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Abstract: - The attempts for solving linear inseparable problems have led to different variations on the number 
of layers of neurons and activation functions used. The backpropagation algorithm is the most known and used 
supervised learning algorithm. Also called the generalized delta algorithm because it expands the training way 
of the adaline network, it is based on minimizing the difference between the desired output and the actual 
output, through the downward gradient method (the gradient tells us how a function varies in different 
directions). Training a multilayer perceptron is often quite slow, requiring thousands or tens of thousands of 
epochs for complex problems. The best known methods to accelerate learning are: the momentum method and 
applying a variable learning rate. The paper presents the possibility to control the induction driving using neural 
systems. 
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1 Introduction 
The multilayer perceptron is the most known and 
most frequently used type of neural network. On 
most occasions, the signals are transmitted within the 
network in one direction: from input to output. There 
is no loop, the output of each neuron does not affect 
the neuron itself. This architecture is called feed-
forward (Fig.1).  
 

 
Fig. 1: Neural network feed-forward multilayer. 

 
Layers which are not directly connected to the 
environment are called hidden. In the reference 
material, there is a controversy regarding the first 
layer (the input layer) being considered as a stand-
alone (itself a) layer in the network, since its only 
function is to transmit the input signals to the upper 

strata, without any processing on the inputs. In what 
follows, we will count only the layers consisting of 
stand-alone neurons, but we will mention that the 
inputs are grouped in the input layer. There are also 
feed-back networks, which can transmit impulses in 
both directions, due to reaction connections in the 
network. These types of networks are very powerful 
and can be extremely complicated. They are 
dynamic, changing their condition all the time, until 
the network reaches an equilibrium state, and the 
search for a new balance occurs with each input 
change. Introduction of several layers was 
determined by the need to increase the complexity of 
decision regions. As shown in the previous 
paragraph, a perceptron with a single layer and one 
input generates decision regions under the form of 
semi planes. By adding another layer, each neuron 
acts as a standard perceptron for the outputs of the 
neurons in the anterior layer, thus the output of the 
network can estimate convex decision regions, 
resulting from the intersection of the semi planes 
generated by the neurons. In turn, a three-layer 
perceptron can generate arbitrary decision areas 
(Fig.2). Regarding the activation function of 
neurons, it was found that multilayer networks do 
not provide an increase in computing power 
compared to networks with a single layer, if the 
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activation functions are linear, because a linear 
function of linear functions is also a linear function. 
 

 
Fig. 2: Decision regions of multilayer perceptrons. 

 
The power of the multilayer perceptron comes 
precisely from non-linear activation functions. 
Almost any non-linear function can be used for this 
purpose, except for polynomial functions. Currently, 
the functions most commonly used today are the 
single-pole (or logistic) sigmoid, shown in Figure 3: 
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Fig. 3: Sigmoid single-pole activation function. 

 
And the bipolar sigmoid (the hyperbolic tangent) 
function, shown in Figure 4, for a=2: 
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It may be noted that the sigmoid functions act 
approximately linear for small absolute values of the 

argument and are saturated, somewhat taking over 
the role of threshold for high absolute values of the 
argument. It has been shown [4] that a network 
(possibly infinite) with one hidden layer is able to 
approximate any continuous function. 
 

 
Fig. 4: Sigmoid single-pole activation function. 

 
This justifies the property of the multilayer 
perceptron to act as a universal approximator. Also, 
by applying the Stone-Weierstrass theorem in the 
neural network, it was demonstrated that they can 
calculate certain polynomial expressions: if there are 
two networks that calculate exactly two functions f1, 
namely f2, then there is a larger network that 
calculates exactly a polynomial expression of f1 and 
f2. Multi Perceptron is the best known and most used 
type of neural networks are trained units of the type 
shown in Fig. 5. Each of these units forms a 
weighted sum of its inputs to which are added a 
constant. This amount is then passed through a non-
linear function which is often called the activation 
function. Most units are interconnected in a manner 
"feed forward" ie interconnections which form a 
loop as shown in Fig. 6.  

 
Fig. 5: A multi-unit perceptron. 

 

 
Fig. 6: Example network "feed forward". Each circle 

represents a unit of the type shown in Figure 6.  
Each connection between units is a share. Each  

unit also has an entry in the diagonal are not shown. 
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For some types of applications recurrent networks (ie 
not "feed forward"), in which some interconnections 
forming loop, are also used. I have seen in Figure 6 
an example of feed forward network. As mentioned 
interconnections units of this type of network does a 
not form loop, so the network is called feed forward. 
Networks in which there is one or more loops of 
interconnections as represented in Figure 7.a shall 
appoint recurring between the units has a share. Each 
unit also has an entry in the diagonal are not shown.   
 

 
a) 

 
b) 

 
c) 

 
d) 

Fig. 7: Common types of networks: a) a recurrent 
network; b) a stratified network; c) a network with 
links between units of input and output; d) a feed 

forward network fully connected. 
 

In feed forward networks, units are usually arranged 
in levels (layers) as in Figure 7.b but other topologies 
can be used. Figure 7.c shows a type of network that 
is useful in some applications in which direct links 
between units of input and output are used. Figure 
7.d shows a network with 3 units which is fully 
connected i.e. that all interconnections are allowed to 
feed restriction forward. 

2 The backpropagation algorithm 

Learning networks is typically achieved through a 
supervised manner. It can be assumed to be available 
a learning environment that contains both the 
learning models and models of desired output 
corresponding to input (this is known as "target 
models"). As we will see, learning is typically based 
on the minimization of measurement errors between 
network outputs and desired outputs. This implies a 
back propagation through a network similar to that 
which is learned. For this reason algorithm learning 
is called back-propagation.     The method was first 
proposed by [2], but at that time it was virtually 
ignored, because it supposed volume calculations too 
large for that time. It was then rediscovered by [20], 
but only in the mid-'80s was launched by Williams 
[18] as a generally accepted tool for training of the 
multilayer perceptron. The idea is to find the 
minimum error function e(w) in relation to the 
connections weights. The algorithm for a multilayer 
perceptron with a hidden layer is the following [8]: 
     Step 1: Initializing. All network weights and 
thresholds are initialized with random values, 
distributed evenly in a small range, for example 
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. 4242 , where Fi is the total number of inputs 

of the neuron i [6]. If these values are 0, the 
gradients which will be calculated during the trial 
will be also 0 (if there is no direct link between input 
and output) and the network will not learn. More 
training attempts are indicated, with different initial 
weights, to find the best value for the cost function 
(minimum error). Conversely, if initial values are 
large, they tend to saturate these units. In this case, 
derived sigmoid function is very small. It acts as a 
multiplier factor during the learning process and thus 
the saturated units will be nearly blocked, which 
makes learning very slow. 
     Step 2: A new era of training. An era means 
presenting all the examples in the training set. In 
most cases, training the network involves more 
training epochs. To maintain mathematical rigor, the 
weights will be adjusted only after all the test vectors 
will be applied to the network. Therefore, the 
gradients of the weights must be memorized and 
adjusted after each model in the training set, and the 
end of an epoch of training, the weights will be 
changed only one time (there is an „on-line” variant, 
more simple, in which the weights are updated 
directly, in this case, the order in which the vectors 
of the network are presented might matter. 
All the gradients of the weights and the current error 
are initialized with 0 (Δwij = 0 and E = 0). 
    Step 3:  The forward propagation of the signal 
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3.1 An example from the training set is applied to the 
to the inputs. 
3.2 The outputs of the neurons from the hidden layer 
are calculated: 
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where n is the number of inputs for the neuron j from 
the hidden layer, and f is the sigmoid activation 
function. 
3.3 The real outputs of the network are calculated: 
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where m is the number of inputs for the neuron k 
from the output layer. 
3.4 The error per epoch is updated: 
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     Step 4: The backward propagation of the errors 
and the adjustments of the weights. 
4.1 The gradients of the errors for the neurons in the 
output layer are calculated: 
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where f’ is the derived function for the activation, 
and the error )()()( , pypype kkdk −= . 
If we use the single-pole sigmoid (equation 1, its 
derived is: 
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If we use the bipolar sigmoid (equation 2, its derived 
is: 
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Further, let’s suppose that the function utilized is the 
single-pole sigmoid. Then the equation (6) becomes: 
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4.2 The gradients for the weights between the hidden 
layer and the output layer are updated: 
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4.3 The gradients of the errors for the neurons in the 
hidden layer are calculated: 
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where l is the number of outputs for the network. 
4.4 The gradients of the weights between the input 
layer and the hidden layer are updated: 
 

)()()()( ppxpwpw jiijij δ⋅+Δ=Δ .         (12) 
 
     Step 5: A new iteration. 
If there are still test vectors in the current training 
epoch, pass to step 3. If not, the weights all the 
connections will be updated based on the gradients 
of the weights: 
 

ijijij www Δ⋅η+= ,                   (13) 
 
where η is the learning rate. 
If an epoch is completed, we test if it fulfils the 
criterion for termination (E<Emax or a maximum 
number of training epochs has been reached).  
If not, we pass to step 2. If yes, the algorithm ends. 
      Example: MATLAB program [11] allows the 
generation of a logical OR functions, which means 
that the perceptron separates the classes of 0 from 
the classes of 1. Obtaining in the Matlab work space: 
 
 epoch:1SSE:3 
 epoch:2SSE:1 

epoch:3SSE:1  epoch:4SSE:0
 Test on the lot [0 1]   s =1 

 
After the fourth iteration, the perceptron separates 
two classes (0 and 1) by a line. After the fourth 
iteration the perceptron separates by a line two 
classes (0 and 1). The percepton was tested in the 

presence of the vector input . ⎥
⎦

⎤
⎢
⎣

⎡
1
0

 

 
Fig. 8: The evolution of the sum of squared errors. 
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The perceptron makes the logic OR function for 
which the classes are linearly separable; that is one 
of the conditions of the perceptron. If the previous 
programs is performed for the exclusive OR 
function, we will observe that, for any of the two 
classes, there is no line to allow the separation into 
two classes (0 and 1).  
 
 
3 Methods to accelerate the learning 
The momentum method [18] proposes adding a term 
to adjust weights. This term is proportional to the last 
amendment of the weight, i.e. the values with which 
the weights are adjusted are stored and they directly 
influence all further adjustments: 
 

)1()()( −Δ⋅α+Δ=Δ pwpwpw ijijij .       (14) 
 
Adding a new term is done after the update of the 
gradients for the weights from equations 10 and 12. 
The method of variable learning rate [19] is to use an 
individual learning rate for each weight and adapt 
these parameters in each iteration, depending on the 
successive signs of the gradients [9]: 
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If during the training the error starts to increase, 
rather than decrease, the learning rates are reset to 
initial values and then the process continues. 
 
 
4 Practical considerations of working 
with multilayer perceptrons 
For relatively simple problems, a learning rate of 

 is acceptable, but in general it is 
recommended the learning rate to be around 0.2. To 
accelerate through the momentum method, a 
satisfactory value for α is 0.9. If the learning rate is 
variable, typical values that work well in most 
situations are u = 1.2 and d = 0.8.  

70.=η

     Choosing the activation function for the output 
layer of the network depends on the nature of the 
problem to be solved. For the hidden layers of 
neurons, sigmoid functions are preferred, because 
they have the advantage of both non-linearity and the 
differentially (prerequisite for applying the 
backpropagation algorithm). The biggest influence of 
a sigmoid on the performances of the algorithm 
seems to be the symmetry of origin [1]. The bipolar 
sigmoid is symmetrical to the origin, while the 
unipolar sigmoid is symmetrical to the point (0, 0.5), 

which decreases the speed of convergence. For the 
output neurons, the activation functions adapted to 
the distribution of the output data are recommended. 
Therefore, for problems of the binary classification 
(0/1), the single-pole sigmoid is appropriate. For a 
classification with n classes, each corresponding to a 
binary output of the network (for example, an 
application of optical character recognition), the 
softmax extension of the single-pole sigmoid may be 
used. 
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For continuous values, we can make a pre-processing 
and a post processing of data, so that the network 
will operate with scaled values, for example in the 
range [-0.9, 0.9] for the hyperbolic tangent. Also, for 
continuous values, the activation function of the 
output neurons may be linear, especially if there are 
no known limits for the range in which these can be 
found. In a local minimum, the gradients of the error 
become 0 and the learning no longer continues. A 
solution is multiple independent trials, with weights 
initialized differently at the beginning, which raises 
the probability of finding the global minimum. For 
large problems, this thing can be hard to achieve and 
then local minimums may be accepted, with the 
condition that the errors are small enough. Also, 
different configurations of the network might be 
tried, with a larger number of neurons in the hidden 
layer or with more hidden layers, which in general 
lead to smaller local minimums. Still, although local 
minimums are indeed a problem, practically they are 
not unsolvable. An important issue is the choice of 
the best configuration for the network in terms of 
number of neurons in hidden layers. In most 
situations, a single hidden layer is sufficient. There 
are no precise rules for choosing the number of 
neurons. In general, the network can be seen as a 
system in which the number of test vectors 
multiplied by the number of outputs is the number of 
equations and the number of weights represents the 
number of unknown. The equations are generally 
nonlinear and very complex and so it is very difficult 
to solve them exactly through conventional means. 
Training algorithm aims precisely to find 
approximate solutions to minimize errors. If the 
network approximates the training set well, this is 
not a guarantee that it will find the same good 
solutions for the data in another set, the testing set. 
Generalization implies the existence of regularities in 
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the data, of a model that can be learned. In analogy 
with classical linear systems, this would mean some 
redundant equations. Thus, if the number of weights 
is less than the number of test vectors, for a correct 
approximation, the network must be based on 
intrinsic patterns of data models, models which are 
to be found in the test data as well. A heuristic rule 
states that the number of weights should be around 
or below one tenth of the number of training vectors 
and the number of exits. In some situations however 
(e.g., if training data are relatively few), the number 
of weights can be even half of the product. For a 
multilayer perceptron is considered that the number 
of neurons in a layer must be sufficiently large so 
that this layer to provide three or more edges for 
each convex region identified by the next layer [5]. 
So the number of neurons in a layer must be more 
than three times higher than that of the next layer. As 
mentioned before, a sufficient number of weights 
lead to under-fitting, while too many of the weights 
leads to over-fitting, events presented in Figure 9.  
 

 
Fig. 9: The capacity for the approximation of a neural 

network based on the number of weights.  
 

The same occurs if the number of training epochs is 
too small or too large. A method of solving this 
problem is stopping the training when you reach the 
best generalization. For a network large enough, it 
was verified experimentally that the training error 
decreases continuously, while the number of training 
epochs increases. However, for data different than 
those from the training set, we find that the error 
decreases from the beginning up to a point until it 
starts increasing again. That is why stopping the 
training must occur when the error for the validation 
set is minimum [13]. This is done by dividing the 
training into two: about 90% of data will be used for 
the training itself and the rest, called cross-validation 
set is used for the measurement of the error. Training 
stops when the error starts to increase for the cross-
validation set, moment called the "point of maximum 
generalization”. Depending on the network 
performance at this time, then you can try different 
configurations, lowering or increasing the number of 
neurons in the intermediate layer (or layers). 

   Example: We associate an input vector X=[1 –0.5] 
and a target vector T=[0.5 1] of size imposed by two 
restrictions that can be reduced to two degrees of 
freedom (the points W and the slopes B) of a single 
Adaline neuron [9]. We suggest solving the linear 
system of 2 equations with 2 unknowns [12]: 

 w+b=0.5,     - 0.5w+b=1,            (17)  
 

obtaining in the end the solutions:  

w= -
3
1

 and   b =
6
5

. 

The Matlab program offers solutions obtained with 
the help of the Adaline neuron either by points or by 
slopes. Matlab program offers solutions obtained 
using Adaline neuron, either by points or by slopes 
[3], [7], [10], [21]. 
 

 
Fig. 10: The points (weight) and slopes (bias) of the 

neuron identified as algebraic solutions. 
 
 

5 Implementation 
In this section we will discuss some issues related to 
practical implementation perceptron and algorithm 
of backpropagation.  
     Sigmoid. As I said above activation functions that 
are most commonly used units are multi perceptrons 
type sigmoid. Other types of non-linearity have been 
tested once but their behaviour appears to be 
generally inferior to those of sigmoid. In class 
sigmoid there are still wide choices. Feature sigmoid 
that seem to have the greatest influence on the 
performance of learning algorithm is symmetry to 
the home, while the logistics of the example is 
symmetric to a point of coordinates (0, 0.5). 
Symmetry to give the home a bipolar sigmoid which 
normally tends to lead to error surfaces better 
conditioned. Sigmoid as logistical curves tend to 
induce the narrowest error function, which weakens 
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the speed of learning procedure.  
      Output units and target values. Most practical 
applications of multi perceptrons can be divided in a 
clear relative in two different classes. In a class of 
target outputs have a continuous range of values, and 
the network is to make an operation of non-linear 
regression. Normal in this case is not convenient to 
put non-linearity in the output network. In fact we 
are normally outputs that are able to cover the entire 
range of possible target values, which is often higher 
than the values sigmoid. I can well understand to 
scale output amplitudes sigmoid how but it is rarely 
any advantage relative to simple use of units with 
non-linearity in output. Output units are said to be 
linear. Simply get them to output the weighted sum 
of the entries plus their term diagonal.  
      In another class, which includes mainly 
applications for classification and pattern recognition 
target outputs are binary, ie, take only 2 values. In 
this case it is usual to use units of output by non-
linearity sigmoid similar to other units in the 
network. Binary target values that are most 
appropriate depend on sigmoid used. Often target 
values are chosen to be equal to the 2 values of 
asymptote sigmoid (0 and 1 for logistics function and 
± 1 for the tanh and arctan scale). In this case gain 
error to 0 units of output will need to obtain 
complete saturation ie the amount of entries should 
become infinite. This would tend to lead weights of 
these units to increase indefinitely in absolute value 
and slow the learning process. To improve the speed 
of learning is therefore usually used for target values 
which are close but not equal to the asymptote of 
sigmoid (eg 0.05 and 0.95 for the logistics and ± 0.9 
for the functions tanh and arctan scale).  
      Initializing share. Before you can start the 
algorithm back-propagation is necessary to set the 
weights of the network with some initial values. A 
natural choice would be to initialize all with a value 
of 0. So do not lean learning outcome in a particular 
direction. However it can be seen easily by applying 
the back propagation rule that if the initial weights 
are all 0 gradient is 0 (except for those relating to 
share or links between units of input and output, if 
such links exist in the network). Furthermore the 
gradient components will always remain 0 during the 
learning even if there are direct links. Therefore, it is 
normally necessary to initialize the weights with 
different values of 0. The most common procedure is 
to initialize with random values drawn from a 
uniform distribution on a symmetric interval [-a, a]. 
As mentioned above some independent learning 
independent random initialization can be used to find 
the best minim cost function. It is understandable 
that the large share (resulting in high values of a) 

will tend to congested facilities. The saturation 
derived nonlinear sigmoid is very small. Since these 
derivatives act as a multiplier in the back 
propagation, the relative weights derived entry unit 
will be very small. The unit will be largely "locked" 
by learning very slow.  
     If you put a unit of data and network are all the 
same radicals in the arithmetic average of the squares 
(rms) and are all independent of each other and the 
weights are initialized in a fixed time when the rms 
sum of the entry unit will be proportional to fi 1/2, 
where fi is the number of entries and the unit (often 
called fan-in of the unit). To maintain the rms sum of 
entries similar to each other, and to avoid saturation 
of units with high fan-in, a parameter, controlling the 
size of the range boot, is sometimes varied from one 
unit to another, making you = k/(fi) 1/2. There are 
various options for the choice of k. Some prefer to 
initialize the weights so close to home, making it a 
very small k (e.g. 0.01 to 0.1) and thus retain their 
units in the central line at the beginning of the 
learning process. Others prefer high values of k (eg 1 
or higher), leading their units in the non-linear even 
at the beginning of the learning process. 
       Decorrelation and normalization of entry. To 
consider the simplest network that can design one, 
consists of a single linear unit. Networks with a 
single linear unit (adalines) are used for a long time 
in the area of signal processing in discrete time. 
Filters with finite impulse response to (FIR) can 
now be seen as single units without a diagonal line. 
Entries are consecutive samples input signal and 
filter coefficients are the weights. Therefore, 
adaptive filtering with FIR filters is an essential form 
of learning in real-time networks with linear 
networks. Therefore there is no surprise that the first 
filtered adaptive algorithms were derived from the 
delta rule [14]. It is well known in Adaptive filter 
theory that learning is the fastest, because the error 
is well-conditioned (no tub) if the entries are linear 
units uncorrelated between them, which means that 
<xixj>=0 for  i≠j,  and value equal squares  
<xi2>=<xj2> for all i,j. Here <.> is expected value 
(often, when we learn perceptrons, the expected 
value can be estimated by simply learning media 
set). If it is used also in diagonal line units, it act as 
a further input which is equal to 1. Which means 
that the square is 1, and therefore the squares of 
other entries must be all equal to 1? On the other 
hand, cross correlation of other entries with the new 
entry is made simple and expected values of these 
entries. Which should be equal to 0, as with all 
cross-correlation between input:  
 

<xi>=<xj>=0.             (18)           
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In conclusion, for a faster learning of a single unit 
with the diagonal line should be amended so that 
the process averages each component input is 0.  
 

<xi>=0,                            (19) 
 

and components are normalized and decorrelating:  
 

<xixj>=δij,                          (20) 
 

where δij is Kronecker symbol.  
Experience revealed that this type of processing 
also tends to accelerate learning for multilayer 
perceptrons. Setting the components of the input 0 
may be made simply by adding a constant suitable 
for everyone. Decorelating can then be 
accomplished by any of orthogonal, for example, 
the technique describe in [15]. Finally, the 
normalization can be achieved by a suitable scaling 
of each component. The hardest step is orthogonal, 
many people and once you jump, by setting the 
average to 0 and 0 mean squares. This simplified 
process is usually designed as a normal entry; often 
increase the speed of learning networks. A 
technique developed to accelerate in May, 
involving normalization and adaptive deco relation 
input lines of the network is described in [16].  
     Common shares. In some cases one would like to 
constrain some of the network weights to be equal 
with others. This situation may occur, for example, if 
we are to achieve the same kind of processing in 
different parts of the model input. It is a situation 
often encountered in image processing, where some 
would like to detect the same feature in different 
parts of the input image. An example in a binary 
application is described in [17]. Two examples of 
situations with common shares will be described 
below, the presentation of recurrent networks. The 
difficulty in linking manually split shares that is 
payable even if the weights are initialized with the 
same value, derivatives of common functions of the 
cost of each will generally be different between 
them.  
     The solution is quite simple. Assume that we 
collected all the weights in a weighting vector w = 
(W1, W2, ....) T (where T means transposed), and I 
share that first must be kept equal between them. 
These weights are not actually arguments 
independent of the cost function E. To maintain all 
arguments function is independent, should replace all 
of these weights with a single argument, with which 
they are all equal weights. Then, as derived in part of 
E should be calculated relative to, and not relative to 
all the individual weights.  
But 
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Derivatives appearing in the last line can be 
calculated by the normal procedure of dissemination 
- back.  
     In conclusion, we should calculate derivatives 
relative weight to each individual through the normal 
method, and then use the amount to update them and 
thus to adjust all the weights together. Also we must 
remember that the common weights are initialized 
with the same value. 
 
 
6 Experimental results 
Inside the vector control of an induction motor it can 
be implemented a cvasi-PI standard fuzzy controller. 
The optimization criterion (absolute error 
integration) for such of controllers must guarantee 
the robustness of the system. This cvasi-PI fuzzy 
controller replaces the speed classic controller from 
the vector control schema of the driving system 
([11], [12]). A fuzzy control can be implemented 
inside of a numerical control that involves the use of 
a digital signal processor DSP (for example, TMS 
320C31). Taking account of the mathematical model 
developed in [11], [12], can be implemented a cvasi-
PI standard fuzzy controller in the induction driving 
environment (Fig. 11).  

( )2
0 1 2= − + +e

dJ M M k k
dt
ω ω ω

,
2= Ψm

e s
r

L
q sqM p i

L (22) 
 
where M0 is the constant component part of the static 
torque Ms; K1 and K2 are proportional constants; Me 
is the electromagnetic torque ;ω  is the angular 
speed; isq is the stator currents along the axes q; Lm is 
the periodical mutual inductivity between the stator 
and the rotor; Lm is the inductivity of the stator.  
 

 
Fig. 11: Fuzzy logic controller. 

Instead of the fuzzy controller [11] it is placed a 
neural controller which should have the learning 
possibility of the control surface of the fuzzy 
controller.  
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a) 

                             

              
b) 

                             

Fig. 12:  Control surface approximation of fuzzy 
controller by a network of neurons a) normalized 

coordinates; b) actual values. 
 

 
a) 

 
b) 

Fig. 13:  Driving on-load start-up, using a fuzzy 
controller (f) and a neural controller perceptron type (n) 

with 4 layers: a) speed shape; b) stator current shape. 
 

Using Simulink structured schema [11], [12], the 
vectors e, Δ e and Δ u are extracted in MATLAB 
environment. They are introduced into a neural 
network with four layers by activation functions of 
sigmoid type (MATLAB/Neural Network Toolbox). 
Finally, after the network activation and the vectors 
e, Δ e and Δ u are passed throw the learning process 
(after Marquardt-Levenberg method), will result the 
solution towards the neural network converges 
(learning surface of neural controller - Fig.12, Fig. 
13). It can be observed that plate areas are reduced, 
and the control surface peaks of fuzzy controller, in 
dials 1 and 3, are no more outline by the neural 
network of perceptron type. It would be necessary to 
make an analysis in the e,Δ e phases plane because 
only some points of surface are significant from 
control point of view. It is interesting to know the 
accurate value of the output increment, when are 
analyzed some points of the surface remote from 
reference point (e=0, Δ e=0), which is control main 
objective. 

 
 

7 Conclusion 
Multilayer perceptrons are the most commonly used 
types of neural networks. Using the backpropagation 
algorithm for training, they can be used for a wide 
range of applications, from the functional 
approximation to prediction in various fields, such as 
estimating the load of a calculating system or 
modelling the evolution of chemical reactions of 
polymerization, described by complex systems of 
differential equations. In implementing the 
algorithm, there are a number of practical problems, 
mostly related to the choice of the parameters and 
network configuration. First, a small learning rate 
leads to a slow convergence of the algorithm, while a 
too high rate may cause failure (algorithm will 
"jump" over the solution). Another problem 
characteristic of this method of training is given by 
local minimums. A neural network must be capable 
of generalization. 
    The advantage of fuzzy logic controller will 
disappear when comparing to a wind-up PI 
controller, knowing that this is working in a linear. 
On the other hand, a wind-up PI-controller does not 
make any problems when the output variable reaches 
the saturation value since the signal corresponding to 
the difference between limited output and unlimited 
output is once more fed to the controller for 
desaturation. For a same control surface, the 
advantage of using a neural controller consists in 
calculus time decreasing as against with that lost 
when it is used a fuzzy controller with a bigger 
number of linguistic labels. 
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