
Design of a synchronous FFHSS modulator on a FPGA
with System Generator

SANTIAGO T. PÉREZ, JESÚS B. ALONSO, CARLOS M. TRAVIESO, MIGUEL A. FERRER,

JOSÉ F. CRUZ
Signals and Communications Department
University of Las Palmas de Gran Canaria

Campus University of Tafira, 35017, Las Palmas de Gran Canaria, Las Palmas
SPAIN

{sperez, jalonso, ctravieso, mferrer}@dsc.ulpgc.es, jcruz@pas.ulpgc.es

Abstract: -This work is based on a previous Fast Frequency Hopping Spread Spectrum (FFHSS) transceiver
designed for wireless optical communications. The core of the transmitter was a discrete Direct Digital
Synthesizer (DDS). In the first prototype the DDS control and the digital synchronization signal were generated
using a Programmable Logic Device (PLD), besides a discrete external filter was necessary to eliminate high
frequency components of digital synchronization signal and generate analog synchronization signal. The
FFHSS and analog synchronization signals were emitted by two separated Light Emitting Diodes (LED) to
avoid adding them with discrete analog circuits. The peak emission wavelength of the LED was 650
nanometers. The objective of this work is redesign the modulator on a Field Programmable Gate Array (FPGA)
using System Generator from Xilinx and analyse the performances of this design methodology. System
Generator is one design tool in Simulink of Matlab. It allows fast design of digital systems using block
diagrams. The compilation generates the files necessary for the Integrated System Environment (ISE) for
FPGA of Xilinx, where the description of the circuit is obtained in a standard hardware description language. In
ISE it is possible to compile the hardware description language files, simulate the system, assign pins, obtain
the program file and program the FPGA.

Key-Words: - spread spectrum, modulator, DDS, FPGA, System Generator, Xilinx, Simulink, HDL, floating
point, fixed point.

1 Introduction
A Field Programmable Gate Array (FPGA) [1] [2]
[3] is a digital integrated circuit that is configured
by the designer from a personal computer, without
sending it to the manufacturer, it can be
reprogrammed even if it has been placed in the
printing circuit board. The FPGA is programmed by
downloading a file called bitstream to an internal or
external memory in the system. A FPGA consists in
a two dimension array of digital configurable
resources which can perform arithmetic and logic
functions. Data dimensions in FPGA are flexible
and highly parallel architectures can be built, for
these reasons FPGA are suitable for Digital Signal
Processing (DSP).
 The Xilinx company is one of the most extended
manufacturer of FPGA. Xilinx offers System
Generator [4] that is one design tool in Simulink of
Matlab. System Generator allows the fast design of
systems using block diagrams, and its simulation
even before the compilation. The compilation
generates the files necessary for the Integrated

System Environment (ISE) [5] of Xilinx for FPGA,
where the description of the circuit is obtained in a
standard hardware description language (HDL).
These languages are Verilog [6] and Very High
Speed Integrated Circuit Hardware Description
Language (VHDL) [7]. In ISE it is possible to
compile the hardware description language files,
and simulate the system behavioral or timing
analysis. Afterwards the program file can be
generated for the chosen device, this file can be
downloaded from the computer to the board where
the FPGA is included. Finally, the performance of
the design system must be checked with electronic
measure equipment.
 This work is based on a previous designed
transceiver [8] for Fast Frequency Hopping Spread
Spectrum (FFHSS) [9] [10] for wireless optical
communications [11]. The core of the transmitter
was a discrete Direct Digital Synthesizer (DDS)
[12] from Analog Devices [13]. The objective of
this work is redesign the FFHSS modulator with
System Generator and analyse the performances of

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS
Santiago T. Perez, Jesus B. Alonso, Carlos M.
Travieso, Miguel A. Ferrer, Jose F. Cruz

ISSN: 1109-2734 641 Issue 8, Volume 8, August 2009

this design methodology: the integration and
flexibility are improved, the design time is
minimizing and the system has less power
consumption.

2 Design methodology
System Generator version 10.1 was used in this
design. When System Generator is installed some
Blocksets (see Fig. 1) are included in Simulink of
Matlab (version R2007a). Each block is configured
opening its dialog window, this permits fast and
flexible designs.

Fig. 1. System Generator Blocksets in Simulink.

 The FPGA boundary from the Simulink
simulation model is defined by Gateway In and
Gateway Out blocks. The Gateway In block
converts the floating point input to fixed point
format, saturation and rounding modes can be
defined by the designer. The Gateway Out block
converts the FPGA fixed point format to Simulink
double numerical precision.

 In System Generator the designer does not
perceive the signals as bits, instead the bits are
grouped in signed or unsigned fixed point format.
The operators force signals to change automatically
to the appropriate format in the outputs. A block is
not a hardware circuit necessarily, it relates with
others blocks to generate the appropriate hardware.
The designer can include blocks described in a
hardware description language, finite state machine
flow diagram, Matlab files, etc. The System
Generator simulations are bit and cycle accurate,
this means results seen in simulation exactly match
the results seen in hardware. The Simulink signals
are shown as floating point values, which makes
easier to interpret them. The System Generator
simulations are faster than traditional hardware
description language simulators, and the results are
easier to analyze. Otherwise the VHDL and Verilog
code are not portable to others FPGA
manufacturers, the reason of this is that System
Generator uses Xilinx primitives which take
advantages of the device characteristics.
 System Generator can be used for algorithm
exploration or design prototyping, for estimating the
hardware cost and performance of the design. Other
possibility is using System Generator for designing
a portion of a big system and join with the rest of
the design. Finally, System Generator can
implement a complete design in a hardware
description language. Designs in System Generator
are discrete time systems, the signals and blocks
generate automatically the sample rate, however a
few blocks set the sample rate implicitly or
explicitly. System Generator supports multirates
circuits and some blocks can be used for changing
the sample rate.
 Often an executable specification file is created
using the standard Simulink Blocksets (see Fig. 2).
The specification file can be designed using floating
point numerical precision and not hardware detail.
Once the functionality and basic dataflow have been
defined, System Generator can be used to specify
the hardware implementation details for the Xilinx
devices. System Generator uses the Xilinx DSP
Blockset from Simulink and will automatically
invoke Xilinx Core Generator to generate highly
optimized netlists for the building blocks. System
Generator can execute all the downstream
implementation tools to get a bitstream file for
programming the FPGA device. An optional
testbench can be created using test vectors extracted
from the Simulink environment for using with ISE
simulators.

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS
Santiago T. Perez, Jesus B. Alonso, Carlos M.
Travieso, Miguel A. Ferrer, Jose F. Cruz

ISSN: 1109-2734 642 Issue 8, Volume 8, August 2009

Fig. 2. System Generator design flow.

 Every system designed with System Generator
must contain a System Generator block (see Fig. 3)
and it specifies how simulation and code generator
can be used.

System
Generator

Fig. 3. System Generator block and its dialog window.

 Firstly, in System Generator block the type of
compilation can be specified to obtain: HDL netlist,
Bitstream for programming, etc. Secondly, the
FPGA type can be chosen. The Target directory
defines where the compilation writes the files of ISE
project. The Synthesis tool specifies which tool is
chosen for synthesizing the circuit: Synplify,

Synplify Pro [14] or Xilinx Synthesis Tool (XST).
In Hardware description language the designer can
choose between VHDL or Verilog. Finally, Clock
Options defines the period of the clock, its input pin
location, the mode of multirate implementation and
the Simulink system period which is the greatest
common divisor of the sample periods that appear in
the system. In Block icon display is specified the
type of information to be displayed on the block
icon.
 When the designer clicks on Generate in dialog
window of System Generator block the structural
description files in a hardware description language
are obtained, and a project is created for ISE version
10.1. In ISE, it is possible to check the syntax of the
hardware description language files (see Fig. 4). The
first step in the compilation process is synthesizing
the system. The synthesis tool used is XST, it is an
application that synthesizes hardware description
language designs to create Xilinx specific netlist
files called NGC files. The NGC file is a netlist that
contains both logical design data and constraints.
The NGC file takes the place of both Electronic
Data Interchange Format (EDIF) and Netlist
Constraints File (NCF) files. In synthesis options
optimization goal for area or speed can be fixed; by
default, this property is set to speed optimization.
Similarly, optimization effort can be established as
normal or high effort, in last case additional
optimizations are performed to get best result for the
target FPGA device. Synthesis report can be
analyzed by the designer; moreover, the designer
can view Register Transfer Level (RTL) schematic
or technology schematic. After synthesizing the
system the design is implemented in three stages:
translate, map and place and route. The translation
process merges all the input netlists and design
constraint information and outputs a Xilinx Native
Generic Database (NGD) file. Then the output NGD
file can be mapped to the targeted FPGA device
family. The map process takes the NGD file, runs a
design rule checker and maps the logic design to a
Xilinx FPGA device. The results appears in a Native
Circuit Design (NCD) file, which is used for placing
and routing. The place and route process takes a
NCD file and produces a new NCD file to be used
by the programming file generator. The generate
programming file process runs the Xilinx bitstream
generation program BitGen to produce a bit file for
Xilinx device configuration. Finally, the configure
target device process uses the bit file to configure
the FPGA target device.
 Behavioral simulations are possible in the design
before synthesis with the simulate behavioral model
process. This first pass simulation is typically

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS
Santiago T. Perez, Jesus B. Alonso, Carlos M.
Travieso, Miguel A. Ferrer, Jose F. Cruz

ISSN: 1109-2734 643 Issue 8, Volume 8, August 2009

Programmable
Logic Device Oscillator

DDS

Control signals FFHSS

Band Pass Filter

Digital synchronization signal

Binary data

Analog synchronization signal

Optical
emitter

Optical
emitter

performed to verify RTL or behavioral code and to
confirm the designed function. Otherwise, after
placed and routed the design on the chip, timing
simulations are possible. This process uses the post
place and route simulation model and a Standard
Delay Format (SDF) file. The SDF file contains true
timing delay information of the design.

Fig. 4. Overview of design flow of Integrated System
Environment.

3 Previous designed FFHSS
transceiver
In this section the previous FFHSS transceiver (see
Fig. 5 and 6) for wireless optical communications is
described and its block diagram is shown.

Fig. 5. Block diagram of previous designed FFHSS
transceiver.

Fig. 6. Hardware of previous designed FFHSS
transceiver.

3.1 Designed transmitter
In the first prototype (see Fig. 7) the DDS control
signals and digital synchronization signal were
generated using a Programmable Logic Device
(PLD). Besides an external discrete filter was
necessary to eliminate the high frequency
components of digital synchronization signal and
get an analog synchronization signal. The FFHSS
and synchronization signals were emitted by two
separated optical emitters to avoid summing them
with discrete analog circuits.

Fig. 7. Block diagram of previous designed transmitter.

 The discrete DDS (see Fig. 8) is a digital system
excepting the final Digital to Analog Conversor
(DAC), its output signal is a sampled signal at 180
MHz, the emitted FFHSS signal is smoothed by the
100 MHz bandwidth of the optical emitter. In the
DDS used the output frequency is fixed by the
expression (1), where fDDS_CLK is the frequency of
the DDS clock (180 MHz), N is the number of bits
of the tuning word (32 bits) and Word is a decimal
value of 32 bit frequency tuning word.

fout=(Word·fDDS_CLK) /2N (1)

Demodulated
data Transmitter

Binary
data

Analog synchronization signal

FFHSS

Receiver

TRANSMITTER

RECEIVER

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS
Santiago T. Perez, Jesus B. Alonso, Carlos M.
Travieso, Miguel A. Ferrer, Jose F. Cruz

ISSN: 1109-2734 644 Issue 8, Volume 8, August 2009

Fig. 8. Block diagram of DDS AD9851 from Analog
Devices.

3.2 Designed receiver
In the receiver (see Fig. 9) the signals were
separated by discrete filters, the synchronization is
reached after adjusting a discrete circuits chain. The
synchronization of the receiver makes possible to
demodulate the FFHSS signal with two discrete
DDS as local oscillators. These two DDS are the
same type as the transmitter. In the receiver the
control of these DDS is made with the same PLD
type as the transmitter. The demodulator is a double
branch structure of discrete circuits, each branch is
formed by a mixed and an envelope detector, and its
intermediate frequency is the standar value of 10,7
MHz.

Fig. 9. Block diagram of previous designed receiver.

4 New modulator design
In this section the new modulator design with the
new methodology is described, it coincides with the
previous designed transmitter (see Fig. 7) except the
optical emitters and the output DAC of the discrete
DDS.

4.1 Design and simulation with System
Generator
The present work consists in redesign the FFHSS
modulator and the generation of analog
synchronization signal with System Generator. The
block diagram of the designed system is in Fig. 10.
It is formed by an internal data generator, a code
generator, and two DDS to generate the FFHSS and
synchronization signals. An external clock of 180
MHz is needed for the system.

SYNCHRONOUS FFHSS MODULATOR

Scope 5

Scope 4

Scope 3

Scope 2

Scope 1

S_31 _BEFORE
 Out

SYNCHRONIZATION
 Out

SINC_DATA_PN
 Out

LENGTH
 Out

F_DDS

clk

F_CHIP
 Out

FFHSS_SYNCHRONIZATION
 Out

FFHSS
 Out

FB

 Out

DDS_SYNCHRONIZATION

LENGTH SYNCHRONIZATION

DDS_FFHSS

 DATA_CODE_16_STATE

 DATA_DDS

FFHSS

DATA_PN
 Out

DATA_GENERATOR

FB

SINC _DATA_PN

DATA_PN

CODE_GENERATOR

DATA

F_CHIP

CODE_31_STATE

CODE_16_STATE

 DATA_CODE_16_STATE

S_31_BEFORE

LENGTH

CODE _31 _STATE
 Out

CODE _16_STATE
 Out

AddSub

a

b
a + b

System
Generator

 DATA_DDS
 Out

 DATA_CODE _16_STATE
 Out

Fig. 10. Block diagram of synchronous FFHSS modulator
designed with System Generator.

4.1.1 Pseudorandom data generator
The internal data generator (see Fig. 11) avoids
using an external data source, it was designed using
a Linear Feedback Shift Register block (LFSR) as
pseudorandom generator of 15 bits long at 500
kilobits per second. In the pseudorandom data
generator a pulse is generated each time the
sequence begins, this provides a high quality
periodic signal to synchronize the oscilloscope. In
Fig. 12 the clock, the data synchronization pulse
and the pseudorandom data are shown after
Simulink simulation.

Scope 1

SINC_DATA_PN
 Out

FB

 Out

DATA_PN
 Out

DATA_GENERATOR

FB

SINC_DATA_PN

DATA_PN

Fig. 11. Internal data pseudorandom generator.

Analog synchronization
signal

Synchronization
recovery

Preset

6*FCHIP

Oscillators

Optical receiver
and splitting filters

Demodulator

F_0 F_1

Demodulated
data

FFHSS

Optical
signals
received

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS
Santiago T. Perez, Jesus B. Alonso, Carlos M.
Travieso, Miguel A. Ferrer, Jose F. Cruz

ISSN: 1109-2734 645 Issue 8, Volume 8, August 2009

0 1 2 3 4 5 6 7

x 10-5

-0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

x 10-5

-0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

x 10-5

-0.2

0

0.2

0.4

0.6

0.8

1

Fig. 12. Pseudorandom data generator signals: a) clock at
bit rate, b) the data synchronization pulse, c) the
pseudorandom binary data.

4.1.2 Pseudorandom code generator
The pseudorandom code generator is shown in Fig.
13 and its Simulink simulation is on Fig. 14. The
code rate is called chip frequency (signal a in Fig.
14), its value is 1,5 Megachips per second,
consequently three codes are generated by each data
bit. The code generator is based on a LFSR of 31
states 5 bits width (signal b in Fig. 14). In the
pseudorandom code generator a pulse is generated
each time the sequence begins (signal e in Fig. 14).
A five bits code (signal d in Fig. 14) is obtained
with the four most significant bits of the
pseudorandom code generator (signal c in Fig. 14)
and the data bit as most significant bit.

FB

DATA_PN

Scope 2
S_31_BEFORE

 Out

LENGTH
 Out

F_CHIP
 Out

CODE_GENERATOR

DATA

F_CHIP

CODE_31_STATE

CODE_16_STATE

 DATA_CODE_16_STATE

S_31_BEFORE

LENGTH

CODE _31_STATE
 Out

CODE_16_STATE
 Out

 DATA_CODE_16_STATE
 Out

Fig. 13. Pseudorandom code generator.

0 1 2 3 4 5 6 7

x 10-5

0

0.5

1

0 1 2 3 4 5 6 7

x 10-5

0

20

0 1 2 3 4 5 6 7

x 10-5

0

10

0 1 2 3 4 5 6 7

x 10-5

0

20

0 1 2 3 4 5 6 7

x 10-5

0

0.5

1

0 1 2 3 4 5 6 7

x 10-5

0

0.5

1

Fig. 14. Pseudorandom code generator signals: a) chip
frequency, b) pseudorandom code 5 bits width, c) 4 most
signicants bits of pseudorandom code 5 bits width, d)
data joined with 4 most signicants bits, e) the previous
stage to “11111”, f) square signal which marks the code
length.

4.1.3 FFHSS signal generation
For each group of five bits (signal d in Fig. 14) a
sampled sinusoidal signal is generated according
with Table 1.

Code Frequency
(MHZ) Code Frequency

(MHZ)
00000 24.384 10000 48.960
00001 25.920 10001 50.496
00010 27.456 10010 52.032
00011 28.992 10011 53.568
00100 30.528 10100 55.104
00101 32.064 10101 56.640
00110 33.600 10110 58.176
00111 35.136 10111 59.712
01000 36.672 11000 61.248
01001 38.208 11001 62.784
01010 39.744 11010 64.320
01011 41.280 11011 65.856
01100 42.816 11100 67.392
01101 44.352 11101 68.928
01110 45.888 11110 70.464
01111 47.424 11111 72.000

Table 1. Transmitted frequencies for the FFHSS signal.

 In Fig. 15 the DDS that generates the FFHSS
signal is shown. The DDS clock is the system clock
(180 MHz), therefore with an external filter a pure
senoidal signal can be synthesized until a bit less
than 90 MHZ.

 DATA_CODE _16_STATE

 DATA_CODE _16 _STATE

Scope 3F_DDS

clk

FFHSS
 Out

DDS_FFHSS

 DATA_CODE_16_STATE

 DATA_DDS

FFHSS

 DATA_DDS
 Out

Fig. 15. DDS that generates FFHSS signal.

 The input for the Xilinx DDS block must be the
division between the synthesized frequency and the
DDS clock. The equation (2) shows the meaning of
this relation. Consequently, the DDS block fixes the
number of bits N according with the rest of the DDS
parameters: spurious free dynamic range, resolution,
implementation mode, etc.

fout/ fDDS_CLK=Word /2N (2)

 The five bits (signal a in Fig. 16) are transformed
to the format of the input of Xilinx DDS block
(signal b in Fig. 16). This last operation is an
unsigned fixed point integer to unsigned fixed point
decimal conversion. In signal c of Fig. 16 five chip
times of FFHSS signal are shown. In Fig. 17 there is
one chip time, and the DDS clock can be analyzed.

a)

b)

c)

d)

e)

f)

a)

b)

c)

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS
Santiago T. Perez, Jesus B. Alonso, Carlos M.
Travieso, Miguel A. Ferrer, Jose F. Cruz

ISSN: 1109-2734 646 Issue 8, Volume 8, August 2009

6.75 6.8 6.85 6.9 6.95 7 7.05

x 10-5

0

10

20

30

6.75 6.8 6.85 6.9 6.95 7 7.05

x 10-5

0

0.1

0.2

0.3

0.4

6.75 6.8 6.85 6.9 6.95 7 7.05

x 10-5

-1

-0.5

0

0.5

1

Fig. 16. Signals in DDS that generates the FFHSS signal
(five chip times): a) five bits DDS input, b) input for
Xilinx DDS block, c) FFHSS signal.

6.86 6.87 6.88 6.89 6.9 6.91 6.92 6.93 6.94

x 10-5

0

10

20

30

6.86 6.87 6.88 6.89 6.9 6.91 6.92 6.93 6.94

x 10-5

0

0.1

0.2

0.3

0.4

6.86 6.87 6.88 6.89 6.9 6.91 6.92 6.93 6.94

x 10-5

-1

-0.5

0

0.5

1

6.86 6.87 6.88 6.89 6.9 6.91 6.92 6.93 6.94

x 10-5

0

0.5

1

Fig. 17. Signals in DDS that generates the FFHSS signal
(one chip time): a) five bits DDS input, b) input for
Xilinx DDS block , c) FFHSS signal, d) 180 MHz DDS
clock.

4.1.4 Synchronization signal generation
In the pseudorandom code generator a square signal
is generated with a 50% duty cycle (signal f in Fig.
14). This square signal has a semiperiod with the
same duration as the pseudorandom code length.
The square signal is the DDS input that generates
the synchronization signal (see Fig. 18), it
modulates in phase to a 9 MHz carrier (see Fig. 19).
The phase modulated signal carries information
about the beginning of the pseudorandom code and
its chip frequency because its carrier is a multiple of
1.5 MHz. Finally, the FFHSS and the
synchronization signals are added with an AddSub
block in Fig. 18.

LENGTH

LENGTH

FFHSS

FFHSS

Scope 5

Scope 4
SYNCHRONIZATION

 Out

FFHSS_SYNCHRONIZATION
 Out

DDS_SYNCHRONIZATION

LENGTH SYNCHRONIZATION

AddSub

a

b
a + b

Fig. 18. DDS for synchronization generation and final
adder.

2.02 2.03 2.04 2.05 2.06 2.07 2.08 2.09 2.1 2.11 2.12

x 10
-5

-0.2

0

0.2

0.4

0.6

0.8

1

2.02 2.03 2.04 2.05 2.06 2.07 2.08 2.09 2.1 2.11 2.12

x 10-5

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

4.09 4.1 4.11 4.12 4.13 4.14 4.15 4.16 4.17 4.18 4.19

x 10-5

-0.2

0

0.2

0.4

0.6

0.8

1

4.09 4.1 4.11 4.12 4.13 4.14 4.15 4.16 4.17 4.18 4.19

x 10-5

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Fig. 19. Signals in DDS that generates the
synchronization signal: a) square input signal, b)
synchronization signal.

1.98 2 2.02 2.04 2.06 2.08 2.1 2.12 2.14 2.16

x 10-5

-1

-0.5

0

0.5

1

1.98 2 2.02 2.04 2.06 2.08 2.1 2.12 2.14 2.16

x 10-5

-1

-0.5

0

0.5

1

1.98 2 2.02 2.04 2.06 2.08 2.1 2.12 2.14 2.16

x 10-5

-2

-1

0

1

2

Fig. 20. Inputs and output of final adder: a) FFHSS
signal, b) synchronization signal, c) the above signals
added together.

 It must be noted that data and chip rates were
changed softness from the initial prototype values,
where the clock of the discrete DDS and the PLD
clock were independents, and one frequency was not
multiple of the other one. For the chosen FPGA
device a master clock must exist, the rest of the
clocks are generated by frequency division, the data
and chip rates were changed softness to reach this
condition. Others FPGA devices allow in its clocks
generator block an integer multiplication factor,
which joined with the division factor forms a
rational number as multiplication factor.

4.2 Simulation and compilation with ISE
After the system has been simulated with Simulink
it can be compiled with System Generator. The
chosen device is a Virtex4 FPGA, and the hardware
description language is VHDL. A project is then
generated for ISE, which include the structural
description of the system using several files. The
syntax of the VHDL files can be checked, and the
synthesis and behavioral simulation of the system
can be done (see Fig. 21 and 22). After that, the
implementation of the design allows the timing
simulation of the modulator (see Fig. 23). Lastly,
the programming file is generated for the chosen
FPGA.

a)

b)

a)

b)

c)

a)

b)

c)

d)

a)

b)

c)

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS
Santiago T. Perez, Jesus B. Alonso, Carlos M.
Travieso, Miguel A. Ferrer, Jose F. Cruz

ISSN: 1109-2734 647 Issue 8, Volume 8, August 2009

Fig. 21. A long behavioral simulation of synchronous FFHSS modulator using ISE (49 microseconds).

Fig. 22. A short behavioral simulation of synchronous FFHSS modulator using ISE (192.5 nanoseconds).

Fig. 23. Timing simulation of synchronous FFHSS modulator using ISE (152 nanoseconds).

 The files obtained in this design occupy about 5
thousand lines of VHDL code, and 7 thousand in
Verilog. The ISE software provides a power
estimator that indicates a dissipation of 0.34 watts in
the FPGA, and an estimated temperature of 29.8
degrees centigrade. This represents a power savings
of 86% with respect the initial prototype. The FPGA
core is supplied with 1.2 volts and the input-outputs

pins support the LVCMOS 2.5 volts standard (Low
Voltage Complementary Metal Oxide
Semiconductor). The occupation rate of hardware in
the FPGA is about 1% for logical resources and
20% for input-output pins, however the occupation
rate for pins can be reduced until 10% if internal
signals are not checked. The timing simulation
demonstrates that 250 MSPS can be reached.

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS
Santiago T. Perez, Jesus B. Alonso, Carlos M.
Travieso, Miguel A. Ferrer, Jose F. Cruz

ISSN: 1109-2734 648 Issue 8, Volume 8, August 2009

4.3 The chosen board
In the moment of writing this document Xilinx does
not offer boards with enough performance of Digital
to Analog Conversor (DAC). The design needs at
least a 7 bits DAC, its rate conversion must reach
180 megasamples per second (MSPS), which is the
sample rate of the transmitted signal. It can be
verified that several boards exist for the proposed
system with enough features, these boards have
been developed for companies which are specialized
in FPGA kits. These kits include the necessary
FPGA or even better and several 14 bits DAC at 480
MSPS. Three DAC are necessary is besides the
FFHSS and synchronization signal are monitored.
Another solution is to connect two boards, one of
them with the FPGA and the other with the DAC
stage.
 Finally, the proposed board (see Fig. 24) is the
ICS-8560A-100 of GE Fanuc [15]. Its block
diagram is in Fig. 25, it includes two 16 bits DAC at
400 MSPS. At the moment of writing this work has
not been possible to buy this board. Programming
the FPGA and capturing results in the laboratory is
proposed as future work.

Fig. 24. The proposed board for the synchronous FFHSS
modulator: ICS-8560A-100 of GE Fanuc.

Fig. 25. Block diagram of ICS-8560A-100 board.

5 Conclusions
With this design methodology the typical
advantageous features of using programmable
digital devices are reached. Repeating a design
consists in reprogramming the FPGA in the chosen
board, without designing printing circuit boards
with discrete circuits. The alternative prototype
reduces the number of external discrete components,
the integration is improved and the adjusting of
analog circuits is avoided.
 The design and simulation times are decreased,
consequently the time to market is minimizing. It is
important to note that electronic equipments are
short-lived, and reaching late to the market involves
economic losses. The used tool permits great
flexibility; in others words, the design parameters
can be changed and new features can be checked in
several minutes. The Simulink simulations are easy
to run, and the signals are shown in floating point
format which make easier its analysis. These
simulations are possible even before the compilation
of the System Generator blocks to obtain the
hardware description language files. The possible
hardware description languages are Verilog and
VHDL.
 In the system designed with System Generator
the FFHSS and synchronization signals are added in
fixed point format, even a weighted adder can be
used. The flexibility allows to change the DDS
parameters and check its performance. It can be
included also an inverse sync filter for
compensating variations in amplitude of the
sinusoidal signal generated in the DDS output,
caused by the sample and retention effect.
 The design of the receiver is proposed as future
work, all its blocks can be included in a FPGA:
splitting filters, synchronization recovery and two
branches demodulator. With System Generator is
possible to simulate the transceiver, its performance
can be tested in presence of additive white gaussian
noise, which is available in a System Generator
block. Moreover, it is possible to simulate the
transmission through a channel with interference,
distortion and others spread spectrum signals using
different codes.

References:
[1] Scott Hauck, André DeHon, Reconfigurable

Computing, Elsevier, 2008.
[2] Rosula S.J. Reyes, Carlos M. Oppus, Jose

Claro N. Monje, Noel S. Patron, Reynaldo C.
Guerrero, Jovilyn Therese B. Fajardo, FPGA
Implementation of a Telecommunications
Trainer System, International Journal of

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS
Santiago T. Perez, Jesus B. Alonso, Carlos M.
Travieso, Miguel A. Ferrer, Jose F. Cruz

ISSN: 1109-2734 649 Issue 8, Volume 8, August 2009

Circuits, Systems and Signal Processing,
Volume 2, Issue 2, 2008, pp. 87-94.

[3] I. Jivet, B. Dragoi, FPGA Implementation of
the Curve Generator Algorithm for HW
Acceleration Applications, WSEAS
Transactions on Circuits and Systems, Volume
7, Issue 1, 2008, pp. 7-12.

[4] http://www.xilinx.com/tools/sysgen.htm
[5] http://www.xilinx.com/tools/webpack.htm
[6] Pong P. Chu, FPGA Prototyping by Verilog

Examples, Wiley, 2008.
[7] Volnei A. Pedroni, Circuit Design with VHDL,

The MIT Press, 2004.
[8] Santiago T. Pérez, José A. Rabadán, Francisco

A. Delgado, José R. Velázquez, Rafael Pérez,
Design of a synchronous Fast Frequency
Hopping Spread Spectrum transceiver for
indoor Wireless Optical Communications based
on Programmable Logic Devices and Direct
Digital Synthesizers, XVIII Conference on
Design of Circuits and Integrated Systems,
2003, pp. 737-742.

[9] Marvin K. Simon, Jim K. Omura, Robert A.
Scholtz, Barry K. Levitt, Spread Spectrum
Communications Handbook, McGraw-Hill
Professional, 1994.

[10] Paul Bechet, Mircea Virgil Popa, Radu Mitran,
Iulian Bouleanu, Mircea Bora, Some aspects
regarding themeasurement of the Adjacent
Channel Interference for Frequency Hopping
Radio Systems, WSEAS Transactions on Signal
Processing, vol. 2, 2006, pp. 991-996.

[11] Joseph M. Kahn, John R. Barry, Wireless
Infrared Communications, Proceedings of the
IEEE, Volume 85, no. 2, 1997, pp. 265-298.

[12] I. Jivet, B. Dragoi, Performance Analysis of
Direct Digital Synthesizer Architecture with
Amplitude Sequencing, WSEAS Transactions
on Circuits and Systems, Volume 7, Issue 1,
2008, pp. 1-6.

[13] http://www.analog.com/static/imported-
files/data_sheets/AD9851.pdf

[14] http://www.synplicity.com
[15] http://www.gefanuc.com/products/2211

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS
Santiago T. Perez, Jesus B. Alonso, Carlos M.
Travieso, Miguel A. Ferrer, Jose F. Cruz

ISSN: 1109-2734 650 Issue 8, Volume 8, August 2009

