

Studies on Multi-Agent Based Partial Discharge Online

Monitoring System for High Voltage Apparatus

LINPENG YAO
1
, CHENGJUN HUANG

1
, LI ZHANG

2
, YONG QIAN

1
, HUI WANG

1
,

JUNHUA LIU
1
, CANXIN GUO

1
, XIUCHEN JIANG

1

1
 Department of Electrical Engineering

2
Department of Production and Technology

1
Shanghai Jiao Tong University

2
Shanghai Municipal Electric Power Company

1
NO.800 Dongchuan Rd, Shanghai 200240

2
No.1122 Yuanshen Rd, Shanghai 200122

CHINA

yaolinpeng@sjtu.edu.cn http://www.sjtu.edu.cn

Abstract: In the contribution, the authors applied the Multi-Agent methodology to the partial discharge (PD)

online diagnosis for high voltage apparatus, and a PD diagnosis Multi-Agent system for high voltage apparaus

was implemented. Based on the investigation of problems existing in partial discharge detection and evaluation,

such as preprocessing, features extraction, trend and fingerprint analysis, corresponding methods and schemes

were described. The framework of the Multi-Agent system and detailed design of each agent were also depicted.

And furthermore, a complete system implemented by Zeus are established for performing evaluation in field

application.

Key-Words: High voltage, Partial discharge, Multi-Agent, Monitoring, .Net Framework, Zeus

1 Introduction
Partial discharge occurring in insualtion system of

high voltage apparatus is not only a symptom of

deterioration in its insulation but also a cause of its

further deterioration. Therefore online monitoring

system for partial discharge plays a significant role in

condition monitoring for high voltage apparatus.

Features extracted from the partial discharge signals

can determine the level and type of partial discharge

pulses and proper diagnosis can be made for the

precaution of latent failure. However, problems still

exist in both aspects of signal processing and system

framework establishment. Due to the difficulties in

the capturing and preprocessing of PD signals,

making meaningful interpretation for the detected

results is still a devilish problem to solve. As

condition monitoring requires different

measurements to make accurate decision, the

framework of the system must be more flexible to

integrate comprehensive monitoring means which

can be easily installed or updated as required [1].
One solution to developing diagnosis system

utilizes Multi-Agent technique [2]. In recent years,

Multi-Agent becomes a hotspot in the research field

of artificial intelligence. Multi-Agent can permit

developers to extend components to construct various

types of agents with different capabilities and

patterns of interaction. Compared with other

frameworks, Multi-Agent is flexible in structure and

extensible in function [3]. Moreover, this architecture

meets the current demand of auto diagnosis and

conditional monitoring and has a board future in field

application.

This paper puts forward an online partial

discharge monitoring system based on Multi-Agent

architecture designed for high voltage appartus and

introduces the advantages in data interpretation and

framework extensibility.

2 Research approach of Multi-Agent

methodology
Traditional ways of designing methodology do not fit

the Multi-Agent paradigm. The methodology should

be indenpendent of a particular multiagent system

architecture, agent architecture, programming

language or message-passing system. During the last

few years, great progress has made in both fields of

Multi Agents design methodology (MaSE, GAIA,

OAA) and development toolkit (JADE, JAFMAS,

Zeus).

MaSE follows the steps of capturing goals,

applying use cases, refining roles, creating agent

classes, constructing conversations, assembling agent

classes and system design[4].

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS

Linpeng Yao, Chengjun Huang, Li Zhang,
Yong Qian, Hui Wang, Junhua Liu,
Canxin Guo, Xiuchen Jiang

ISSN: 1109-2734 620 Issue 7, Volume 8, July 2009

GAIA methodology divides the designing into

the following steps: collection of requirements,

analysis, architectural design, detailed design and

implementation, which and design of multiagent

systems. GAIA also provides clear guidelines for the

analysis and design of complex and open software

systems[5].

OAA presents the mechanisms including:

approach to cooperate between agents, facilitators to

coordinate the satification of goals, facilities for

sharing data, which facilities the use of cooperate

task completion[6].

JADE is a software development framework fully

implemented in the Java language, which offers to

developer a number of features: distributed agent

platform, FIPA-compliant agent platform, Efficient

transport of agent commnunication language(ACL)

messages[7].

JAFMAS (Java-based Agent Framework for

Multi-Agent Systems) primarily focus on providing

communication and message exchanging support for

agent system developers in the form of conversation.

By conversation, agents exchange messages, change

state and perform local actions[8].

Zeus defines a Multi-Agent system design

approach and supports it with a visual environment

for capturing user specification of agents that are

used to generate Java source code of agents[9].

In this paper, authors achieved the Multi-Agent

architecture under the environment of Zeus.

3 Function design of PD monitoring

system
Before the implemention of Multi-Agent system,

detailed function desgin must be performed as

carefully as possible. The design of Multi-Agent

architecture ususlly follows the general operations as

listed:

3.1 Requirements analysis
Firstly, the system should be well designed for PD

signals preprocessing. It is difficult to recognize

normal PD signals from significant noises and

interferences in the field application. So the system

must be capable of eliminating these noises

autonomously before feature extraction.
Secondly, interpretation of the diagnosis must be

meaningful for the operators. As the relationship

between the data and condition of the apparatus is not

always well understood, technology of artificial

intelligence is required.

Thirdly, in order to achieve an accurate

conclusion, various sources of data should be

centralized to process. The system in the essay is able

to integrate various monitoring technologies such as

electrical loading and acoustic detection.

Finally, with the development of monitoring

technologies, how to integrate these new

technologies into the system in operation easily must

be considered.

Considering issues above, a monitoring system

must achieve these functions:

1) Autonomously data capturing and processing

2) Ability for interpretation and fault diagnosis

3) Corroboration by weighing and balancing

different source of data

4) Flexibility and extensibility for new

technologies.

The last point mentioned above decides the

running life of the system, which offers an easily plug

and play way to the new detecting technologies.

Designed according to this rule, modules of the

system is able to run in independency and achieve the

final objective through mutual interaction.

3.2 Task decomposition
Process of partial discharge diagnosis usually

contains four stages: Preprocessing, Feature

extraction, Interpretation and Corroboration, as

shown in Fig.1.

Fig.1 Flow chart of PD diagnosis

Establishment of knowledge base is also critical

to decompose tasks properly. Abundant knowledge

of apparatus’s insulation is essential to diagnosis.

Knowledge mainly comes from:

1) International and national standard;

2) Operating rules and instructions from State

Grid;

3) Consultations and experiences from experts;

4) Scientific literature.

Based on these knowledge and experience, each

stage is transferred to some specified tasks and

sub-tasks to simplify the implementation in

computer. As shown in Fig.2, the root task Diagnosis

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS

Linpeng Yao, Chengjun Huang, Li Zhang,
Yong Qian, Hui Wang, Junhua Liu,
Canxin Guo, Xiuchen Jiang

ISSN: 1109-2734 621 Issue 7, Volume 8, July 2009

is divided into several sub tasks.

Ant i -noi se processi ng

St at i st i cal f eat ures

ext ract i on

Cl uster i ng

anal ysi s

Di agnosi s

Concl usi on

Phase di st ri but i on

anal ysi s

Si mi l i ar i t y

anal ysi s

Advi ce f or short

and l ong t erm

I nsul at i on St at us

St abi l i t y

eval uat i on

Severi t y

eval uat i on

Corroborat i on
Di f f erent source

of dat a

Trend anal ysi s

Fuzzy eval uat i on

Fig.2 Task hierarchy and agents in Multi-Agent

System

Agents are designed to fulfill these tasks. And

these agents are grouped by their function to six

layers: device layer, preprocessing layer, feature

extraction layer, interpretation layer, Corroboration

layer and information layer (Fig.3).

Interaction Agent

Diagnosis Agent

Device Agent

Trend

analysis

Agent

Signal processing Agent

Statistical features

extraction Agent

Clustering

analysis

Agent

Phase distribution

analysis Agent

Device

Layer

Preprocessing

Layer

Feature

Extraction

Layer

Interpretation

Layer

Corroboration

Layer

Information

Layer

Fuzzy

evaluation

Agent

Similarity

analysis

Agent

Fig.3 Multi-Agent system for monitoring PD

3.3 Design of individual layers
3.3.1 Device Layer

The device layer obtains data from sensors and

instruments installed on or nearby the high voltage

apparatus. The acquired data includes PD signal and

field environment. PD signal is acquired by coupling

capacitor, coil transformer or acoustic sensor, while

the field environment can be described by

temperature and humidity. Usually, devices installed

onsite is unattended, so the system should have

reliable self test mechanisms to ensure its operating

steadily.

 The scheme of device layer implemented by the

authors is described as Fig.4.

 The analog signals obtained by the high

frequency current transducer (HFCT) are processed

by the band pass filter and transmit to the program

controlled amplifying circuit. Then the amplified

analog signals are digitalized and sampled and

digitally filtered by DSP[10]. The processed signals

are finally transferred to the subordinate computer

through HPI for the further analysis.

The subordinate computer(Fig.5) realized by

embedded system is aimed to be compact, fast and

extendable. The authors selected the ARM920T

embedded processor as hardware core and Windows

CE.NET operating system as software base. The

system is composed of controlling module for

coordinating data acquisition with DSP,

communication module for data transferring with

supervisory computer, database module for

temporary features storage and watchdog module for

system status guarding.

Fig.4 Scheme of online system for monitoring PD in

high voltage apparatus

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS

Linpeng Yao, Chengjun Huang, Li Zhang,
Yong Qian, Hui Wang, Junhua Liu,
Canxin Guo, Xiuchen Jiang

ISSN: 1109-2734 622 Issue 7, Volume 8, July 2009

Fig.5 Pictures of DSP and ARM control unit board

The supervisory computer is operated on the

hardware of IBM Xeon Server with a fast processor

and a large amount data storage and on the software

of Windows Server operating system with .NET

Framework and SqlServer. The multi agent software

environment are mostly based on it.

3.3.2 Preprocessing Layer

The preprocessing layer is mainly used to eliminate

the noise in the original acquired data. The pulse of

PD is of short duration in time domain and embedded

large quantities of high frequency noise components,

and the wave transmited through the winding,

distorted to reflection and resonance.

The source of the noise is listed as below[11]:

1) The power system's noise through the

apparatus outlets, which may excited by the internal

discharge of other equipments in power system, such

as discharge of the busbar, switching of the breaker

and so on.

2) The high frequency noise such as coupling by

capacitor and inductor form the generator's rotator

DC excitaion. These noise may originated by the

thyristor of excitation system.

3) The external noise from the environment out

side, such as broadcasting interference of AM radio

and high frequency signals from mobile phone.

4) The noise in diagnosis system itself, such as

noise of circuit or switch power supply.

Noises and interferences in the field application

can be divided into three types: white noise, discrete

spectral interference, impulse interference. These

noises vary so much in both time domain and

frequency domain that they cannot be eliminated

simply by a single method. Therefore, different

measures should be taken in order to eliminating

different kind of noises. At present, the wavelet [12]

and multi-wavelet [13] filtering technology are

widely regarded as the most effective method in

white-noise elimination. Fast Fourier

Transformation(FFT) filtering [14] and adaptive

filtering [15] offers an ideal result in discrete spectral

interference elimination. Neutral network filtering

[16,17,18] is hopefully effective to random impulses.

The authors select Bandpass Filter, FFT Filter,

Wavelet Filter, Neural Network Filter to eliminate

the noise. As shown in Fig.6, signals captured by

devices are filtered by means above to restrict

disturbances to the further stage.

Wavelet

Filter

FFT

Filter

Neural

Network

Filter

Feature

Extraction

Agent

Bandpass

Filter

Signals

Preprocessing

Agent

Fig.6 procedure of agents in preprocessing layer

1) Bandpass Filtering:

FIR (Finite impulse response) algorithm is an

effective method for bandpass filtering which can be

carried out by DSP. With Embedded MATLAB

toolbox supplied with MATLAB environment, DSP

C code can be generated automatically. In our

realization, authors design a 300 order filter with

bandwidth from 500K to 10M Hz. Its magnitude and

phase response are shown in Fig. 7

Fig.7 The magnitude and phase response of designed

filter

2) FFT Filtering:

Discrete spectral interference maybe another

type of noise carried by captured signals, which

mainly come from radio broadcasting in the field

application.

FFT filtering converts the signals in time

domain into frequency domain firstly. And it

searches the discrete spectral components above

threshold calculated adaptively and cuts off them

with certain algorithm. Finally, inverted FFT are

applied to reconstruct the signals in domain.

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS

Linpeng Yao, Chengjun Huang, Li Zhang,
Yong Qian, Hui Wang, Junhua Liu,
Canxin Guo, Xiuchen Jiang

ISSN: 1109-2734 623 Issue 7, Volume 8, July 2009

Before the system is installed, it is

recommended to collect the background signals to

estimate the frequencies of discrete spectral

interference.

3) Wavelet Filtering

White noise such as thermal noise or shot noise

from amplifier, sampling circuit and ambient

surroundings, for its broad spectral bandwidth,

cannot be elimated by the traditional filtering based

on frequency domain analysis. In recent study,

wavelet and multi-wavelet filtering methodology are

proved to be an effective way to supress the white

noise, which can process partial discharge

waveforms in varous mode by means of preserving

more partial discharge pulse features when denosing.

The procedure of wavelet filtering in this thesis

involes four steps, decomposition, calulating

threshold, modifiying the detail coefficients and

reconstruction.

The authors select db8 wavelet and the threshold

described as equtation(1)[19].

/ 0.675 2 log()j j jm nλ = ⋅ ⋅
 (1)

jλ is the threshold at level
j
, jm

 is the median

value of the coefficients at level
j

, and jn is the

length of coefficients at level
j
.

4) Neural Network Filtering

The principle of denoising by Neural Network

Filtering is based on the recognition of both partial

discharge pulse waveforms and interference

waveforms, which are picked up from the field

application. However, neural network algorithm

usually has a disadvantage of low convergence and

easily sticking in the local minimum. So in order to

avoid this, Particle Swarm Optimization algorithm is

adopted in our implementation[20].

By means of filtering mentioned above, the

signal-noise ratio of partial discharge signals can be

improved obviously. The comparisons both in time

domain and frequency domain between the raw data

and the filtered data are shown as Fig.8 and Fig.9.

The raw data is captured from field application with

kinds of serious interferences. From the view of time

domain (as Fig.8), some pulses with large amplitude

are recognized as random noises and eliminated by

the methodology of Neural Network Filtering.

Meanwhile, from the view of frequency domain(as

Fig.9), discrete spectral interferences like single

pulses above 10uV are constrained. Signals must be

preprocessed before being transmitted to

subsequence layer in the field application.

Fig.8 (a) is raw signal and (b) is filtered signal from

field application in time domain.

Fig.9 (a) is raw signal and (b) is filtered signal from

field application in frequency domain.

3.3.3 Feature Extraction Layer

The feature extraction layer is mainly used to extract

the features of detected PD signals. The features of

PD signals can be divided into statistic features and

phase-based features. The statistic features are

extracted from the signals in the time domain directly

while the phase-based features are acquired from the

signals in the phase domain. The system in the essay

extracted 10 statistic features, they are:

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS

Linpeng Yao, Chengjun Huang, Li Zhang,
Yong Qian, Hui Wang, Junhua Liu,
Canxin Guo, Xiuchen Jiang

ISSN: 1109-2734 624 Issue 7, Volume 8, July 2009

1) voltage level of discrete spectral signals

2) threshold for extracting pulses

3) maximum discharge magnitude

4) mean discharge magnitude

5) maximum magnitude regardless of

maximum 5% of discharge

6) average level regardless of maximum 5% of

discharge

7) average discharge current

8) quadratic rate

9) number of discharges

10) mean number of discharges.

And another 26 statistical fingerprint features

extracted by the system. Totally 78 features are

extracted after twice phase shift (with 120 degree and

240 degree separately), which are as same as those

detected by PD Detector TE571[21].Therefore, two

discrete agent modules are configured in this layer,

one for statistic features extracting and the other for

fingerprint features extracting, as shown in Fig. 3.

3.3.4 Interpretation Layer

The interpretation layer is used to transfer abstract

PD features to meaningful information.

The interpretation of the PD signals is a complex

problem which requires the combination of the

expertise of power equipments and different kinds of

intelligent diagnosis techniques. The past research

shows that at present, it is impossible to accomplish

the automatic PD diagnosis by a unitary method.

Different techniques are required to establish a mixed

diagnosing system and the main advantage of the

Multi-agent structure is to support different

interpretation. The statistical features are usually

used to describe the trend of the partial discharge,

evaluate the severity of the partial discharge while

phase-based features are regarded as the fingerprint

in identifying the type of partial discharge. In the

essay, the fingerprint features of partial discharge are

used in correlation analysis and clustering analysis so

as to deducing the stability of the type of the partial

discharge. The interpretation of PD signal in the

essay is realized by four agents, which are Fuzzy

evaluation agent, trend analysis agent, similarity

analysis agent, clustering analysis agent.

3.3.5 Corroboration Layer

The corroboration layer is used to integrate the

results in different interpretation layer and achieve an

overall conclusion.

This layer utilizes the confidence to determine

the overall confidence and diagnosis result.

Furthermore, it will integrate the results obtained by

other monitoring technologies and evaluate the

diagnosing results to judge whether it is the problem

of the equipment or the monitoring system.

Informations like device temperature, environment

humidity and electrical loading are also of great

referential value.

The layer is configured with one diagnosing

agent. As seen in Fig. 3, the data will be sent to the

analysis system by the data monitor. Then, each

interpretation will send the obtained results to the

corroboration agent. At last, the corroboration agent

will achieve the final conclusion with its own

knowledge and other information it can get. Because

the existence of this specific interpretation layer, by

easily adding agent module and reconfiguring the

corroboration agent module, we can adopt the most

advanced technology as soon as possible and updates

the current technology in use.

3.3.6 Information Layer

The information layer is mainly used to interact with

the corresponding operators and provide useful

information about the system. Moreover, the operator

can change the operating mechanism through this

layer. In the essay, the interaction layer provides the

final diagnosing conclusion and corresponding

maintaining suggestion to the corresponding

operators. The diagnosing conclusion includes four

grades as Table 1, which are normal,

attention-needed, alarming and severe. The

conclusion should also contain relevant confidence

factors which identifies the reliability of the

conclusion. The bigger the factor is, the more reliable

the result is. The information layer only contains an

assistant engineering agent as shown in Fig.3. The

information layer also plays an important role the

extensibility of the system. The system can be

applied to monitor multiple equipments by the

suitable adjustment of overall Multi-Agent structure.

Grade Interpretation

Normal The apparatus is in good insulation

Attention-

needed

Regular inspection is needed.

Alarming PD is quite active.

The apparatus needs to be monitored,

or retested by other means soon.

Serve The apparatus must be tested offline

as soon as possible.

Table 1 Diagnosis conclusions

4 Development Environments and

Realization
For keep correspondence with the Windows CE.NET

operation system installed on the subordiante

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS

Linpeng Yao, Chengjun Huang, Li Zhang,
Yong Qian, Hui Wang, Junhua Liu,
Canxin Guo, Xiuchen Jiang

ISSN: 1109-2734 625 Issue 7, Volume 8, July 2009

computer, the whole Multi-Agent monitoring system

is developed on the operating system of Windows

Server 2003 with the support of SQL Server,

MATLAB and other accessorial applications.

4.1 Introduction to Zeus framework
Zeus is a Multi-Agent framework for developers to

fulfill a appliation rapidly. The core principle for

agents to cooperate is demonstrated as Fig.10.

Fig.10 Diagram of co-operation between agents in

Zeus

of and features facilities to implement Multi-Agents

architecture. The diagram is shown in Fig.10. The

central agents perform a complex task of collabrating

with other agents. To do so it uses Faciliator to

discover the agents with the required abilities, and

Agent Name Server to determine the addresses of

these agents. The inter-agent communication

language is used to communicate with the Agent

Name Server, Facilitator and other agents. The

communication requires a shared representation and

understanding of common domain ontology.

The phases for developers to apply Zeus desgin

approach to create a working application usually

include: Domain Study to identify potential agents

and create an ontology of the concepts in the domain,

Agent Definition (Fig.11) to identify the significant

attributes of the agent, Agent Organisation (Fig. 12)

to identify the acquaintances of each agent, Agent

Co-ordination to identify co-ordination protocols,

Task Definition to define the task in terms of their

preconditions, effects, cost, duration, and constraints,

Code Generation to automatically generate source

code implementations for each agent, Code

Compilation to make the final execuable

program[22].

The whole Zeus framework and its generation

code must be complied and executed under the Java

Virtual Machine(JVM) for better transplatable.

Fig.11 Agent Definition to define the attributes for

agents

Fig.12 Agents Organisation realized in Zeus for

the monitoring system

4.2 Realization under the .NET Framework
The tasks that agent defined are actually fulfilled by

external programs coded under the .NET Framework,

and Zeus multi-agent expert toolkit as its

communication platform, thus improving its

performance on data capacity and knowledge

learning ability which leads to higher accuracy of the

detection results compared to traditional partial

discharge monitoring system.

The communication between Java based Zeus

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS

Linpeng Yao, Chengjun Huang, Li Zhang,
Yong Qian, Hui Wang, Junhua Liu,
Canxin Guo, Xiuchen Jiang

ISSN: 1109-2734 626 Issue 7, Volume 8, July 2009

agent and .NET framework based external program

are through TCP/IP protocol for better compatible

and transplantable.

4. 3 Matlab interface for .NET Framework
There are three ways that Matlab coding script

can be assemblied into program based on .NET

Framework[23]:

 1) MATLAB Engine. In this way, program can

invoke all facilities supported by MATLAB,

including evaluating and printing commands. While

program is running, a background MATLAB

environment starts to exchange command and data.

So, MATLAB environment must be completely

installed on the target computer and the program

cannot be distributed without limits.

2) .NET Interface is an extension to MATLAB

Complier. Programmers can access them from any

CLS(Common Language Specification). Compared

with COM Interface, it is provided a constraint of

strong type check which can avoid errors while

developing.

3) COM (Component Object Model) Interface,

which is an alternative way to access facilities of

MATLAB. COM is an early version of software

architecture for encapsulating objects designed by

Microsoft Corporation. It cooperates well with

programs complied by VB, VC.

COM and .NET Interface have advantages of fast

execuation and compact installation. The MATLAB

code is completely complied to binary code for

speeding the execuation. Additionally, it can be

executed under the minimal installation of MATLAB

with some dynamic link libraries (DLLs).

The authors implement the combination in the

MATLAB Engine way. Without being supported

by .NET Framework directly, it must be encapsulated

the MATLAB Engine to C++ Compiled Dynamic

link library and invoked under the

System.Complier.InteropServices namespace.

4.4 Storage and Database Design
The raw data received from suborinate computer

is packed with an additive header describing

acquisition information and is to separate folders

named by acquisited time for conveniently retrieving.

The raw data is usually too large that compression of

Zip technique is taken to reduce the size of storage.

The extracted features and diagnostic results are

imported to database for further query and analysis.

The scheme of database relationship is shown as

Fig.13. The data table DailyMean is the mean value

of features for one day while the data table

WeeklyMean and MonthlyMean are mean value of 7

days and 30 days, which indicates slow varying trend

of features. For convience, the authors design a

stored procedure for calculating the mean value of

characters automatically while inserting and deleting

records in database. The history of serious result are

stored into Alarm table for operators to review.

Fig.13 Scheme of diagnosis database tables.

5 Field Application
The system designed for generator has been

installed in one power plant of Hebei Province,

China since 2005. It has been proved effective in

helping the operators to identify the type of PD, thus

confirm the type of the electrical fault. The analysis

of the PD trend refers to the trend of the aging process

in the insulation layer, as shown in Fig.14 and Fig.15.

Through these results, we can see that the trend of the

feature extracted from the signals are smooth and

steady. Though partial discharges occurs at times, the

quantity and amplitude are too small to cause serious

falut. Finally the diagnosis agent can draw a

conclusion that the insulation of the generator is in

good condition and give a evaluation of Normal

grade[24].

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS

Linpeng Yao, Chengjun Huang, Li Zhang,
Yong Qian, Hui Wang, Junhua Liu,
Canxin Guo, Xiuchen Jiang

ISSN: 1109-2734 627 Issue 7, Volume 8, July 2009

Fig.14 Results from phase distribution agent

Fig.15 Results from trend analysis agent

6 Conclusion
The essay introduces a kind of online partial

discharge monitoring system based on the

Multi-Agent technology. Compared with other PD

monitoring system, the system in the essay obsesses

the following features:

1. Distributed Calculation. The system can deal

with large amount of sampled data concurrently

through the narrow-band communication channel.

2. Autonomy. Agents cooperate with each other

in the background without human’s intervention.

3. Flexible Structure and Easy Maintenance. All

the agent modules in the system can be assembled

and updated independently to ensure the application

of the most advanced technology.

4. Reliable and fault tolerance. Due to the

incompact architecture of agents, system can

function properly within limits.

The onsite application of the system and the

results of signal analysis shows that the design and

implementation of the system meets the actual

requirement. The conclusion of the multi agent

system demonstrates that the system can deliver a

reliable monitoring result and provide corresponding

maintaining suggestion.

Reference:

[1] McArthur, S.D.J., S.M. Strachan,G. Jahn, The

design of a multi-agent transformer condition

monitoring system[J], IEEE Transactions on

Power Systems, Vol.19, No.4, 2004,

pp.1845-1852.

[2] Hossack, J.A., J. Menal, S.D.J. McArthur, et al.,

A multiagent architecture for protection

engineering diagnostic assistance[J], IEEE

Transactions on Power Systems, Vol.18, No.2,

2003, pp.639-647.

[3] McArthur, S.D.J. and V.M. Catterson,

Multi-agent systems for condition

monitoring[M], San Francisco, CA, United

States: Institute of Electrical and Electronics

Engineers Inc., 2005

[4] R. Mohamad, S. Deris,H. H. Ammar, Agent

design patterns framework for MaSE/POAD

methodology, Institute of Electrical and

Electronics Engineers Computer Society,

Vol.2006, 2006, pp.521-528.

[5] P. Moraitis,N. Spanoudakis, The Gaia2JADE

process for multi-agent systems development,

Applied Artificial Intelligence, Vol.20, No.2-4,

2006, pp.251-273.

[6] D. L. Martin, A. J. Cheyer,D. B. Moran, Open

agent architecture: A framework for building

distributed software systems, Applied Artificial

Intelligence, Vol.13, No.1-2, 1999, pp.91-128.

[7] M. Nikraz, G. Caire,P. A. Bahri, A methodology

for the development of multi-agent systems

using the JADE platform, Computer Systems

Science and Engineering, Vol.21, No.2, 2006,

pp.99-116.

[8] D. Chauhan,A. D. Baker, Developing coherent

multiagent systems using JAFMAS, Multi

Agent Systems, 1998. Proceedings.

International Conference on, 1998, pp.407-408.

[9] J. C. Collis, D. T. Ndumu, H. S. Nwana, et al.,

ZEUS agent building tool-kit, British Telecom

technology journal, Vol.16, No.3, 1998,

pp.60-68.

[10] S. Hao, H. Chenjun,G. Canxin, Application of

DSP-High Speed Acquiring System in On-line

Partial Discharge Monitor, High Voltage

Engineering, Vol.31, No.8, 2005, pp.42-44.

[11] G. C. Stone, Use of partial discharge

measurements to assess the condition of rotating

machine insulation, IEEE Electrical Insulation

Magazine, Vol.12, No.4, 1996, pp.23-27.

[12] Xujian, H. Chengjun, et al, Algorithm for

extracting PD signals based on a wavelet-set[J],

Automation of Electric Power Systems, Vol.28,

No.16, 2004, pp.36-37.

[13] B.-Y. Xu, C.-J. Huang, et al, Application of

multiwavelet based neighboring coefficient

method in denoising of partial discharge[J],

Power System Technology, Vol.29, No.15,

2005, pp. 61-64+70.

[14] X. Jian and H. Cheng-jun, et al, Research on

improved fast fourier transform algorithm

applied in suppression of discrete spectral

interference in partial discharge signals[J],

Power System Technology, Vol.28, No.13,

2004, pp.80-83.

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS

Linpeng Yao, Chengjun Huang, Li Zhang,
Yong Qian, Hui Wang, Junhua Liu,
Canxin Guo, Xiuchen Jiang

ISSN: 1109-2734 628 Issue 7, Volume 8, July 2009

[15] C.-J. Huang and W.-Y. Yu, Study of adaptive

filter algorithm based on wavelet analysis in

suppressing PD's periodic narrow bandwidth

noise[J], Zhongguo Dianji Gongcheng

Xuebao/Proceedings of the Chinese Society of

Electrical Engineering, Vol.23, No.1, 2003,

pp.107-111.

[16] S. Zhen-yu, H. Cheng-jun, et al, Application of

PSO Based Neural Network in Suppression of

Stochastic Pulse Interference for Partial

Discharge Monitoring in Large Generators[J],

Automation of Electric Power Systems, Vol.29,

No.11, 2005, pp.49-51.

[17] Y. Qian, C.-J. Huang,X.-C. Jiang, Investigation

of multi-wavelet denoising in partial discharge

detection, WSEAS, Vol.5, No.1, 2006, pp.85-91.

[18] Y. Zeng, C.-J. Huang, Y. Qian, et al., Study of

neighbor multi-wavelet denoising in partial

discharge detection, WSEAS, Vol.5, No.1, 2006,

pp.123-128.

[19] X. Ma, C. Zhou,I. J. Kemp, Automated wavelet

selection and thresholding for PD detection,

IEEE Electrical Insulation Magazine, Vol.18,

No.2, 2002, pp.37-47.

[20] S. Z.-y. H. C.-j. X. Y. Z. Y.-k. J. Xiu-chen,

Application of PSO Based Neural Network in

Suppression of Stochastic Pulse Interference for

Partial Discharge Monitoring in Large

Generators, Automation of Electric Power

Systems, Vol.29, No.11, 2005, pp.49-52.

[21] E. Gulski, Computer-aided measurement of

partial discharges in HV equipment, IEEE

transactions on electrical insulation, Vol.28,

No.6, 1993, pp.969-983.

[22] H. S. Nwana, D. T. Ndumu, L. C. Lee, et al.,

ZEUS: A toolkit for building distributed

multiagent systems, Applied Artificial

Intelligence, Vol.13, No.1-2, 1999, pp.129-185.

[23] Matlab Document, Matlab R2008b, The

MathWorks Coporation.

[24] Mangina, E.E., S.D.J. McArthur, and J.R.

McDonald, COMMAS (COndition Monitoring

Multi-Agent System) [J], Autonomous Agents

and Multi-Agent Systems, Vol.4, No.3, 2001,

pp.279-282.

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS

Linpeng Yao, Chengjun Huang, Li Zhang,
Yong Qian, Hui Wang, Junhua Liu,
Canxin Guo, Xiuchen Jiang

ISSN: 1109-2734 629 Issue 7, Volume 8, July 2009

	29-381
	29-390
	29-394
	29-444
	29-485
	29-495
	1 Introduction
	2 Traditional PV Cells
	2.1 Mono or Multi-Crystalline Silicon Solar Cells
	2.2 Thin-Film PV Cells
	2.3 Multi-Junction Concentrator PV Cells
	2.4 Amorphous Silicon / Silicon Hetero-Junction Cells
	2.5 Dye-Sensitized PV Cells

	3 PV Cell Model
	4 Performance Factors of PV Cells
	4.1 Modules are rated in DC Watts at STC
	4.2 Increasing Module Temperature Decreases Power (Temperature Factor)
	4.3 Particulate build up ("Soiling")
	4.4 System wiring and module output difference decrease (System Wiring/Module Output Differences Factor)
	4.5 Inverter conversion losses
	4.6 Solar Module Tilt Angle
	4.7 Solar Module Compass Direction
	4.8 Sun Hours

	5 System Description
	6 Experimental Results
	7 Conclusions

	29-505
	

	29-506
	29-507

Design and Implementation of a System Bus – SPI Bridge for Wireless Radio Prototyping

Mohamad Yusri Mohamad Yusof, Devi Prasad, Smruti Santosh Palai

Microelectronics Department, MIMOS Berhad.

Technology Park Malaysia, Kuala Lumpur, Malaysia-57000.

myusri.myusof@mimos.my, devi.prasad@mimos.my, santosh.palai@mimos.my http://www.mimos.my

Abstract: - Prototyping of wireless radio is one of the major stages of the entire development process. It invariably has an interface to the Analog to digital converters (ADC) / Digital to Analog converters (DAC) and RF front end. This paper discusses in detail the design issues and solutions for baseband- RF front end interface, of a wireless radio. In these kinds of systems, the FPGA tends to be connected to the baseband DSP processor through the system bus. The FPGA is then used to implement additional baseband processing, hardware accelerators, ADC/DAC interfaces and RF control, to name a few. The DSP processor will need to communicate with these components through the system bus. Some of these components require high bandwidth and others requires low bandwidth from the system bus. There is a need for a design approach where that avoids slow interfaces, such as RF control interface, from hogging the system bus, which in turn will affect the overall performance of the entire system. This paper presents a System Bus-SPI bridge design approach to mitigate the interfacing issues in wireless system prototyping, especially when the supporting hardware, like RF module, is predefined. The proposed design enables the DSP Processor to access the System Bus concurrently while the SPI programming is in progress. Verilog hardware description language is used to design the System bus –SPI Bridge and Modelsim is used to verify the functionality of the design. The proposed design was implemented on an Altera STRATIX II FPGA.

Key-Words: - FPGA, SPI, Prototyping, System Bus, Wireless radio, Shared Bus.

1 Introduction

The rapid growth in demand for high data bandwidth stimulates the evolution of wireless technologies. This eventually pushes competing industries to rapidly develop high data rate and efficient wireless systems. As a result, rapid prototyping is becoming a vital part of the product development process [1] [2]. Prototyping is necessary not only to verify the developed algorithms but also to check the efficiency of the newly developed wireless radio [3].

Typical radio implementation consists of RF front end, baseband processing (or, PHY Layer), and MAC layer processing. In general, MAC layer processing is done by a general purpose processor (GPP). The PHY layer processing is performed by a digital signal processor (DSP), a Field Programmable Gate Array (FPGA), or a combination of both [4] [5] [6].

One common problem in prototyping the radio is in interfacing the baseband module with the RF frontend.

The final SoC design tends to have taken this interfacing problem into consideration. Sometimes it is difficult, however, to get development board that matches the architecture used by the SoC architecture exactly. As such, the interfacing problem still remains during the prototyping of the radio. It gets worse when the system bus is shared between a high data rate low latency access and slow transfers like SPI.

The RF frontend interface is based on the standard 4-wire SPI protocol [7][8][9] .In this paper we propose a bridge design to interface SPI ports to the RF frontend with the baseband processor through a shared system bus. This design has been verified on a prototyping platform (SPTWIMAXCC1E Multi-Standard Baseband AMC Channel Card) from Freescale Semiconductor [10].

This paper initially talks about the hardware prototyping platform. This is then followed by a brief description of the design to be implemented on the said hardware and the interfacing issues. To address these issues, the details of the design and simulation results of the System bus SPI Bridge and its implementation is explained towards the end.

2 Prototype Platform

The SPTWIMAXCC1E multi-standard baseband advanced mezzanine card (AMC) channel card is a system development platform for 4G wireless systems such as worldwide interoperability for microwave access (WiMAX) and wideband code division multiple access (WCDMA) markets. It is designed for use as a channel card module for a base station system solution or as a standalone platform for Pico-base station implementation. The platform is designed around the Freescale MPC8555E Power QUICC™ III processor, running at 833MHz, the StarCore MSC8126 multi-core

[image: image2.png]‘PaAIasay SIYLRY IV "peyled SOWIIN 6002 &

NOILYHIdO NI ONINIWYEOOUd IdS 3TIHM "D0¥d IdS SALVILINI dSa
SNOILYYIdO ¥3HLO ¥Od SNd 3HL $3sN dsa SONILLIS J4 SALRIM dSa

MoTls]

Uy [U

NS]

7S]

TiETNE LS

S8 SSQV dsa

\
SMAWIVAdsa | @
-
-

TG avE 4SO

DSPs, running at 500MHz, and the Altera STARTIX II FPGA as shown in Fig.1. Generally, the MPC8555E is used for MAC processing while the MSC8126 DSP processors are used for PHY processing. The FPGA, which is used to interface with the RF frontend, ADC and DAC, is connected to both DSP processors on two separate system buses.

For a typical downlink processing, the received signal from the RF frontend sampled by ADC is passed to the DSP through the FPGA for PHY processing. This FPGA also serves as a hardware accelerator for the DSP to perform certain PHY functions as well. After the PHY processing is complete, the data is then passed to the MPC8555E for MAC layer processing and then is sent out through Ethernet port for user applications running at the host system.

2.1 MAC Processor (MPC8555E)

While the MPC8555E has many features, for example, features that interface with the AMC connectors, we will only describe features that are pertinent to the design described in this paper. An RJ45 port is available for 1 Gigabit Ethernet operation. It is used to pass packets from the MAC layer processing to a host computer for further treatment. The MPC8555E is connected to the two MSC8126 DSP processors and the FPGA through a 32-bit DSI (Direct Slave Interface) bus.

2.2 Baseband Processor (MSC8126)

The StarCore DSP subsystem consists of two MSC8126

DSPs running at 500 MHz to perform the symbol rate portion of the PHY layer processing.

The 64-bit system bus of each MSC8126 is connected to the FPGA which runs based on a 166MHz reference clock . Each DSP has 100 BaseT port connected to RJ45 or directly to the MPC8555E. DSI bus is accessible from MPC8555E local bus.

2.3
FPGA (Altera Startix II)

This FPGA is EP2S180F1508C3N (Stratix II Altera FPGA), which is used to time consuming processing at the PHY layer and other interfacing needs. It has 180K equivalent logic elements and 9Mbit on-chip memory and 450 MHz internal clock [11]. The FPGA is connected to each MSC8126 through a separate system bus and to the MPC8555E through the DSI bus. It also connects to RF module through an ADC interface. In addition, the FPGA also has a direct access to 512Mbytes of DDR2 memory for data storage.

2.4
RF frontend

 A custom RF frontend board was designed for this prototyping. It has two 12-bit DACs to generate the baseband Analog signal from the digital samples received from DSP. The generated analog signal was up-converted using a zero IF RF transceiver chip for transmission. The received signal by the same transceiver chip was down-converted to baseband. This signal digitized by two 12 bit ADC in I/Q form. These I/Q samples are then forwarded to the DSP for baseband processing through the FPGA.

3 System Architecture

The targeted application was a prototype of a wireless broadband radio on the above platform. A portion of the architecture of the system is shown in Fig.2 where the Receiver (RX) path of the radio has been depicted. The system consists of IQ sample collection from A/D convertor and the forwarding of the samples to the DSP without significant latency for further processing.

A portion of the PHY processing is done by FPGA. A RF transceiver module has been used for up/down conversion.

The RF module down converts the received signal in analog IQ form. Two A/D converters (one each for I and Q) digitize them and send them to the FPGA buffer for temporary storage. Subsequently, baseband processor (DSP) reads the stored IQ samples through System Bus Interface from FPGA.

3.1
Baseband Processing

[image: image3.png]- RF -SPI- PINS
¥ RF_SPI_SCLK
& RF_SPI_CSB
¥ RF_SPI_DIN
¥ RF_SPI_DOUT

- RF-SPI - FSM
& START_SPI
¥ STATUS_SPI
¥ STATE

START

1

—

]

[STA_IWRITE SPI

© 2009 MIMOS Berhad. All Rights Reserved.

The baseband processing algorithms are implemented on a MSC8126 DSP. The 64-bit System Bus, running at 166 MHz, is used to transfer I/Q samples to and from the FPGA. In addition, command and control signal for the RF frontend are also conveyed to the FPGA through the System Bus.

3.2
FPGA Interface

The Altera Stratix II FPGA is used for system interfacing and for some lower physical layer processing. The System Bus Interface, as shown in Fig.2, is a memory map decoder which enables the DSP baseband processor to read or write into the selected device or memory [12]. The FPGA also has a FIFO to store IQ samples temporarily before they get transferred to the DSP. This will allow for better system bus utilization.

3.3
System Bus Interface

The 166MHz system bus width can be up to 64-bit wide. However, depending on requirement on the bandwidth, the data bus width can be smaller. The system bus communication between MSC8126 and the FPGA is supported by either a User-Programmable Machine (UPM) or a General-Purpose Chip-Select Machine (GPCM) controller [13]. Although UPM allows for arbitrary waveform patterns to be defined, for example, to devices supporting burst access, GPCM was chosen in

our implementation because it is simpler and it meets our bandwidth needs. In addition, a 32-bit data bus width was also selected.

GPCM interface of MSC8126 allows for a flexible and glueless interface between the MSC8126 and its peripherals. As shown in Fig.3, GPCM signals includes /CS (chip select), /PWE (write enables for write cycles), and /POE (read enables for read cycles). The GPCM contains two basic configuration register groups namely BRx, ORx. The entry in the BRx register selects the GPCM and the ORx defines the attributes for the memory cycles.

Fig.3 also shows the basic interface connection between MSC8126 and FPGA. Here /CS directly connects to /CE of the memory bank within FPGA. /PWE signals connect to the respective Write enable signals in the FPGA. In this design a two cycle read and write operation is performed by DSP to access the FPGA.

[image: image1.emf]MSC 8126

FPGA

Address

Address

POE

PWE

cscs

OE

WE

Data

Data

Fig.3 System bus interface between DSP and FPGA

3.4
RF Module

This RF module consists of a Zero-I/F transceiver chip. It requires 32 internal registers to be configured by a 4-wire SPI interface. These 4 wires are SCLK, CSB, DIN, and DOUT. SCLK is the SPI clock. CSB is active-low chip select signal, which needs to be low for SPI read or write operation. DIN is the serial input data and

[image: image4.emf]start SPI?

Write FIFO

empty?

SPI Status = BUSY

Read 16b word from

Write FIFO and write to

shift register

Shift 1b msb to DIN pin

from shift register

More to shift?

yes

no

yes

no

no

SPI Status =

WRITE DONE

Read FIFO

empty?

SPI Status = BUSY

Read 6b word from Read

Address FIFO and write to

shift register

Shift 1b msb to DIN pin from

shift register

More to shift?

yes

Write the shift register value to Read

Data FIFO

yes

no

yes

© 2009 MIMOS Berhad. All Rights Reserved.

More to shift?

Shift 1b msb from DOUT pin to shift

register

no

yes

SPI Status = READ

DONE

Tristate DIN pin for 10b duration

[image: image5.png]- DSP SIGNALS

¥ DSP_CLK St

& DSP_CS st - s I
¥ DSP_OE st1

& DSP_WEN st - _u @O e
& DSP_ADDR (ST
& DSP_DATA oooooo01000(— 964000000000000__}9527000000000000 2zzzrezzaease

- RF WR FIFO

& WR_CLK s - _]
¥ WR_DATA 0001 — I 000

¥ WR_EN St ||

¥ RD_CLK St

¥ RD_EN St

¥ RD_DATA 0150

¥ WRITE_FIFO_EMPTY |0

~ COMMAND AND STATUS -

& START_SPI St I

& STATUS_SPI 0 [i1

- RF SPI SIGNALS

& IN_RF_SPI_DOUT HiZ

¥ OUT_RF_SPI_CSB st S S e I Iy |
& OUT_RF_SPLDIN s LALLM ITUVLL LT LIPS L LA TTLIRL LT TP UL T LA T WL MWL AL UL T
& OUT_RF_SPISCLK |stl -_— [
- RF SPI FSM

o St (ST ThoRE

© 2009 MIMOS Berhad. All Rights Reserved.

DOUT is the serial output data. For a typical write operation, SPI clock signal should be given to the SCLK input. Subsequently, the CSB signal needs to pull down to zero. The data to be written through SPI should be transferred serially on the DIN line with respect to the SCLK while SCB is asserted low.

 The configuration registers are responsible for changing the operating frequency, gain and other RF parameters. One of the major parameters is the LNA gain register which needs to be updated through AGC loop to maintain the signal level within a valid range. These register requires frequent updating based on the values calculated by the DSP.

As shown in Fig.1. DSP is not directly connected to the RF module. The only option is for the DSP to access these RF registers is over the System Bus through the FPGA. Since the System Bus is also shared with high bandwidth I/Q sample transfer, as much as possible, the slow SPI transfer should not interfere with this crucial transfer. Hence, a System Bus-SPI bridge module has been developed to address this interface issue. This module enables the System bus to operate concurrently while the slow SPI programming under progress.

4 System Bus- SPI Bridge

A System bus-SPI bridge module has been designed using Verilog HDL, and the functionality verified using Modelsim-Altera. This is followed by the implementation using Quartus II. The design performance is then verified using on-chip debugger SIGNALTAP from Altera as well as real time downlink processing.

 4.1
Design

 The System Bus-SPI Bridge consists of three FIFOs and two registers and a FSM. This module was developed using Verilog HDL. It gives DSP access to 5 memory locations, namely; rf_config_wr (16-bit FIFO into which

[image: image6.png]- DSP SIGNALS

e
A 1 1/
11 Y 1111 L o e o o

0.1 1m3a0001c O 8/EET]

...J 11 oounnoo10000ema0 A Zzzzzzzzzzzzzaze [z
I
1)] Iz

- _ ____ |
A3 TR 411111111111 BTV ORIV ORAR A Hi

¥ DSP_CLK St
& DSP_CS st1
& DSP_OE st1
& DSP_WEN st1
¥ DSP_ADDR 0300000
& DSP_DATA Zezzzzzzzer
- COMMAND AND STATUS

& START_SPI St
& STATUS_SPI 2

- RF READ ADDR WRITE FIF

& WR_CLK St
& WR_DATA 2z
& WR_EN St
¥ RD_CLK St
¥ RD_EN St
¥ RD_DATA %

& READ_ADDR FIFO_E... |0

- RF SPI SIGNALS

& IN_RF_SPI_DOUT HiZ
& OUT_RF_SPI_CSB st1
& OUT_RF_SPI_DIN HiZ
& OUT_RF_SPISCLK |St0

- RF SPIFSM

& STATE DONE
- RF READ ADDR DATA FIF:

& WR_CLK St
& WR_DATA 3513
& WR_EN St
¥ RD_CLK St
& RD_EN St

4 RO DATA 5513 |

1l
LA LUUARAU A UUU AR AUU AT UUUARAUULAAAALUUULARARUUULULT
I I I I
10 Jo1 J30)]
NIl L e I UL
I In In
I g L UL L[
— TR
DORE IREAD_SPI TooNE
LA TLUUARAU A UUUUARA A UUUARALAAAAUUULAAAUUULALT
(10328 J21549 J30848 13513
Il I I Il

f10328

© 2009 MIMOS Berhad. All Rights Reserved.

G

address (6bits), parameter (10bits) to be written to the RF module through SPI),rf_start_spi (to start the SPI read/ write process), rf_config_readaddr_wr (6-bits address FIFO onto which DSP writes the desired address to read from RF module), rf_config_read_addr_data (16-bit FIFO from which DSP reads the values of the registers requested by earlier by rf_config_readaddr_wr), and finally Rf_status_SPI (2-bit register to show the status of the current SPI operation).

This bridge also connects to the RF module through the 4 SPI wires, namely, SCLK, CSB, DIN, DOUT. The waveforms of a typical SPI read and write operation shown in Fig 4 and Fig 5, respectively. Register data is shifted in MSB first and is framed by CSB. When CSB is low, the SCLK is active, and input data is shifted with the rising edge of the SCLK. Output data is used for read access and is shifted out to the registers in the falling edges of the SCLK.

The System Bus-SPI Bridge contains 32-word deep, 16-bit wide Write FIFO, to store the address (6 msbs) and configuration parameter (10 lsbs), which allow writing to up to 32 RF registers. In addition, the bridge has a 32-word deep, 6-bit wide FIFO to store the addresses of the registers for read back. The read-back values are stored in a Read FIFO, which is identical to Write-FIFO.

These read-back values are read by the DSP through system bus later.

A finite state machine (FSM) controller was designed to detect the DSP command and to control the SPI read and write operation. It also controls the data read and write to the corresponding FIFOs. Fig.6 depicts the flowchart of the FSM operations. The FSM detects the DSP command to initiate SPI operation, upon which it changes its state to “START”. At the next cycle, it

[image: image7.png]=

checks for the empty status of the Read address FIFO and Write FIFO to distinguish between the read and write operation and changes the state accordingly.

If the Write FIFO is not empty it changes the state to “WRITE SPI”. Similarly, if the Read Address FIFO is not empty the state changes to “READ_SPI”. For write operation, first it sets the SPI-Status register value to busy. It then reads one 16-bit value from the write FIFO into a register. Next the register is shifted 1 bit at a time to the DIN pin for the RF module in MSB first order. After completion of all the shift operations it again checks for the FIFO empty status. The operations are repeated if it is not empty. Otherwise, it changes the state to “DONE” by changing SPI-Status register value to “Write done”.

For read operation, first it sets the Status register value to busy. It then reads 6-bit address from the FIFO into a register and shifts the register to the DIN pin of the RF module. It then presents the tri-stated value for next 10 clocks. The serial bits coming out of the DOUT pin of the RF module are stored in a 10 bit register. Finally this value is stored in the Read FIFO. This process continues repeatedly until the read address FIFO gets empty. Once the read address FIFO is empty, the state changes to DONE by changing SPI-Status register value to “Read done”

4.2
Simulation

The System bus operates at 166MHz and the SPI operates at 25MHz, which enables the DSP to use the system bus for other data transactions as well as the IQ sample transfers. To simulate the behavior of the developed bridge design a test model for the DSP had developed to excite the bridge design through system bus read and write. This model simulates the reading and writing of the actual DSP to the system bus and the bridge.

[image: image8.png]" @ B &
e e 1 = T — x [1aG ChanCoriguaton. [RGB

e [Satus | s 1235] Memoy: 70556 | MoTZiLA 0/330 | wakMaK 166,768 | MARAMMIAdK /9

[ato_signaltap 0 Not running 1236 cells T0656 bits Oblocks 18 blocks O blocks. Hardware: | USB Blaster [USE-0] hd s

log: 200910609 16:00:03 #0

I T W AN S e e e
& | o soomessos || | 80000

BEDEE Y oo

> | osevmeevae ||

sP_cs

T -
o = i hniphEipiigigh iz iphEinEiahi

© 2009 MIMOS Berhad. All Rights Reserved.

[image: image9.png]- DSP SIGNALS

¥ DSP_CLK so m A A A
¥ DSP_CS st ST L O)
¥ DSP_OE st1

& DSP_WEN st Ay IRy iy)
/¥ DSP_ADDR 03a0001c |03c10000 }03a0001c IS EEEnsEERensEnn
/9 DSP_DATA 00000001000 [(|) 1/o000000100000000 O e e
~ RF WR FIFO

& WR_CLK so (i A A A A
/& WR_DATA 0001 I I I T SIS ENeENEENEEnEnEneE
¥ WR_EN St LU

¥ RD_CLK S0 1 Yy Yy Yy Yy e Yy Yy Y o B
& RD_EN st — 1

/¥ RD_DATA 0150 0150 05¢c2

¥ WRITE_FIFO_EMPTY |0
~ COMMAND AND STATUS ——————
¥ START_SPI st

/& STATUS_SPI 0]

~ RF SPI SIGNALS

& IN_RF_SPI_DOUT HiZ

& OUT_RF_SPI_CSB st1 1

& OUT_RF_SPI_DIN st —

& OUT_RF_SPILSCLK [st1 e Y e Y Y Y o By N
- RF SPI FSM

N ST ST wane el

© 2009 MIMOS Berhad. All Rights Reserved.

The functional simulation was performed in Modelsim-Altera. Fig.7 shows DSP model initially writes 32 register parameters to the write FIFO through the system bus at 166MHz. The DSP follows this with the rf_start_spi command write. The bridge receives the command “START SPI” and then checks the Read and Write FIFO status. Since the data is available in the Write FIFO, it starts the “SPI WRITE” operation. It continues the operation until the write FIFO is empty. Meanwhile, since the system bus is free during the SPI process, DSP schedules it to perform information transaction between the Lower PHY modules at the FPGA and the DSP at 166MHz.

It also shares it for the IQ transfer from the ADC. This improves the bus utilization significantly. A detailed view of the concurrent DSP write operation with the SPI write is shown in Fig.8. Fig.9 shows A Read SPI operation. Where DSP writes the address of the registers to be read to the rf_config_readaddr_wr FIFO and send the rf_start_spi command. The FSM controller detects this command and also detects the read address FIFO is not empty. Hence, it starts the READ SPI operation. Since the SPI operation is now independent of the System Bus, the bus is available for DSP to access the Hardware accelerator or to perform the IQ transfer.

[image: image10.png]- RF -SPI- PINS

¥ RF_SPI_SCLK
¥ RF_SPI_CSB
¥ RF_SPIDIN
¥ RF_SPI_DOUT
- RF- SPI - FSM

¥ START_SPI
¥ STATUS_SPI
¥ STATE

READ

— 1
1] i J2
READ SPI 1 DoN

© 2009 MIMOS Berhad. All Rights Reserved.

[image: image11.png]Ethernet

R4S
Systom Bus
MSC8126 Lo
RE
s
ADC-DAC
Ethernot os1 320) Altera |Connector
RU5 |20 MpCessSE iy 3
Systom Bus
o
MSCB12
Ethernet Sce126

RJ45

5 FPGA Implementation

 The design was targeted to Stratix-II FPGA (EP2S180F1508C3) on the SPTWIMXCC1E platform. Quartus-II8.0 from ALTERA [14] was used for synthesis and implementation/fitting.

The real time performance of the design was verified by an on-chip debugging tool called “SignalTapII” [15], from ALTERA. With this tool the internal logic status was monitored real time.

The resource utilization of the system bus SPI Bridge was very minimal (283ALUTs, 351 Registers and 1,216 bits of Block Ram, as per Altera post fitting reports).

[image: image12.emf]BASE BAND

 PROCESSOR

DSP

ADDR.

&

DATA

S

H

A

R

E

D

S

Y

S

T

E

M

B

U

S

LOWER-PHY -FUNCTIONS

SPI

SIGNALS

WRITE-FIFO

RF

SPI

 RD/W

FSM

RX – IQ SAMPLES FROM ADC

SPI BRIDGE

READ-ADDRESS FIFO

CONTROL

READ-SETTINGS FIFO

SPI-TRIGGER -REG.

SPI-STATUS REG

FPGA

ADC

RF

MODULE

© 2009 MIMOS Berhad. All Rights Reserved.

Fig.9 shows a SignalTapII captured waveform, in which

 DSP writes the RF settings to the FIFO through System bus. Then it initiates the SPI controller to start the SPI programming for the RF configuration. While the SPI programming is in operation, DSP uses the System bus for other data transactions between the PHY modules as the system bus is free. This is identical to the behavioral simulation results. Fig. 10 shows a SignalTapII captured SPI write waveform.

The design was successfully tested on the SPTWIMXCC1E platform and it was verified that the RF module could be configured at SCLK running at 25MHz without any timing violations.Fig.11 shows the post-fitt view of the implemented design.

6 Conclusion

This paper explains the design of the System BUS-SPI Bridge to allow the DSP processor to configure RF module registers through the 4-wire SPI protocol. The design takes into consideration of the fact that the System bus is shared with other high-bandwidth transfers like I/Q data transfers. The bridge was designed is such a way that multiple slow SPI transfer may occur concurrently with other high bandwidth transfers. In short, the bridge design allows for efficient bus utilization. The bridge was developed and implemented in an ALTERA Stratix-II FPGA to overcome difficulties in interfacing the System Bus to a SPI complaint RF module.

References:

[1] J. Chen,W. Zhu, B. Daneshrad, J. Bhatia, H. S. Kim, K Mohammed, A Real Time 4x4 MIMO-OFDM SDR for Wireless Networking Research, Proc. of European Signal Processing Conference, (EUSIPCO 2007), 2007, pp. 1131.

[2] S.M. Shajedul Hasan and S.W. Ellingson, Multiband Public Safety Radio using a Multiband RFIC with an RF Multiplexer-based Antenna Interface, Software Defined Radio (SDR) '08, Washington DC, 2008.

[3] Babak D. Beheshti, Performance Analysis of the WIMAX-D Physical Layer Blocks on a Next Generation Baseband Processor Platform, 12th WSEAS International Conference on COMMUNICATIONS, Heraklion, Greece, July 2008.

[4] Aifeng Ren, Qinye Yin, FPGA Implementation of a W-CDMA System Based on IP Functions, WSEAS Conf. on DYNAMICAL SYSTEMS and CONTROL, Nov. 2005, pp. 320-324.

[5] Khaled Salah Mohammed, FPGA implementation of Bluetooth 2.0 Transceiver, Proceedings of the 5th WSEAS Int. Conf. on System Science and Simulation in Engineering, December 2006, pp.295-299.

[6] Ruei-Dar Fang,Hsi-Pin Ma, A DVB-T/H Baseband Receiver for Mobile Environments, WSEAS Int. Conference on Circuits, Systems, Signal and Telecommunications, January 2007, pp.114-117.

[7] Wen Xv, Hu Bing, Wang Wenbin, Design of Logic Control for Micro-power A/D with a Serial Interface Using FPGA, The Eighth International Conference on Electronic Measurement and Instruments, ICEMI’2007, pp. 4-870-4-873.

[8] Ieryung Park, Hosoon Shin, Jihan Park, Eungu Jung and Dongsoo Har, Improvement of TINYOS Implementation for Small Memory FPGA System, XIII-IBERCHIP Workshop, IWS-2007.

[9] Bacciarelli L., Lucia G., Saponara S., Fanucci L., Forliti M., Design, testing and prototyping of a software programmable 12C/SPI IP on AMBA bus, Research in Microelectronics and Electronics2006, RME2006, pp. 373 - 376.

[10] SPTWIMAXCC1E Multi-Standard Baseband AMC Channel Card, Rev. 0, April 2007, Freescale Semiconductor.

[11] Stratix II Device Family Data Sheet, SII51001-4.2, Altera Corporation.

[12] FPGA System Bus Interface for MSC81xx, AN2823 Rev. 0, August 2004, Freescale Semiconductor.

[13] MSC8126 Reference Manual, MSC8126RM, Rev 2, April 2005, Freescale Semiconductor.

[14] www.altera.com

[15] SignalTap II Embedded Logic Analyzer, Quartus II Handbook.IV, ALTERA.

�

Fig.10 a SignalTapII waveform of a DSP write and SPI write concurrent operation

�

								Fig.4 Write SPI.

� EMBED Visio.Drawing.11 ���

 Fig.6. Flow chart for the Controller FSM.

�

Fig.7 Top level simulation (SPI writes 32 registers & DSP using System bus to access hardware accelerator)

�

Fig.9 Top level simulation (SPI read & system bus Concurrent operation)

�

Fig.12 Post-Fitt view of the implemented bridge design

�

Fig.11 SPI Write

�

Fig.8 Top level simulation (SPI write & system bus Concurrent operation)

�

Fig.5 Read SPI.

�

Fig.1 Freescale SPTWIMAXCC1E Platform

� EMBED Visio.Drawing.11 ���

Fig.2 RX Path for the implemented radio (Partial.)

_1307196385.vsd

MSC 8126

FPGA

Address

Address

cs

cs

OE

POE

WE

PWE

Data

Data

_1307342871.vsd

Read 6b word from Read Address FIFO and write to shift register

Write FIFO empty?

Shift 1b msb to DIN pin from shift register

More to shift?

yes

Tristate DIN pin for 10b duration

start SPI?

SPI Status = BUSY

Read 16b word from Write FIFO and write to shift register

Shift 1b msb to DIN pin from shift register

More to shift?

yes

no

yes

Write the shift register value to Read Data FIFO

yes

no

yes

no

no

SPI Status = WRITE DONE

Read FIFO empty?

SPI Status = BUSY

© 2009 MIMOS Berhad. All Rights Reserved.

More to shift?

Shift 1b msb from DOUT pin to shift register

no

yes

SPI Status = READ DONE

_1307194891.vsd

BASE BAND
 PROCESSOR

DSP

ADDR.
&
DATA

SHARED SYSTEM

BUS

LOWER- PHY -FUNCTIONS

SPI

SIGNALS

WRITE- FIFO

RF
SPI
 RD/W
FSM

RX – IQ SAMPLES FROM ADC

SPI BRIDGE

READ- ADDRESS FIFO

CONTROL

READ- SETTINGS FIFO

SPI- TRIGGER -REG.

SPI- STATUS REG

FPGA

ADC

RF
MODULE

© 2009 MIMOS Berhad. All Rights Reserved.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

