed board for the synchronous FFHSS 
modulator: ICS-8560A-100 of GE Fanuc. 

 

 
 

Fig. 25. Block diagram of ICS-8560A-100 board. 
 

5   Conclusions 
With this design methodology the typical 
advantageous features of using programmable 
digital devices are reached. Repeating a design 
consists in reprogramming the FPGA in the chosen 
board, without designing printing circuit boards 
with discrete circuits. The alternative prototype 
reduces the number of external discrete components, 
the integration is improved and the adjusting of 
analog circuits is avoided. 
     The design and simulation times are decreased, 
consequently the time to market is minimizing. It is 
important to note that electronic equipments are 
short-lived, and reaching late to the market involves 
economic losses. The used tool permits great 
flexibility; in others words, the design parameters 
can be changed and new features can be checked in 
several minutes. The Simulink simulations are easy 
to run, and the signals are shown in floating point 
format which make easier its analysis. These 
simulations are possible even before the compilation 
of the System Generator blocks to obtain the 
hardware description language files. The possible 
hardware description languages are Verilog and 
VHDL. 
     In the system designed with System Generator 
the FFHSS and synchronization signals are added in 
fixed point format, even a weighted adder can be 
used. The flexibility allows to change the DDS 
parameters and check its performance. It can be 
included also an inverse sync filter for 
compensating variations in amplitude of the 
sinusoidal signal generated in the DDS output, 
caused by the sample and retention effect. 
     The design of the receiver is proposed as future 
work, all its blocks can be included in a FPGA: 
splitting filters, synchronization recovery and two 
branches demodulator. With System Generator is 
possible to simulate the transceiver, its performance 
can be tested in presence of additive white gaussian  
noise, which is available in a System Generator 
block. Moreover, it is possible to simulate the 
transmission through a channel with interference, 
distortion and others spread spectrum signals using 
different codes. 
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