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Abstract: - Prototyping of wireless radio is one of the major stages of the entire development process. It invariably has 
an interface to the Analog to digital converters (ADC) / Digital to Analog converters (DAC) and RF front end.  This 
paper discusses in detail the design issues and solutions for baseband- RF front end interface, of a wireless radio. In 
these kinds of systems, the FPGA tends to be connected to the baseband DSP processor through the system bus. The 
FPGA is then used to implement additional baseband processing, hardware accelerators, ADC/DAC interfaces and RF 
control, to name a few. The DSP processor will need to communicate with these components through the system bus. 
Some of these components require high bandwidth and others requires low bandwidth from the system bus. There is a 
need for a design approach where that avoids slow interfaces, such as RF control interface, from hogging the system 
bus, which in turn will affect the overall performance of the entire system. This paper presents a System Bus-SPI 
bridge design approach to mitigate the interfacing issues in wireless system prototyping, especially when the 
supporting hardware, like RF module, is predefined. The proposed design enables the DSP Processor to access the 
System Bus concurrently while the SPI programming is in progress. Verilog hardware description language is used to 
design the System bus –SPI Bridge and Modelsim is used to verify the functionality of the design. The proposed 
design was implemented on an Altera STRATIX II FPGA. 
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1   Introduction
The rapid growth in demand for high data bandwidth 
stimulates the evolution of wireless technologies.  This 
eventually pushes competing industries to rapidly 
develop high data rate and efficient wireless systems. As 
a result, rapid prototyping is becoming a vital part of the 
product development process [1] [2]. Prototyping is 
necessary not only to verify the developed algorithms 
but also to check the efficiency of the newly developed 
wireless radio [3].
Typical radio implementation consists of RF front end, 
baseband processing (or, PHY Layer), and MAC layer 
processing. In general, MAC layer processing is done by 
a general purpose processor (GPP). The PHY layer 
processing is performed by a digital signal processor 
(DSP), a Field Programmable Gate Array (FPGA), or a 
combination of both [4] [5] [6]. 
One common problem in prototyping the radio is in 
interfacing the baseband module with the RF frontend. 
The final SoC design tends to have taken this interfacing 
problem into consideration. Sometimes it is difficult, 
however, to get development board that matches the 
architecture used by the SoC architecture exactly. As 
such, the interfacing problem still remains during the 
prototyping of the radio. It gets worse when the system 
bus is shared between a high data rate low latency access 
and slow transfers like SPI.

The RF frontend interface is based on the standard 4-
wire SPI protocol [7][8][9] .In this paper we propose a 
bridge design to interface SPI ports to the RF frontend 
with the baseband processor through a shared system 
bus. This design has been verified on a prototyping 
platform (SPTWIMAXCC1E Multi-Standard Baseband 
AMC Channel Card) from Freescale Semiconductor 
[10]. 
This paper initially talks about the hardware prototyping 
platform. This is then followed by a brief description of 
the design to be implemented on the said hardware and 
the interfacing issues. To address these issues, the details 
of the design and simulation results of the System bus 
SPI Bridge and its implementation is explained towards 
the end.

2   Prototype Platform
The SPTWIMAXCC1E multi-standard baseband 
advanced mezzanine card (AMC) channel card is a 
system development platform for 4G wireless systems 
such as worldwide interoperability for microwave access 
(WiMAX) and wideband code division multiple access 
(WCDMA) markets. It is designed for use as a channel 
card module for a base station system solution or as a 
standalone platform for Pico-base station
implementation. The platform is designed around the 
Freescale MPC8555E Power QUICC™ III processor,
running at 833MHz, the StarCore MSC8126 multi-core 
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DSPs, running at 500MHz, and the Altera STARTIX II 
FPGA as shown in Fig.1. Generally, the MPC8555E is 
used for MAC processing while the MSC8126 DSP 
processors are used for PHY processing. The FPGA, 
which is used to interface with the RF frontend, ADC 
and DAC, is connected to both DSP processors on two 
separate system buses.
For a typical downlink processing, the received signal 
from the RF frontend sampled by ADC is passed to the 
DSP through the FPGA for PHY processing. This FPGA 
also serves as a hardware accelerator for the DSP to 
perform certain PHY functions as well. After the PHY 
processing is complete, the data is then passed to the 
MPC8555E for MAC layer processing and then is sent 
out through Ethernet port for user applications running 
at the host system. 
2.1 MAC Processor (MPC8555E)
While the MPC8555E has many features, for example, 
features that interface with the AMC connectors, we will 
only describe features that are pertinent to the design 
described in this paper. An RJ45 port is available for 1 
Gigabit Ethernet operation. It is used to pass packets 
from the MAC layer processing to a host computer for 
further treatment. The MPC8555E is connected to the 
two MSC8126 DSP processors and the FPGA through a 
32-bit DSI (Direct Slave Interface) bus. 
2.2 Baseband Processor (MSC8126)
The StarCore DSP subsystem consists of two MSC8126 
DSPs running at 500 MHz to perform the symbol rate 
portion of the PHY layer processing.

The 64-bit system bus of each MSC8126 is connected to 
the FPGA which runs based on a 166MHz reference 
clock . Each DSP has 100 BaseT port connected to RJ45 
or directly to the MPC8555E. DSI bus is accessible from 
MPC8555E local bus. 
2.3 FPGA (Altera Startix II)
This FPGA is EP2S180F1508C3N (Stratix II Altera 
FPGA), which is used to time consuming processing at
the PHY layer and other interfacing needs. It has 180K
equivalent logic elements and 9Mbit on-chip memory 
and 450 MHz internal clock [11]. The FPGA is 
connected to each MSC8126 through a separate system 
bus and to the MPC8555E through the DSI bus. It also 
connects to RF module through an ADC interface. In 
addition, the FPGA also has a direct access to 
512Mbytes of DDR2 memory for data storage.
2.4 RF frontend
A custom RF frontend board was designed for this 
prototyping. It has two 12-bit DACs to generate the 
baseband Analog signal from the digital samples 
received from DSP. The generated analog signal was up-
converted using a zero IF RF transceiver chip for 
transmission. The received signal by the same 
transceiver chip was down-converted to baseband. This 
signal digitized by two 12 bit ADC in I/Q form. These 
I/Q samples are then forwarded to the DSP for baseband 
processing through the FPGA.

3   System Architecture
The targeted application was a prototype of a wireless 
broadband radio on the above platform. A portion of the 

Fig.1 Freescale SPTWIMAXCC1E Platform
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architecture of the system is shown in Fig.2 where the 
Receiver (RX) path of the radio has been depicted. The 
system consists of IQ sample collection from A/D 
convertor and the forwarding of the samples to the DSP 
without significant latency for further processing.
A portion of the PHY processing is done by FPGA. A 
RF transceiver module has been used for up/down 
conversion.
The RF module down converts the received signal in 
analog IQ form. Two A/D converters (one each for I and 
Q) digitize them and send them to the FPGA buffer for 
temporary storage. Subsequently, baseband processor 
(DSP) reads the stored IQ samples through System Bus 
Interface from FPGA.
3.1 Baseband Processing
The baseband processing algorithms are implemented on 
a MSC8126 DSP.  The 64-bit System Bus, running at 
166 MHz, is used to transfer I/Q samples to and from the 
FPGA. In addition, command and control signal for the 
RF frontend are also conveyed to the FPGA through the 
System Bus.

3.2 FPGA Interface
The Altera Stratix II FPGA is used for system 
interfacing and for some lower physical layer 
processing. The System Bus Interface, as shown in 
Fig.2, is a memory map decoder which enables the DSP 
baseband processor to read or write into the selected 
device or memory [12].  The FPGA also has a FIFO to 
store IQ samples temporarily before they get transferred 
to the DSP. This will allow for better system bus 
utilization.
3.3 System Bus Interface
The 166MHz system bus width can be up to 64-bit wide. 
However, depending on requirement on the bandwidth, 
the data bus width can be smaller. The system bus 
communication between MSC8126 and the FPGA is 
supported by either a User-Programmable Machine 
(UPM) or a General-Purpose Chip-Select Machine 
(GPCM) controller [13]. Although UPM allows for 
arbitrary waveform patterns to be defined, for example, 
to devices supporting burst access, GPCM was chosen in 

Fig.2 RX Path for the implemented radio (Partial.) 
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our implementation because it is simpler and it meets 
our bandwidth needs. In addition, a 32-bit data bus 
width was also selected.
GPCM interface of MSC8126 allows for a flexible and 
glueless interface between the MSC8126 and its 
peripherals. As shown in Fig.3, GPCM signals includes 
/CS (chip select), /PWE (write enables for write cycles), 
and /POE (read enables for read cycles). The GPCM 
contains two basic configuration register groups namely 
BRx, ORx. The entry in the BRx register selects the 
GPCM and the ORx defines the attributes for the 
memory cycles. 
Fig.3 also shows the basic interface connection between 
MSC8126 and FPGA. Here /CS directly connects to /CE 
of the memory bank within FPGA. /PWE signals 
connect to the respective Write enable signals in the 
FPGA. In this design a two cycle read and write 
operation is performed by DSP to access the FPGA.

Fig.3 System bus interface between DSP and FPGA 
3.4 RF Module
This RF module consists of a Zero-I/F transceiver chip. 
It requires 32 internal registers to be configured by a 4-
wire SPI interface. These 4 wires are SCLK, CSB, DIN, 
and DOUT. SCLK is the SPI clock. CSB is active-low 
chip select signal, which needs to be low for SPI read or 
write operation. DIN is the serial input data and 

DOUT is the serial output data. For a typical write 
operation, SPI clock signal should be given to the SCLK 
input. Subsequently, the CSB signal needs to pull down 
to zero. The data to be written through SPI should be 
transferred serially on the DIN line with respect to the 
SCLK while SCB is asserted low. 
The configuration registers are responsible for changing 
the operating frequency, gain and other RF parameters. 
One of the major parameters is the LNA gain register 
which needs to be updated through AGC loop to 
maintain the signal level within a valid range. These 
register requires frequent updating based on the values 
calculated by the DSP.
As shown in Fig.1. DSP is not directly connected to the 
RF module. The only option is for the DSP to access 
these RF registers is over the System Bus through the 
FPGA. Since the System Bus is also shared with high 
bandwidth I/Q sample transfer, as much as possible, the 
slow SPI transfer should not interfere with this crucial 
transfer. Hence, a System Bus-SPI bridge module has 
been developed to address this interface issue. This
module enables the System bus to operate concurrently 
while the slow SPI programming under progress.

4 System Bus- SPI Bridge
A System bus-SPI bridge module has been designed 
using Verilog HDL, and the functionality verified using 
Modelsim-Altera. This is followed by the 
implementation using Quartus II. The design 
performance is then verified using on-chip debugger 
SIGNALTAP from Altera as well as real time downlink 
processing.
4.1 Design
The System Bus-SPI Bridge consists of three FIFOs and 
two registers and a FSM. This module was developed 
using Verilog HDL. It gives DSP access to 5 memory 
locations, namely; rf_config_wr (16-bit FIFO into which

Fig.5 Read SPI.

Fig.4 Write SPI.
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                                      Fig.6. Flow chart for the Controller FSM.
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address (6bits), parameter (10bits) to be written to the 
RF module through SPI),rf_start_spi (to start the SPI 
read/ write process), rf_config_readaddr_wr (6-bits 
address FIFO onto which DSP writes the desired address 
to read from RF module ), rf_config_read_addr_data 
(16-bit FIFO from which DSP reads the values of the 
registers requested by earlier by
rf_config_readaddr_wr), and finally Rf_status_SPI (2-
bit register to show the status of the current SPI 
operation).       
This bridge also connects to the RF module through the 
4 SPI wires, namely, SCLK, CSB, DIN, DOUT. The 
waveforms of a typical SPI read and write operation 
shown in Fig 4 and Fig 5, respectively. Register data is
shifted in MSB first and is framed by CSB. When CSB
is low, the SCLK is active, and input data is shifted with 
the rising edge of the SCLK. Output data is used for read 
access and is shifted out to the registers in the falling 
edges of the SCLK.
The System Bus-SPI Bridge contains 32-word deep, 16-
bit wide Write FIFO, to store the address (6 msbs) and 
configuration parameter (10 lsbs), which allow writing 
to up to 32 RF registers. In addition, the bridge has a 32-
word deep, 6-bit wide FIFO to store the addresses of the 
registers for read back. The read-back values are stored 
in a Read FIFO, which is identical to Write-FIFO. 
These read-back values are read by the DSP through 
system bus later.
A finite state machine (FSM) controller was designed to 
detect the DSP command and to control the SPI read and 
write operation. It also controls the data read and write 
to the corresponding FIFOs. Fig.6 depicts the flowchart 
of the FSM operations. The FSM detects the DSP 
command to initiate SPI operation, upon which it 
changes its state to “START”. At the next cycle, it 

checks for the empty status of the Read address FIFO 
and Write FIFO to distinguish between the read and 
write operation and changes the state accordingly. 
If the Write FIFO is not empty it changes the state to 
“WRITE SPI”. Similarly, if the Read Address FIFO is 
not empty the state changes to “READ_SPI”. For write 
operation, first it sets the SPI-Status register value to 
busy. It then reads one 16-bit value from the write FIFO 
into a register. Next the register is shifted 1 bit at a time 
to the DIN pin for the RF module in MSB first order. 
After completion of all the shift operations it again 
checks for the FIFO empty status. The operations are 
repeated if it is not empty. Otherwise, it changes the 
state to “DONE” by changing SPI-Status register value 
to “Write done”.
For read operation, first it sets the Status register value 
to busy. It then reads 6-bit address from the FIFO into a 
register and shifts the register to the DIN pin of the RF 
module. It then presents the tri-stated value for next 10 
clocks. The serial bits coming out of the DOUT pin of 
the RF module are stored in a 10 bit register. Finally this 
value is stored in the Read FIFO. This process continues 
repeatedly until the read address FIFO gets empty. Once 
the read address FIFO is empty, the state changes to 
DONE by changing SPI-Status register value to “Read 
done”
4.2 Simulation
The System bus operates at 166MHz and the SPI 
operates at 25MHz, which enables the DSP to use the 
system bus for other data transactions as well as the IQ 
sample transfers. To simulate the behavior of the 
developed bridge design a test model for the DSP had 
developed to excite the bridge design through system 
bus read and write. This model simulates the reading and 
writing of the actual DSP to the system bus and the 
bridge.

Fig.7 Top level simulation (SPI  writes 32 registers & DSP using System bus to access hardware accelerator)
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The functional simulation was performed in Modelsim-
Altera. Fig.7 shows DSP model initially writes 32 
register parameters to the write FIFO through the system 
bus at 166MHz. The DSP follows this with the 
rf_start_spi command write. The bridge receives the 
command “START SPI” and then checks the Read and 
Write FIFO status. Since the data is available in the 
Write FIFO, it starts the “SPI WRITE” operation. It 
continues the operation until the write FIFO is empty. 
Meanwhile, since the system bus is free during the SPI 
process, DSP schedules it to perform information
transaction between the Lower PHY modules at the
FPGA and the DSP at 166MHz.

It also shares it for the IQ transfer from the ADC. This 
improves the bus utilization significantly. A detailed 
view of the concurrent DSP write operation with the SPI 
write is shown in Fig.8. Fig.9 shows A Read SPI 
operation. Where DSP writes the address of the registers 
to be read to the rf_config_readaddr_wr FIFO and send 
the rf_start_spi command. The FSM controller detects 
this command and also detects the read address FIFO is 
not empty. Hence, it starts the READ SPI operation. 
Since the SPI operation is now independent of the 
System Bus, the bus is available for DSP to access the 
Hardware accelerator or to perform the IQ transfer.

Fig.8 Top level simulation (SPI write & system bus Concurrent operation) 

Fig.9 Top level simulation (SPI read & system bus Concurrent operation) 
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5 FPGA Implementation
The design was targeted to Stratix-II FPGA 

(EP2S180F1508C3) on the SPTWIMXCC1E platform. 
Quartus-II8.0 from ALTERA [14] was used for 
synthesis and implementation/fitting. 
The real time performance of the design was verified by 
an on-chip debugging tool called “SignalTapII” [15], 
from ALTERA. With this tool the internal logic status 
was monitored real time.
The resource utilization of the system bus SPI Bridge 
was very minimal (283ALUTs, 351 Registers and 1,216 
bits of Block Ram, as per Altera post fitting reports).  
Fig.9 shows a SignalTapII captured waveform, in which

DSP writes the RF settings to the FIFO through System 
bus. Then it initiates the SPI controller to start the SPI 
programming for the RF configuration. While the SPI 
programming is in operation, DSP uses the System bus 
for other data transactions between the PHY modules as 
the system bus is free. This is identical to the behavioral 
simulation results. Fig. 10 shows a SignalTapII captured 
SPI write waveform.
The design was successfully tested on the 
SPTWIMXCC1E platform and it was verified that the 
RF module could be configured at SCLK running at 
25MHz without any timing violations.Fig.11 shows the 
post-fitt view of the implemented design.

Fig.11 SPI Write 

Fig.12 Post-Fitt view of the implemented bridge design 
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6 Conclusion
This paper explains the design of the System BUS-SPI 
Bridge to allow the DSP processor to configure RF 
module registers through the 4-wire SPI protocol. The 
design takes into consideration of the fact that the 
System bus is shared with other high-bandwidth 
transfers like I/Q data transfers. The bridge was 
designed is such a way that multiple slow SPI transfer 
may occur concurrently with other high bandwidth 
transfers. In short, the bridge design allows for efficient 
bus utilization. The bridge was developed and 
implemented in an ALTERA Stratix-II FPGA to 
overcome difficulties in interfacing the System Bus to a 
SPI complaint RF module.
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