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Abstract: - In this paper, we consider the modelling of a Single Input Single Output (SISO) and Multi Input Multi 
Output (MIMO) non linear communication channels using two modelling techniques. The first titled Volterra model 
built using Volterra series and possesses several important properties that make them very useful for the modelling and 
analysis of non linear systems and the second named RKHS model developed on a particular Hilbert Space the kernel 
of which is reproducing. This space known as Reproducing Kernel Hilbert Space (RKHS) uses the statistical learning 
theory to provide RKHS model.The performances of both models in SISO case and in MIMO case are evaluated and 
the results were successful. 
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1   Introduction 
Till while ago Volterra models [1], [2] [9], [11], [13] still 
the most usual and popular way to describe non linear 
systems behaviour as it provides a model linear with 
respect to its parameters. Volterra model with finite 
memory are BIBO (Bounded Input Bounded Output) 
stable, they allow to model a large class of non linear 
systems. These models have been successfully applied to 
a wide variety of engineering problems such as 
modelling of non linear communication channels.  
In communication systems, Volterra models have been 
used for modelling communication channels exhibiting 
nonlinear behaviours [12] and [24] that is the case of 
those including amplifiers and optical fiber. Indeed, high 
power amplifiers, currently used in mobile radio and 
satellite communication channels, have to operate near 
their nonlinear region for maximizing the utilization of 
the available power. 
The last few years has registered the birth of a new 
modelling technique of non linear systems. This 
technique, developed on a particular Hilbert Space, 
known as Reproducing Kernel Hilbert Space (RKHS) 
uses the Statistical Learning Theory (SLT) to provide an 
RKHS model as a linear combination of the kernels 
forming this space. Contrary to Volterra model the 
model complexity is independent of the non linearity 
degree and the system memory. In [14] the SISO system 
modelling problem has been investigated and the MISO 
case has been processed in [15]. The MIMO case has 
been processed in [16].In this paper we focus on the 
modelling and identification of a non linear SISO and 
MIMO communication channel for this we use two 

modelling techniques such as: RKHS model and 
Volterra model in SISO case and in MIMO case. Section 
2 is devoted to the presentation of the modelling of 
MISO and MIMO process in RKHS space. In section 3 
we are interested to the presentation of the SISO, MISO 
and MIMO Volterra model. The modelling of a SISO 
non linear communication channel described by a 
Wiener-Hammerstein model and the modelling of a 
MIMO non linear communication channel is confined to 
section 4. 
 
 

2  Modelling of MISO and MIMO process 

in RKHS 
2.1   Reproducing Kernel Hilbert Space (RKHS) 
Let X be a given space and let H a Hilbert space of 
functions defined on X. This space is doted with the 
scalar product .,. H〈 〉 . Consider the 

function 2:K X → ℝ . K  is a reproducing kernel of the 
space H if and only if  

 
*  x X∀ ∈ , the function  xK  such as  

( ) ( )

:x

x

K X

t K t K x,t

→

=

ℝ

֏
                                                (1) 

                                                     

is a function of the space H. 
 

* ∀ x ∈ X   ;    ∀ f H∈        ( ), Hxf K f x〈 〉 =              (2)   
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 H is then a Reproducing Kernel Hilbert Space (RKHS) 
of kernel K . 

2.2 Statistical Learning Theory (SLT) 
The Statistical Learning Theory [21], [22] aims to 
develop a model of non linear system from a set of data 

( ) ( )( ) ( ) ( )( ){ }1 1, ,..., ,N N
D x y x y=  and to evaluate the error 

risks associated to the resulting model. 
We call learning the procedure which enables to select, 
from the set of observations D , the function 0f H∈  that 

describes  as close as possible the relation between any 

process input /output couple ( ) ( )( ),i i
x y even it doesn’t 

belong to D .To determine the optimal function, the SLT 
proposes to minimize the functional risk associated to 
the chosen function f H∈ . This risk ( )R f  is given by: 

 

( ) ( )( ) ( )
,

,  ,
X Y

R f V y f x P x y dxdy= ∫                           (3)                                                                  

 
Where ( ),P x y  is the probability associated to the 

input/output couple ( ),x y and ( )( ),V y f x  is a cost 

function which evaluates the error between the process 
output y and its estimation ( )f x . In practice ( ),P x y  is 

unknown and we minimise the empirical risk ( )empR f  

instead of ( )R f , with  

 

( ) ( ) ( )( )( )
1

1
 , 

N
i i

emp

i

R f V y f x
N =

= ∑                                       (4)                                        

 
However the minimisation of ( )empR f in the space H 

may lead to an over fitting of the given function so that 
its generalization to new data isn’t assured. To solve this 
problem Vapnik [22] proposes to adopt the (Structural 
Risk Minimisation: SRM) which can be settled by 
amending the empirical risk by a function evaluating the 
complexity of the given model. To do so we minimise 

instead of the empirical risk, the criterion ( )D f which 

contains a regularization term that depends on the norm 
of the function f  in the function space already chosen. 

 

( ) ( ) ( )( )( )
1

1 2
,

N
i i

H
i

D f V y f f
N

x λ

=

= +∑                          (5)                       

   

The parameter λ  allows to tune the compromise 
between the empirical risk minimization and the 
generalization ability. The minimization of criterion (5) 
on an arbitrary function space can be a hard task 
however this can be handled when this space is an 
RKHS.  
Based on the representer theorem [10] the optimal 

function optf  which minimizes ( )D f can be written as: 

 

 ( ) ( )( )
1

N
i

opt i

i

f x = a K x ,x
=

∑                                             (6)                                               

 
Where ,  1,...,ia i N=  are the model parameters. The 

norm of the function f is then  

( )( ) ( )( )

( ) ( )( )

2

1 1

1 1

. , .

       

N N
i i

i i HH
i i

N N
i j

i j

i j

f = a K x , a K x ,

a a K x ,x

= =

= =

〈 〉

=

∑ ∑

∑∑
                        (7) 

 
2.3 Learning machines 
The algorithms used to estimate the parameters ai in (6) 
are called learning machines such as support vector 
machines (SVM) and, regularization network (RN)  
 
 

2.3.1 Support vector machines 
Support Vector Machines (SVM) have been recently 
developed in the framework of statistical learning theory 
[6], [22], [23], and have been successfully applied to a 
number of applications, ranging from time series 
prediction to face recognition, to biological data 
processing for medical diagnosis. Their theoretical 
foundations and their experimental success encourage 
further research on their characteristics, as well as their 
further use. Support Vector Regression (SVR) belongs to 
the category of reproducing-kernel methods, just Kernel 
Principal Component Analysis KPCA [5], Partial Least 
Square PLS [17]. Based on the theory of Support Vector 
Machines, SVR is now a well established method for 
designing black-box models in engineering. The aim of 
SVR is to build a model : nf →ℝ ℝ  of the output of a 

process or system that depends on a set of factors.  

 

( ) ( )
1

N

i i

i

f x w x b
=

= Φ +∑                                                   (8) 

 

where ( ){ }
1,...,i ï N

x
=

Φ are the data in the features space, 

{ } 1,..,i i N
w

=
and b  are coefficients. They can be estimated 

by minimizing the regularized risk function 
 

( ) ( )( )
1

,
21

2

N

i i

i

C
R C V f w

N
y xε

=

= +∑                                 (9) 

 

where ( )( ),i iV fy xε is the so-called loss function 

measuring the approximate errors between expected 
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output iy  and the calculated output ( )if x . And C is a 

regularization constant determining the trade-off between 
the training error and the generalization performance. 

The second term, 
21

2
w is used a measurement as a of 

function flatness. 

Introduction of slack variables *,ξ ξ  leads (9) to the 

following constrained function. 
 

( ) ( )2* *

1

1
 , = 

2

N

i i

i

Minimize R w w Cξ ξ ξ
=

+ +∑          (10) 

s.t. 
 

( )

( ) *

    ,  
         

   ,    

i i i

i i i

y w x b

w x b y

ε ξ

ε ξ

 − 〈 Φ 〉 − ≤ +


〈 Φ 〉 + − ≤ +
                  (11) 

 
*, 0 ,  1,  ...,    i i i Nξ ξ ≥ =  

 
This formulation of the problem comes back to use ε -
insensitive loss function of the following shape: 
 
 

( )
( )

( ) ( )

0                       if  

   if >  

y f x
y f x

y f x y f xε

ε

ε ε

 − ≤
− = 

− − −
   (12) 

 
One can interpret this function as creating a tube of ray 
ε  (Fig.1)        

 
 
                                                                  

 
 
 
 
 
 
                                 

 
 
 
 

                       Fig. 1. 
 
Although non-linear function Φ is usually unknown all 
computations related to Φ can be reduced to the form 

( ) ( )'T
x xΦ Φ , which can be replaced with a so-called 

kernel function ( ) ( ) ( )' ',
T

K x x x x= Φ Φ  that satisfies 

Mercer’s condition [8]. Then, Eq. (8) becomes the 
explicit form. 
 

( ) ( ) ( )* *

1

, , ,
N

i i i i i

i

f x K x x bα α α α
=

= − +∑                           (13) 

 

In (13), Lagrange multipliers iα and *
iα satisfy the 

equality * 0i iα α× = , 0iα ≥ , * 0iα ≥ , 1,...,i N=  

Those vectors with 0iα ≠ are called support vectors, 

which contribute to the final solution. 
 
 
2.3.2 Regularization network 
The cost function is: 
 

( )( ) ( )( )
  2

,i i i iV y f x y f x= −                                          (14) 

  

And the the optimal function is given by (6), where the 

sequence { }ia are such as: 

 

,
1

 
N

i i j j

j

a yΨ
=

= ∑                                                                      (15) 

 

with ,i jΨ  the ,  thi j  component of the matrix N N×Ψ ∈ℝ  

 

( )
1

  G N IΨ λ
−

= +                                                        (16) 

 
And the matrix N NG ×∈ℝ  is such that: 
 

( )( ), . , 1,...,ij i jG K x x i j N= =                                      (17) 

                             
Or in matrix form: 

 

( ) ( )
-1

1A =  ,  ,...,   
T

NG N I Y A a aλ+ =                        (18)   

 

( )1,...,  
T

NY y y=  

 
Different types of kernels, such as: 
 

 :  ( , ')  (1  , ' ) pPolynomial K x x x x= + 〈 〉                       (19) 

 

'
 :  ( , ')  exp( )

x x
RBF K x x

p

−
= −                                  (20) 

 

'
 :  ( , ')  exp( )

x x
ERBF K x x

p

−
= −                           (21) 

 

 

0 
 × 

× × × × 

x 

*ξ
× 

 

× 

y
 

× 

+ε 

ε−  
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2.4 Modelling of a MISO and MIMO Process in 

RKHS space 
In the case of MISO model the output can be written as: 

 

1( )   ,  ..., ,    ( )py k u u k e kϕ  = +                                (22) 

 
Where ϕ is a non linear function, p is the input number 
and e(k) is an additive noise. The input vector can be 
defined as: 
 

( ) ( ) ( ) ( )
T

,..., 1 ,..., ,..., 1 1  1 1 pu k u M k u k u M kp px  + − + − =    (23) 

 
for  k  =  1, …, N  -  Mp  +  1  
 
Where N is the observation number and pM is the 

memory of the pth input. 
 

In the MIMO case the process output is a p -

dimensional vector, we consider the network of kernel 
functions illustrated by Figure 2.  

 

 
 
Fig.2. Network of kernels functions for 

the MIMO modelling 

The MIMO process is considered as a set of MISO 
processes modelled in RKHS space as above. To 
decrease the model complexity, all the MISO output are 
linear combinations of the same kernel components and 
with different parameters. 

The output of the thq MISO model is: 

 

  ( )( )
1

,  for  1, ...,
N

iq

q i

i

y a K x x q p
=

= =∑                          (24) 

 
  ( )   1, ...,T

q qy A H x q p= =                                          (25)                                            

 
Where: 

 

( ) ( ) ( )1 ,..., N

NH x H x H x=  ∈  ℝ                                (26)                         

 
With   
 

( ) ( )( ), , 1,...,  i

iH x K x x i N= =                                  (27)                

 
T

1 ,..., , 1, ...,q q

q NA a a q p = =                                       (28)                                  

 
The output vector pY is then given by: 

 
 

( )

( )

1 1 11
1 2 1

2 2 2
1 1 1

1 2

. . . ,
.

.. . .
.

.. . . . . . .
.

,. . .

N

p

p p p
NN

p

y
a a a K x x

a a a
Y

K x xa a a
y

 
    
    
    = =     
           

 

         (29)                 

 
Or from (26) and (28) 

 

( )

1

.

.

.

T

p

T

p

A

Y H x

A

 
 
 
 =
 
 
  
 

                                                          (30)                                                    

 
 

3 Volterra model 
Volterra models have several important properties that 
make them very useful for the modelling and analysis of 
non linear systems [2], [11], [18]. These models which 
are linear with respect to their parameters, the kernel 
coefficients, suffer from the huge increasing of the 
parameter number depending on non linearity hardness.  

 
 

3.1 SISO Volterra model 
The model output is written as: 

   

1

1
1 0 0 1

( ) ( , , ) ( )
i

i

i i n

i m m n

y k h m m u k m
∞ ∞ ∞

= = = =

  
= − 

  
∑ ∑ ∑ ∏⋯ ⋯      (31)                           

 
Where u and y are the input and the output of the process 
respectively and 1( , , )i ih m m⋯  is the ith Volterra kernel. 

For causal and stable system, the infinite sums in (31) 
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can be truncated to a finite one as: 
 

1

 - 1  - 1  - 1

0 1
  1    0    0    01 2

          (  -  )

( )         ...  (  ,...,  )  

i

j

j

P M M M

i i
i m m m i

u k m

y k h h m m

=

= = = =

×

= +

∏

∑ ∑ ∑ ∑ (32)                                                                      

 
Where P is the process non linearity degree, M is the 
memory and 0h is the statistical characteristic. 

The Volterra model can be seen as a natural extension of 
the linear system impulse response to non linear systems. 
Although it is linear with respect to its parameter such 
model suffers from the increasing of its parameter 
number and any attempt for its using in real time 
application may fail if a reduction operation doesn’t 
precede such attempt. The parameter number of the 
Volterra model given by (32) is: 

 

  1

1  
P

i

p
i

n M
=

= + ∑                                                                 (33)                                                                                                                                      

 
To reduce this number we use generally the triangular 
form of the Volterra model, given as: 

 

1 2 1 i-1

1 1 1

0 1 2
  1   0   m

  1

( ) ... ( ,  m ,  ...,  m )

         ( )

i

P M M M

i i

i m m m m

i

j

j

y k h h m

u k m

− − −

= = = =

=

= +

× −

∑ ∑ ∑ ∑

∏
     (34)                                                            

 
And the relevant parameter number of such model is: 

 

P

 = 1

( 1 )!
1

( 1)! !tri

i

M i
n

M i

− +
= +

−
∑                                                    (35)     

                                                                                                                                                                    
 

3.2 MISO Volterra model  

For multiple inputs [19], [20], the output of the Volterra 
model in its triangular form is: 

1 2

   1 1 1

 1  1

0 , ,  , 1
  1  1  1  0   

  1

( )   ( , , )  

            ( )

i

i i i

P n n M M

j j j i
i j j m m m

i

j e
e

e

y k h h m m

u k m

−

− −

= = = = =

=

= +

× −

∑ ∑ ∑ ∑ ∑

∏

…
… … …

(36)                                                              

 

Where [ ]1 2( ) ( )  ( )    ( ) T
nu k u k u k u k= ⋯  and y(k) are  

the process input vector and output respectively and 

1 2, ,  , 1( , , )
ij j j ih m m

…
…  is the Volterra kernel. P is the non 

linearity degree and M is the memory. The 
corresponding parameter number is: 

 
 

1

( -1 )!
1

( -1)! !

P
i

MISO

i

M i
n n

M i=

+
= +∑                                            (37)                                              

 
 

3.3 MIMO Volterra model 
The MIMO system can be considered as a set of Multi 
Input Single Output (MISO) sub systems. Thus the 
modelling of the MIMO System is equivalent to the 
modelling of its sub systems. Let a MIMO system with n 
inputs and S outputs, each subsystem output ys (k) can be 
developed on Volterra series as: 

 

( )
 1 2  

1   1  i-1

1 1
 

0 ,   ,  , 1
1    1   1  0  m

 
1

( ) ...  ... , ,

           ( )

i

i i

e

P n n M M
s s

s j j j i

i j j m m

i

j e

e

y k h h m m

u k m

− −

= = = = =

=

= +

× −

∑ ∑ ∑ ∑ ∑

∏

⋯
⋯

  (38)          

 

( )
1 2, ,..., 1,...,

i

s

j j j ih m m  is the  Volterra Kernel of ith order 

corresponding to the sub system the output  of which is 

( )sy k and 0
sh  is the statistical characteristic 

corresponding to ( )sy k . 
 

And the parameter number is: 
 
 

                                                                                     (39)                   
                                                                               

                                                                                                   
 

4 Application 
4.1 Modelling of a SISO non linear 

communication channel 
Some physical systems, like the communication channel 
representing the access to a wireless network via optic 
fiber can be modelled by simplified Volterra models 
such as Hammerstein and Wiener models [2]. In this 
paragraph we will be interested to the identification and 
the modelling of a Wiener- Hammerstein channel by 
Volterra model and RKHS model.  
 
The SISO communication channel is described by a 
Wiener-Hammerstein model [3] as presented in Figure 2.  
 
 

 
 
 
 
 

Fig.3:  Wiener-Hammerstein model 

  1

 ( 1 ) !
1  *  S

( 1) !  !

p
i

MIMO

i

M i
n n

M i=

 − +
= + 

− 
∑

l(.) C(.) g(.) 
x(k) v1(k) v2(k) 

 
y(k) 
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x(k), y(k), v1(k) and v2(k) are respectively the PAM-2 
input sequence, the channel output, the input and the 
output of the non linear filter C(.). The channel Wiener 
Hammerstein model is given by:  
 

1
  0

( ) ( ) ( )
lM

i

v k l i x k i
=

= −∑  ;  2 1
  1

( )  ( )
P

p

p

p

v k C v k
=

= ∑  ;  

 

2
  0

( ) ( ) ( ) ( )
gM

i

y k g i v k i v k
=

= − +∑  

 
The channel to be modelled and identified, is given in  
[4] with Ml = Mg = 2 and its non linearity degree is 
 P = 3 and its coefficients are: l(0) = 1 ;  l(1) = 0.3 ;  
l(2) = 0.1 ; C1 = 2 ;C2 = 0.8 ; C3 = 0.5 ;  g(0) = 1 ;  
g(1) = 0.5 ;and  g(2) = 0.2, v(k) is an additive noise. 
 
The NMSE between the output of the channel y(k) and 
the estimated output yɶ (k) is: 

 

2

k  1

2

k  1

( ( )  y( ))

  

( ( ))

m

m

N

N

y k k

NMSE

y k

=

=

−

=
∑

∑

ɶ

                                  (40)      

 
The additive noise evaluated by the Signal to Noise 
Ratio SNR for the output of the channel.  
 

2

k  0

2

k  0

( ( ) )

  

( ( ) )

m

m

N

N

y k y

SNR

v k v

=

=

−

=

−

∑

∑
                                             (41)                                                                                                                                                               

 
With Nm the observation number, y and v are the mean 

values of the channel output y(k) of and the noise value 
v(k) respectively.                                                                                                                                                                                    
  
 

• SISO Volterra model 

This non linear communication channel can be modelled 
by a Volterra model of non linearity degree P = 2 and a 
memory M = 3. The parameter number of the model is 
10. Identification of parameters is done with Recursive 
Least Square algorithm. In Figure 4 we plot the real 
output of the channel and Volterra output, we notice the 
high concordance between both outputs. 
 

0 10 20 30 40 50 60 70 80 90 100
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-2

-1
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7

 

 
 channel output

Volterra output

 
 

Fig.4: Validation of Volterra model P = 2 and M = 3 
 
 

• RKHS model 

This non linear communication channel can be also 
modelled by RKHS model with polynomial kernel. The 
number of observation in the learning phase is equal to 
50 and in the validation phase is 100. The total number 
of parameter to be identified is equal to 50. For the same 
input sequence we plot in Figure 5 in the validation 
phase the channel output and the RKHS output we note 
the high similarity between both outputs. 
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 channel output

RKHS output

 
 

Fig.5: Validation of RKHS model, polynomial kernel 
 
Table 1 summarizes results obtained for the two 
modelling techniques  
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Table 1: Performances of both models (without noise) 

 
Models Parameter 

number 
Computing 
Time(s) 

NMSE 
   (%) 

Parameter 
Of models 

    10   0.046 0.42 P = 2 
M = 3 

 
Volterra 
 Model 
 

    21    0.15 0.15 P = 2 
M = 5 

 
 
RKHS 
Model 
 

 
 
   50 

 
 
   0.09 

 
 
0.34 

 
Polynomial  
Kernel  
(p1 = 3) 
 
 

 
From Table 1 we can notice that the complexity of 
RKHS model is high because the parameter number is 
equal to the observation number. The complexity of 
Volterra model depends on the non linearity degree and 
the memory. We conclude that for Volterra model when 
the complexity of the model increase the NMSE 
decrease.  
 

• Noise effect : 

To raise the influence of an additive noise on the 
identification quality we draw in Table 2 the NMSE for 
different values of SNR.  

 

Table 2: Noise effect 

 

Volterra model RKHS model SNR 
          NMSE(%)       NMSE(%) 

      50            1.62        1.58 
      30            2.97        2.78 
      20            3.80        3.43 
      10            7.06        5.50 
       5            12.68        12.57 
 
We note that for a small value of SNR the NMSE 
become high for the two models. The NMSE for both 
models is comparable. 

 
 

4.2 Modelling of a MIMO non linear 

communication channel 
Consider a MIMO non linear communication channel 
characterised by the number of sources (users) and the 
number the received antenna. This channel can be 
modelled by a MIMO Volterra model given by: 

 

( )
 1 2  

1   1  -1

1 1
 

0 ,   ,  , 1
1    1   1  0  

 
1

( ) ...  ... , ,   

         ( ) ( )                                                 (42)

i

i i i

e

P n n M M
s s

s j j j i

i j j m m m

i

j e s

e

y k h h m m

u k m v k

− −

= = = = =

=

= +

× − +

∑ ∑ ∑ ∑ ∑

∏

⋯
⋯

   

 
 

Where ys (s = 1, …, S) is the signal received by the sth 
antenna at time instant k, P is the non linearity order of 
the channel and M is the channel memory. 
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⋯ are the kernel coefficients of the 

sth subchannel and vs(k) is the additive white Gaussian 
noise to the sth antenna, it is assumed that the noise 
components are zero mean. 

 

 
 

Fig.6: MIMO non linear channel 
 

Consider the non linear Multiple Input Multiple Output 
MIMO Volterra channel [7] described by: 
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Where { }1 1,  1u ∈ − and { }2 2,  2u ∈ −  are the channel 

inputs, y1 and y2 are its outputs and 1v and 2v are additive 

white noise. 
 

The NMSE between the output of the channel ys(k) and 
the estimated output syɶ (k) is given by: 
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The additive noise is evaluated by the Signal to Noise 
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Ratio SNR(s) for the sth output of the channel.  
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With Nm the observation number, Sy and Sv are the mean 

values of the sth channel output ys(k) and the sth noise 
value vs(k) respectively. 
 

4.2.1 Modelling in RKHS space 

To build the RKHS model we use the polynomial Kernel 
(19). Where 2p = , the regularisation term is 

95 10  −λ = × . 
In the identification phase we use a training set of 250 
inputs/outputs and in the validation phase 120 new 
inputs/outputs are used to evaluate the performance of 
the resulting RKHS model. 
 
• First output of the channel 
Figure 7 plots the first output of the MIMO non linear 
channel we notice a concordance between the RKHS 
model output and the process output in the validation 
phase. The NMSE in validation is to 7.12% for an SNR 
= 10. 
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Fig.7: Validation of the first output 
 

• Second output of the channel 

In Figure 8 we plot the second output of the channel we 
notice a concordance between the RKHS model output 
and the process output in the learning phase and this 

concordance remains excellent in the validation phase. 
The NMSE validation is 5. 75% for an SNR = 10. 
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Fig.8: Validation of the second output 
 
 

4.2.2 MIMO Volterra model 
This MIMO non linear channel can be modelled by a 
MIMO Volterra model with non linearity degree P = 2 
and a memory M = 2. The total parameter number of the 
reduced model is 34. 

 
• First output of the channel 
We plot in Figure 9 the validation of the first output of 
the channel and the output of Volterra model; we note 
the concordance between both outputs.  
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Fig.9: Validation of the first output 
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The NMSE for the first subsystem is 5.89% for an  
SNR = 10. 
 
• Second output of the channel 
In Figure 10 we plot the second output of the channel 
and the output of the model we note the concordance 
between both outputs.  
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Fig. 10: Validation of the first output 
 
The NMSE for the first subsystem is 7.79% for SNR = 
10. 

Results are grouped in Table 3 

Table 3: Performances of both models 

 

NMSE  

Models 

 

Paramete
r number 

1st
 

output 
2nd 

output 

 

Model 
parameter 

 

MIMO 
Volterra 
model 

 

34 

 

5.89% 

 

7.79% 

Non 
linearity 
degree P = 2 

Memory 
M=2 

  

 

MIMO 
RKHS 
model 

 

250 

 

7,21% 

 

5,77% 

- Polynomial 
Kernel (p = 
2) 

- Regularisa-
tion term 

95 10  −λ = ×  

 

From Table 3 we conclude that the NMSE for both 
models is comparable but the complexity of RKHS 
model is higher than Volterra model. 
We can conclude that this MIMO non linear 
communication channel can be modelled by a MIMO 
Volterra model, the complexity of this model depends on 
the non linearity degree and the memory. 
 
This channel can be also modelled by a MIMO RKHS 
model, this model is characterized by a high number of 
parameter to be identified and this number depends only 
on the observation number. 
 
The RKHS modelling proud of its independence of the 
degree of non linearity and the memory of the model 
which constraint the models developed on Volterra 
series and cause the exponential increasing of their 
parameter number. Contrarily the parameter number 
depends only on the observation number and may be 
very smaller compared to that engaged in Volterra series 
models especially for higher nonlinear systems.  
 
 

5 Conclusion 
This paper has dealt with the study of two non linear 
SISO and MIMO system modelling techniques the 
Volterra model and the RKHS model. The complexity of 
Volterra model depends on degree of non linearity and 
on the memory of the system and for RKHS model the 
complexity depends only on the number of observations. 
These models have been tested for modelling a SISO 
non linear numerical communication channel described 
by a Wiener-Hammerstein model  and a two input two 
output non linear communication channel and results are 
satisfactory. Simulations are carried out to evaluate the 
models performances and the influence of an additive 
noise on these performances. 
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