
 Multilayer Perceptron and Neural Networks

MARIUS-CONSTANTIN POPESCU1 VALENTINA E. BALAS2
 LILIANA PERESCU-POPESCU3 NIKOS MASTORAKIS4

Faculty of Electromechanical and Environmental Engineering, University of Craiova1
Faculty of Engineering, “Aurel Vlaicu” University of Arad2

“Elena Cuza” College of Craiova3
ROMANIA,

Technical University of Sofia4
BULGARIA.

popescu.marius.c@gmail.com balas@inext.ro mastor@wses.org

Abstract: - The attempts for solving linear inseparable problems have led to different variations on the number
of layers of neurons and activation functions used. The backpropagation algorithm is the most known and used
supervised learning algorithm. Also called the generalized delta algorithm because it expands the training way
of the adaline network, it is based on minimizing the difference between the desired output and the actual
output, through the downward gradient method (the gradient tells us how a function varies in different
directions). Training a multilayer perceptron is often quite slow, requiring thousands or tens of thousands of
epochs for complex problems. The best known methods to accelerate learning are: the momentum method and
applying a variable learning rate. The paper presents the possibility to control the induction driving using neural
systems.

Key-Words:- Backpropagation algorithm, Gradient method, Multilayer perceptron, Induction driving.

1 Introduction
The multilayer perceptron is the most known and
most frequently used type of neural network. On
most occasions, the signals are transmitted within the
network in one direction: from input to output. There
is no loop, the output of each neuron does not affect
the neuron itself. This architecture is called feed-
forward (Fig.1).

Fig. 1: Neural network feed-forward multilayer.

Layers which are not directly connected to the
environment are called hidden. In the reference
material, there is a controversy regarding the first
layer (the input layer) being considered as a stand-
alone (itself a) layer in the network, since its only
function is to transmit the input signals to the upper

strata, without any processing on the inputs. In what
follows, we will count only the layers consisting of
stand-alone neurons, but we will mention that the
inputs are grouped in the input layer. There are also
feed-back networks, which can transmit impulses in
both directions, due to reaction connections in the
network. These types of networks are very powerful
and can be extremely complicated. They are
dynamic, changing their condition all the time, until
the network reaches an equilibrium state, and the
search for a new balance occurs with each input
change. Introduction of several layers was
determined by the need to increase the complexity of
decision regions. As shown in the previous
paragraph, a perceptron with a single layer and one
input generates decision regions under the form of
semi planes. By adding another layer, each neuron
acts as a standard perceptron for the outputs of the
neurons in the anterior layer, thus the output of the
network can estimate convex decision regions,
resulting from the intersection of the semi planes
generated by the neurons. In turn, a three-layer
perceptron can generate arbitrary decision areas
(Fig.2). Regarding the activation function of
neurons, it was found that multilayer networks do
not provide an increase in computing power
compared to networks with a single layer, if the

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS
Marius-Constantin Popescu, Valentina E. Balas,
Liliana Perescu-Popescu, Nikos Mastorakis

ISSN: 1109-2734 579 Issue 7, Volume 8, July 2009

mailto:popescu.marius.c@gmail.com
mailto:balas@inext.ro
mailto:mastor@wses.org

activation functions are linear, because a linear
function of linear functions is also a linear function.

Fig. 2: Decision regions of multilayer perceptrons.

The power of the multilayer perceptron comes
precisely from non-linear activation functions.
Almost any non-linear function can be used for this
purpose, except for polynomial functions. Currently,
the functions most commonly used today are the
single-pole (or logistic) sigmoid, shown in Figure 3:

se
sf −+
=

1
1)(. (1)

Fig. 3: Sigmoid single-pole activation function.

And the bipolar sigmoid (the hyperbolic tangent)
function, shown in Figure 4, for a=2:

sa

sa

e
esf ⋅−

⋅−

+
−

=
1
1)(. (2)

It may be noted that the sigmoid functions act
approximately linear for small absolute values of the

argument and are saturated, somewhat taking over
the role of threshold for high absolute values of the
argument. It has been shown [4] that a network
(possibly infinite) with one hidden layer is able to
approximate any continuous function.

Fig. 4: Sigmoid single-pole activation function.

This justifies the property of the multilayer
perceptron to act as a universal approximator. Also,
by applying the Stone-Weierstrass theorem in the
neural network, it was demonstrated that they can
calculate certain polynomial expressions: if there are
two networks that calculate exactly two functions f1,
namely f2, then there is a larger network that
calculates exactly a polynomial expression of f1 and
f2. Multi Perceptron is the best known and most used
type of neural networks are trained units of the type
shown in Fig. 5. Each of these units forms a
weighted sum of its inputs to which are added a
constant. This amount is then passed through a non-
linear function which is often called the activation
function. Most units are interconnected in a manner
"feed forward" ie interconnections which form a
loop as shown in Fig. 6.

Fig. 5: A multi-unit perceptron.

Fig. 6: Example network "feed forward". Each circle

represents a unit of the type shown in Figure 6.
Each connection between units is a share. Each

unit also has an entry in the diagonal are not shown.

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS
Marius-Constantin Popescu, Valentina E. Balas,
Liliana Perescu-Popescu, Nikos Mastorakis

ISSN: 1109-2734 580 Issue 7, Volume 8, July 2009

For some types of applications recurrent networks (ie
not "feed forward"), in which some interconnections
forming loop, are also used. I have seen in Figure 6
an example of feed forward network. As mentioned
interconnections units of this type of network does a
not form loop, so the network is called feed forward.
Networks in which there is one or more loops of
interconnections as represented in Figure 7.a shall
appoint recurring between the units has a share. Each
unit also has an entry in the diagonal are not shown.

a)

b)

c)

d)

Fig. 7: Common types of networks: a) a recurrent
network; b) a stratified network; c) a network with
links between units of input and output; d) a feed

forward network fully connected.

In feed forward networks, units are usually arranged
in levels (layers) as in Figure 7.b but other topologies
can be used. Figure 7.c shows a type of network that
is useful in some applications in which direct links
between units of input and output are used. Figure
7.d shows a network with 3 units which is fully
connected i.e. that all interconnections are allowed to
feed restriction forward.

2 The backpropagation algorithm

Learning networks is typically achieved through a
supervised manner. It can be assumed to be available
a learning environment that contains both the
learning models and models of desired output
corresponding to input (this is known as "target
models"). As we will see, learning is typically based
on the minimization of measurement errors between
network outputs and desired outputs. This implies a
back propagation through a network similar to that
which is learned. For this reason algorithm learning
is called back-propagation. The method was first
proposed by [2], but at that time it was virtually
ignored, because it supposed volume calculations too
large for that time. It was then rediscovered by [20],
but only in the mid-'80s was launched by Williams
[18] as a generally accepted tool for training of the
multilayer perceptron. The idea is to find the
minimum error function e(w) in relation to the
connections weights. The algorithm for a multilayer
perceptron with a hidden layer is the following [8]:
 Step 1: Initializing. All network weights and
thresholds are initialized with random values,
distributed evenly in a small range, for example

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −

ii F
.,

F
. 4242 , where Fi is the total number of inputs

of the neuron i [6]. If these values are 0, the
gradients which will be calculated during the trial
will be also 0 (if there is no direct link between input
and output) and the network will not learn. More
training attempts are indicated, with different initial
weights, to find the best value for the cost function
(minimum error). Conversely, if initial values are
large, they tend to saturate these units. In this case,
derived sigmoid function is very small. It acts as a
multiplier factor during the learning process and thus
the saturated units will be nearly blocked, which
makes learning very slow.
 Step 2: A new era of training. An era means
presenting all the examples in the training set. In
most cases, training the network involves more
training epochs. To maintain mathematical rigor, the
weights will be adjusted only after all the test vectors
will be applied to the network. Therefore, the
gradients of the weights must be memorized and
adjusted after each model in the training set, and the
end of an epoch of training, the weights will be
changed only one time (there is an „on-line” variant,
more simple, in which the weights are updated
directly, in this case, the order in which the vectors
of the network are presented might matter.
All the gradients of the weights and the current error
are initialized with 0 (Δwij = 0 and E = 0).
 Step 3: The forward propagation of the signal

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS
Marius-Constantin Popescu, Valentina E. Balas,
Liliana Perescu-Popescu, Nikos Mastorakis

ISSN: 1109-2734 581 Issue 7, Volume 8, July 2009

3.1 An example from the training set is applied to the
to the inputs.
3.2 The outputs of the neurons from the hidden layer
are calculated:

⎟
⎠

⎞
⎜
⎝

⎛ θ−⋅= ∑
=

n

i
jijij wpxfpy

1
)()(, (3)

where n is the number of inputs for the neuron j from
the hidden layer, and f is the sigmoid activation
function.
3.3 The real outputs of the network are calculated:

⎟
⎠

⎞
⎜
⎝

⎛ θ−⋅= ∑
=

m

i
kjkjkk pwpxfpy

1
)()()(, (4)

where m is the number of inputs for the neuron k
from the output layer.
3.4 The error per epoch is updated:

()
2

)(2pe E E k+= . (5)

 Step 4: The backward propagation of the errors
and the adjustments of the weights.
4.1 The gradients of the errors for the neurons in the
output layer are calculated:

)(')(pefp kk ⋅=δ , (6)

where f’ is the derived function for the activation,
and the error)()()(, pypype kkdk −= .
If we use the single-pole sigmoid (equation 1, its
derived is:

()
()(1)(

1
)(' 2 xfxf

e

exf
x

x
−⋅=

+
=

−

−
) . (7)

If we use the bipolar sigmoid (equation 2, its derived
is:

()
() ()(1)(1

21

2)(' 2 xfxfa

e

eaxf
xa

xa
+⋅−⋅=

+

⋅
=

⋅−

⋅−
) . (8)

Further, let’s suppose that the function utilized is the
single-pole sigmoid. Then the equation (6) becomes:

())()(1)()(pepypyp kkkk ⋅−⋅=δ . (9)

4.2 The gradients for the weights between the hidden
layer and the output layer are updated:

)()()()(ppypwpw kjjkjk δ⋅+Δ=Δ . (10)

4.3 The gradients of the errors for the neurons in the
hidden layer are calculated:

() ∑
=

⋅δ⋅−⋅=δ
l

k
jkkjjj pwppypyp

1
)()()(1)()(, (11)

where l is the number of outputs for the network.
4.4 The gradients of the weights between the input
layer and the hidden layer are updated:

)()()()(ppxpwpw jiijij δ⋅+Δ=Δ . (12)

 Step 5: A new iteration.
If there are still test vectors in the current training
epoch, pass to step 3. If not, the weights all the
connections will be updated based on the gradients
of the weights:

ijijij www Δ⋅η+= , (13)

where η is the learning rate.
If an epoch is completed, we test if it fulfils the
criterion for termination (E<Emax or a maximum
number of training epochs has been reached).
If not, we pass to step 2. If yes, the algorithm ends.
 Example: MATLAB program [11] allows the
generation of a logical OR functions, which means
that the perceptron separates the classes of 0 from
the classes of 1. Obtaining in the Matlab work space:

 epoch:1SSE:3
 epoch:2SSE:1

epoch:3SSE:1 epoch:4SSE:0
 Test on the lot [0 1] s =1

After the fourth iteration, the perceptron separates
two classes (0 and 1) by a line. After the fourth
iteration the perceptron separates by a line two
classes (0 and 1). The percepton was tested in the

presence of the vector input . ⎥
⎦

⎤
⎢
⎣

⎡
1
0

Fig. 8: The evolution of the sum of squared errors.

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS
Marius-Constantin Popescu, Valentina E. Balas,
Liliana Perescu-Popescu, Nikos Mastorakis

ISSN: 1109-2734 582 Issue 7, Volume 8, July 2009

The perceptron makes the logic OR function for
which the classes are linearly separable; that is one
of the conditions of the perceptron. If the previous
programs is performed for the exclusive OR
function, we will observe that, for any of the two
classes, there is no line to allow the separation into
two classes (0 and 1).

3 Methods to accelerate the learning
The momentum method [18] proposes adding a term
to adjust weights. This term is proportional to the last
amendment of the weight, i.e. the values with which
the weights are adjusted are stored and they directly
influence all further adjustments:

)1()()(−Δ⋅α+Δ=Δ pwpwpw ijijij . (14)

Adding a new term is done after the update of the
gradients for the weights from equations 10 and 12.
The method of variable learning rate [19] is to use an
individual learning rate for each weight and adapt
these parameters in each iteration, depending on the
successive signs of the gradients [9]:

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−Δ−=Δ−η⋅

−Δ=Δ−η⋅
=η

))1(sgn())(sgn(),1(

))1(sgn())(sgn(),1(
)(

pwpwpd

pwpwpu
p

ijijij

ijijij
ij

 (15)

If during the training the error starts to increase,
rather than decrease, the learning rates are reset to
initial values and then the process continues.

4 Practical considerations of working
with multilayer perceptrons
For relatively simple problems, a learning rate of

 is acceptable, but in general it is
recommended the learning rate to be around 0.2. To
accelerate through the momentum method, a
satisfactory value for α is 0.9. If the learning rate is
variable, typical values that work well in most
situations are u = 1.2 and d = 0.8.

70.=η

 Choosing the activation function for the output
layer of the network depends on the nature of the
problem to be solved. For the hidden layers of
neurons, sigmoid functions are preferred, because
they have the advantage of both non-linearity and the
differentially (prerequisite for applying the
backpropagation algorithm). The biggest influence of
a sigmoid on the performances of the algorithm
seems to be the symmetry of origin [1]. The bipolar
sigmoid is symmetrical to the origin, while the
unipolar sigmoid is symmetrical to the point (0, 0.5),

which decreases the speed of convergence. For the
output neurons, the activation functions adapted to
the distribution of the output data are recommended.
Therefore, for problems of the binary classification
(0/1), the single-pole sigmoid is appropriate. For a
classification with n classes, each corresponding to a
binary output of the network (for example, an
application of optical character recognition), the
softmax extension of the single-pole sigmoid may be
used.

∑
=

= n

i

iy

ky

k
e

ey

1

'
. (16)

For continuous values, we can make a pre-processing
and a post processing of data, so that the network
will operate with scaled values, for example in the
range [-0.9, 0.9] for the hyperbolic tangent. Also, for
continuous values, the activation function of the
output neurons may be linear, especially if there are
no known limits for the range in which these can be
found. In a local minimum, the gradients of the error
become 0 and the learning no longer continues. A
solution is multiple independent trials, with weights
initialized differently at the beginning, which raises
the probability of finding the global minimum. For
large problems, this thing can be hard to achieve and
then local minimums may be accepted, with the
condition that the errors are small enough. Also,
different configurations of the network might be
tried, with a larger number of neurons in the hidden
layer or with more hidden layers, which in general
lead to smaller local minimums. Still, although local
minimums are indeed a problem, practically they are
not unsolvable. An important issue is the choice of
the best configuration for the network in terms of
number of neurons in hidden layers. In most
situations, a single hidden layer is sufficient. There
are no precise rules for choosing the number of
neurons. In general, the network can be seen as a
system in which the number of test vectors
multiplied by the number of outputs is the number of
equations and the number of weights represents the
number of unknown. The equations are generally
nonlinear and very complex and so it is very difficult
to solve them exactly through conventional means.
Training algorithm aims precisely to find
approximate solutions to minimize errors. If the
network approximates the training set well, this is
not a guarantee that it will find the same good
solutions for the data in another set, the testing set.
Generalization implies the existence of regularities in

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS
Marius-Constantin Popescu, Valentina E. Balas,
Liliana Perescu-Popescu, Nikos Mastorakis

ISSN: 1109-2734 583 Issue 7, Volume 8, July 2009

the data, of a model that can be learned. In analogy
with classical linear systems, this would mean some
redundant equations. Thus, if the number of weights
is less than the number of test vectors, for a correct
approximation, the network must be based on
intrinsic patterns of data models, models which are
to be found in the test data as well. A heuristic rule
states that the number of weights should be around
or below one tenth of the number of training vectors
and the number of exits. In some situations however
(e.g., if training data are relatively few), the number
of weights can be even half of the product. For a
multilayer perceptron is considered that the number
of neurons in a layer must be sufficiently large so
that this layer to provide three or more edges for
each convex region identified by the next layer [5].
So the number of neurons in a layer must be more
than three times higher than that of the next layer. As
mentioned before, a sufficient number of weights
lead to under-fitting, while too many of the weights
leads to over-fitting, events presented in Figure 9.

Fig. 9: The capacity for the approximation of a neural

network based on the number of weights.

The same occurs if the number of training epochs is
too small or too large. A method of solving this
problem is stopping the training when you reach the
best generalization. For a network large enough, it
was verified experimentally that the training error
decreases continuously, while the number of training
epochs increases. However, for data different than
those from the training set, we find that the error
decreases from the beginning up to a point until it
starts increasing again. That is why stopping the
training must occur when the error for the validation
set is minimum [13]. This is done by dividing the
training into two: about 90% of data will be used for
the training itself and the rest, called cross-validation
set is used for the measurement of the error. Training
stops when the error starts to increase for the cross-
validation set, moment called the "point of maximum
generalization”. Depending on the network
performance at this time, then you can try different
configurations, lowering or increasing the number of
neurons in the intermediate layer (or layers).

 Example: We associate an input vector X=[1 –0.5]
and a target vector T=[0.5 1] of size imposed by two
restrictions that can be reduced to two degrees of
freedom (the points W and the slopes B) of a single
Adaline neuron [9]. We suggest solving the linear
system of 2 equations with 2 unknowns [12]:

 w+b=0.5, - 0.5w+b=1, (17)

obtaining in the end the solutions:

w= -
3
1

 and b =
6
5

.

The Matlab program offers solutions obtained with
the help of the Adaline neuron either by points or by
slopes. Matlab program offers solutions obtained
using Adaline neuron, either by points or by slopes
[3], [7], [10], [21].

Fig. 10: The points (weight) and slopes (bias) of the

neuron identified as algebraic solutions.

5 Implementation
In this section we will discuss some issues related to
practical implementation perceptron and algorithm
of backpropagation.
 Sigmoid. As I said above activation functions that
are most commonly used units are multi perceptrons
type sigmoid. Other types of non-linearity have been
tested once but their behaviour appears to be
generally inferior to those of sigmoid. In class
sigmoid there are still wide choices. Feature sigmoid
that seem to have the greatest influence on the
performance of learning algorithm is symmetry to
the home, while the logistics of the example is
symmetric to a point of coordinates (0, 0.5).
Symmetry to give the home a bipolar sigmoid which
normally tends to lead to error surfaces better
conditioned. Sigmoid as logistical curves tend to
induce the narrowest error function, which weakens

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS
Marius-Constantin Popescu, Valentina E. Balas,
Liliana Perescu-Popescu, Nikos Mastorakis

ISSN: 1109-2734 584 Issue 7, Volume 8, July 2009

the speed of learning procedure.
 Output units and target values. Most practical
applications of multi perceptrons can be divided in a
clear relative in two different classes. In a class of
target outputs have a continuous range of values, and
the network is to make an operation of non-linear
regression. Normal in this case is not convenient to
put non-linearity in the output network. In fact we
are normally outputs that are able to cover the entire
range of possible target values, which is often higher
than the values sigmoid. I can well understand to
scale output amplitudes sigmoid how but it is rarely
any advantage relative to simple use of units with
non-linearity in output. Output units are said to be
linear. Simply get them to output the weighted sum
of the entries plus their term diagonal.
 In another class, which includes mainly
applications for classification and pattern recognition
target outputs are binary, ie, take only 2 values. In
this case it is usual to use units of output by non-
linearity sigmoid similar to other units in the
network. Binary target values that are most
appropriate depend on sigmoid used. Often target
values are chosen to be equal to the 2 values of
asymptote sigmoid (0 and 1 for logistics function and
± 1 for the tanh and arctan scale). In this case gain
error to 0 units of output will need to obtain
complete saturation ie the amount of entries should
become infinite. This would tend to lead weights of
these units to increase indefinitely in absolute value
and slow the learning process. To improve the speed
of learning is therefore usually used for target values
which are close but not equal to the asymptote of
sigmoid (eg 0.05 and 0.95 for the logistics and ± 0.9
for the functions tanh and arctan scale).
 Initializing share. Before you can start the
algorithm back-propagation is necessary to set the
weights of the network with some initial values. A
natural choice would be to initialize all with a value
of 0. So do not lean learning outcome in a particular
direction. However it can be seen easily by applying
the back propagation rule that if the initial weights
are all 0 gradient is 0 (except for those relating to
share or links between units of input and output, if
such links exist in the network). Furthermore the
gradient components will always remain 0 during the
learning even if there are direct links. Therefore, it is
normally necessary to initialize the weights with
different values of 0. The most common procedure is
to initialize with random values drawn from a
uniform distribution on a symmetric interval [-a, a].
As mentioned above some independent learning
independent random initialization can be used to find
the best minim cost function. It is understandable
that the large share (resulting in high values of a)

will tend to congested facilities. The saturation
derived nonlinear sigmoid is very small. Since these
derivatives act as a multiplier in the back
propagation, the relative weights derived entry unit
will be very small. The unit will be largely "locked"
by learning very slow.
 If you put a unit of data and network are all the
same radicals in the arithmetic average of the squares
(rms) and are all independent of each other and the
weights are initialized in a fixed time when the rms
sum of the entry unit will be proportional to fi 1/2,
where fi is the number of entries and the unit (often
called fan-in of the unit). To maintain the rms sum of
entries similar to each other, and to avoid saturation
of units with high fan-in, a parameter, controlling the
size of the range boot, is sometimes varied from one
unit to another, making you = k/(fi) 1/2. There are
various options for the choice of k. Some prefer to
initialize the weights so close to home, making it a
very small k (e.g. 0.01 to 0.1) and thus retain their
units in the central line at the beginning of the
learning process. Others prefer high values of k (eg 1
or higher), leading their units in the non-linear even
at the beginning of the learning process.
 Decorrelation and normalization of entry. To
consider the simplest network that can design one,
consists of a single linear unit. Networks with a
single linear unit (adalines) are used for a long time
in the area of signal processing in discrete time.
Filters with finite impulse response to (FIR) can
now be seen as single units without a diagonal line.
Entries are consecutive samples input signal and
filter coefficients are the weights. Therefore,
adaptive filtering with FIR filters is an essential form
of learning in real-time networks with linear
networks. Therefore there is no surprise that the first
filtered adaptive algorithms were derived from the
delta rule [14]. It is well known in Adaptive filter
theory that learning is the fastest, because the error
is well-conditioned (no tub) if the entries are linear
units uncorrelated between them, which means that
<xixj>=0 for i≠j, and value equal squares
<xi2>=<xj2> for all i,j. Here <.> is expected value
(often, when we learn perceptrons, the expected
value can be estimated by simply learning media
set). If it is used also in diagonal line units, it act as
a further input which is equal to 1. Which means
that the square is 1, and therefore the squares of
other entries must be all equal to 1? On the other
hand, cross correlation of other entries with the new
entry is made simple and expected values of these
entries. Which should be equal to 0, as with all
cross-correlation between input:

<xi>=<xj>=0. (18)

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS
Marius-Constantin Popescu, Valentina E. Balas,
Liliana Perescu-Popescu, Nikos Mastorakis

ISSN: 1109-2734 585 Issue 7, Volume 8, July 2009

In conclusion, for a faster learning of a single unit
with the diagonal line should be amended so that
the process averages each component input is 0.

<xi>=0, (19)

and components are normalized and decorrelating:

<xixj>=δij, (20)

where δij is Kronecker symbol.
Experience revealed that this type of processing
also tends to accelerate learning for multilayer
perceptrons. Setting the components of the input 0
may be made simply by adding a constant suitable
for everyone. Decorelating can then be
accomplished by any of orthogonal, for example,
the technique describe in [15]. Finally, the
normalization can be achieved by a suitable scaling
of each component. The hardest step is orthogonal,
many people and once you jump, by setting the
average to 0 and 0 mean squares. This simplified
process is usually designed as a normal entry; often
increase the speed of learning networks. A
technique developed to accelerate in May,
involving normalization and adaptive deco relation
input lines of the network is described in [16].
 Common shares. In some cases one would like to
constrain some of the network weights to be equal
with others. This situation may occur, for example, if
we are to achieve the same kind of processing in
different parts of the model input. It is a situation
often encountered in image processing, where some
would like to detect the same feature in different
parts of the input image. An example in a binary
application is described in [17]. Two examples of
situations with common shares will be described
below, the presentation of recurrent networks. The
difficulty in linking manually split shares that is
payable even if the weights are initialized with the
same value, derivatives of common functions of the
cost of each will generally be different between
them.
 The solution is quite simple. Assume that we
collected all the weights in a weighting vector w =
(W1, W2,) T (where T means transposed), and I
share that first must be kept equal between them.
These weights are not actually arguments
independent of the cost function E. To maintain all
arguments function is independent, should replace all
of these weights with a single argument, with which
they are all equal weights. Then, as derived in part of
E should be calculated relative to, and not relative to
all the individual weights.
But

∑∑
== ∂
∂

=
∂
∂

∂
∂

=
∂
∂ m

i i

i
m

i i w
E

a
w

w
E

a
E

11
 (21)

Derivatives appearing in the last line can be
calculated by the normal procedure of dissemination
- back.
 In conclusion, we should calculate derivatives
relative weight to each individual through the normal
method, and then use the amount to update them and
thus to adjust all the weights together. Also we must
remember that the common weights are initialized
with the same value.

6 Experimental results
Inside the vector control of an induction motor it can
be implemented a cvasi-PI standard fuzzy controller.
The optimization criterion (absolute error
integration) for such of controllers must guarantee
the robustness of the system. This cvasi-PI fuzzy
controller replaces the speed classic controller from
the vector control schema of the driving system
([11], [12]). A fuzzy control can be implemented
inside of a numerical control that involves the use of
a digital signal processor DSP (for example, TMS
320C31). Taking account of the mathematical model
developed in [11], [12], can be implemented a cvasi-
PI standard fuzzy controller in the induction driving
environment (Fig. 11).

()2
0 1 2= − + +e

dJ M M k k
dt
ω ω ω

,
2= Ψm

e s
r

L
q sqM p i

L (22)

where M0 is the constant component part of the static
torque Ms; K1 and K2 are proportional constants; Me
is the electromagnetic torque ;ω is the angular
speed; isq is the stator currents along the axes q; Lm is
the periodical mutual inductivity between the stator
and the rotor; Lm is the inductivity of the stator.

Fig. 11: Fuzzy logic controller.

Instead of the fuzzy controller [11] it is placed a
neural controller which should have the learning
possibility of the control surface of the fuzzy
controller.

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS
Marius-Constantin Popescu, Valentina E. Balas,
Liliana Perescu-Popescu, Nikos Mastorakis

ISSN: 1109-2734 586 Issue 7, Volume 8, July 2009

a)

b)

Fig. 12: Control surface approximation of fuzzy
controller by a network of neurons a) normalized

coordinates; b) actual values.

a)

b)

Fig. 13: Driving on-load start-up, using a fuzzy
controller (f) and a neural controller perceptron type (n)

with 4 layers: a) speed shape; b) stator current shape.

Using Simulink structured schema [11], [12], the
vectors e, Δ e and Δ u are extracted in MATLAB
environment. They are introduced into a neural
network with four layers by activation functions of
sigmoid type (MATLAB/Neural Network Toolbox).
Finally, after the network activation and the vectors
e, Δ e and Δ u are passed throw the learning process
(after Marquardt-Levenberg method), will result the
solution towards the neural network converges
(learning surface of neural controller - Fig.12, Fig.
13). It can be observed that plate areas are reduced,
and the control surface peaks of fuzzy controller, in
dials 1 and 3, are no more outline by the neural
network of perceptron type. It would be necessary to
make an analysis in the e,Δ e phases plane because
only some points of surface are significant from
control point of view. It is interesting to know the
accurate value of the output increment, when are
analyzed some points of the surface remote from
reference point (e=0, Δ e=0), which is control main
objective.

7 Conclusion
Multilayer perceptrons are the most commonly used
types of neural networks. Using the backpropagation
algorithm for training, they can be used for a wide
range of applications, from the functional
approximation to prediction in various fields, such as
estimating the load of a calculating system or
modelling the evolution of chemical reactions of
polymerization, described by complex systems of
differential equations. In implementing the
algorithm, there are a number of practical problems,
mostly related to the choice of the parameters and
network configuration. First, a small learning rate
leads to a slow convergence of the algorithm, while a
too high rate may cause failure (algorithm will
"jump" over the solution). Another problem
characteristic of this method of training is given by
local minimums. A neural network must be capable
of generalization.
 The advantage of fuzzy logic controller will
disappear when comparing to a wind-up PI
controller, knowing that this is working in a linear.
On the other hand, a wind-up PI-controller does not
make any problems when the output variable reaches
the saturation value since the signal corresponding to
the difference between limited output and unlimited
output is once more fed to the controller for
desaturation. For a same control surface, the
advantage of using a neural controller consists in
calculus time decreasing as against with that lost
when it is used a fuzzy controller with a bigger
number of linguistic labels.

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS
Marius-Constantin Popescu, Valentina E. Balas,
Liliana Perescu-Popescu, Nikos Mastorakis

ISSN: 1109-2734 587 Issue 7, Volume 8, July 2009

References
[1] Almeida, L.B. Multilayer perceptrons, in

Handbook of Neural Computation, IOP
Publishing Ltd and Oxford University Press,
1997.

[2] Bryson, A.E., Ho, Y.C. Applied Optimal
Control, Blaisdell, New York, 1969.

[3] Curteanu, S., Petrila, C., Ungureanu, Ş., Leon, F.
Genetic Algorithms and Neural Networks Used
in Optimization of a Radical Polymerization
Process, Buletinul Universităţii Petrol-Gaze din
Ploieşti, vol. LV, seria tehnică, nr.2, pp. 85-93,
2003.

[4] Cybenko, G. Approximation by superpositions of
a sigmoidal function, Math. Control, Signal
Syst. 2, pp.303-314, 1989.

[5] Dumitrescu, D., Costin, H. Reţele neuronale,
Teorie şi aplicaţii, Ed. Teora, Bucureşti, 1996.

[6] Haykin, S. Neural Networks: A Comprehensive
Foundation, Maxmillan, IEEE Press, 1994.

[7] Leon, F., Gâlea, D., Zaharia, M. H. Load
Balancing In Distributed Systems Using
Cognitive Behavioural Models, Bulletin of

 Technical University of Iaşi, Tome XLVIII (LII),
fasc.1-4, 2002.

[8] Negnevitsky, M. Artificial Intelligence: A Guide
to Intelligent Systems, Addison Wiesley,
England, 2002.

[9] Popescu M.C., Hybrid neural network for
prediction of process parameters in injection
moulding, Annals of University of Petroşani,
Electrical Engineering, Universities Publishing
House, Petroşani, Vol. 9, pp.312-319, 2007.

[10] Popescu M.C., Olaru O, Mastorakis N.
Equilibrium Dynamic Systems Integration
Proceedings of the 10th WSEAS Int. Conf. on
Automation & Information, Prague, pp.424-
430, March 23-25, 2009.

[11] Popescu M.C., Modelarea şi simularea
proceselor, Editura Universitaria Craiova, pp.
261-273, 2008.

[12] Popescu M.C., Petrişor A. Neuro-fuzzy control
of induction driving, 6th International

Carpathian Control Congress, pp.209-214,
Miskolc-Lillafured, Budapesta, 2005.

[13] Popescu M.C., Reţele neuronale şi algoritmi
genetici utilizaţi în optimizarea proceselor.
Sesiunea Natională de Comunicări Stiinţifice.
Ediţia a IX-a. Secţiunea Matematică, Târgu-Jiu,
noiembrie 24-25, 2001.

[14] Popescu M.C., Balas V., Olaru O., Mastorakis
N., The Backpropagation Algorithm Functions
for the Multilayer Perceptron, Proceedings of
the 11th WSEAS International Conference on
Sustainability in Science Engineering, pp.28-
31, Timisoara, Romania, may 27-29, 2009.

[15] Popescu M.C,, Olaru O., Mastorakis N.,
Equilibrium Dynamic Systems Intelligence,
WSEAS Transactions on Information Science
and Applications, Issue 5, Volume 6, pp.725-
735, May 2009.

[16] Popescu M.C., Olaru O, Mastorakis N.
Equilibrium Dynamic Systems Integration,
Proceedings of the 10th WSEAS Int. Conf. on
Automation & Information (ICAI '09), March
23-25, 2009.

[17] Popescu M.C., Petrişor A., Drighiciu A., Fuzzy
Control Algorithm Implementation using
LabWindows – Robot, WSEAS Transactions on
Systems Journal, Issue 1, Volume 8, pp.117-
126, January 2009,

[18] Principe, J.C., Euliano, N.R., Lefebvre, W.C.
Neural and Adaptive Systems. Fundamentals
Through Simulations, John Wiley & Sons, Inc,
2000.

[19] Rumelhart, D.E., Hinton, G.E., Williams, R.J.
Learning representations by backpropagating
errors, Nature 323, pp.533-536, 1986.

[20] Silva, F.M., Almeida, L.B. Acceleration
techniques for the backpropagation algorithm
in L.B. Almeida, C.J. Wellekens (eds.), Neural
Networks, Springer, Berlin, pp.110–19, 1990.

[21] Werbos, P.J. The Roots of Backpropagation,
John Wiley & Sons, New York, 1974.

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS
Marius-Constantin Popescu, Valentina E. Balas,
Liliana Perescu-Popescu, Nikos Mastorakis

ISSN: 1109-2734 588 Issue 7, Volume 8, July 2009

