
Timing-Driven X-Architecture Routing Tree Construction
Among Rectangular and Non-Rectangular Obstacles

Abstract—In this paper, we formulate a new X-architecture routing problem in presence of
non-rectangular obstacles, and propose an X-architecture timing-driven routing algorithm to minimize
the maximum source-to-sink delay and the total wirelength simultaneously. First, a spanning graph is
constructed by the terminals and the corners of the obstacles. A minimal spanning tree is then
produced by performing searching algorithm to the spanning graph. The feasible X-architecture is
constructed by transforming all slant edges of the minimal spanning tree. For the initial X-architecture
routing tree, the delay of source-to-terminal is estimated by the modified Elmore delay model.
According to the user defined delay threshold, an efficient rerouting algorithm is used to fix the timing
violated nets. The critical terminals iteratively are rerouted by splitting two sub-trees and merging into
one tree. Compared to the routing result without rerouting, the maximum source-to-sink delay is
improved by 49.1% and only 2.5% of additional total wirlength is increased.

Key-Words: Timing-driven, Non-rectangular obstacle, A-shaped pattern routing, Routing, X-architecture.

1 Introduction
Routing plays a very important role in physical
design such as the synthesis [14], placement [3] and
routing [9] stages, since it is a very complex step in
nanometer IC. Traditional routers are designed for
the Manhattan-based architecture (M-based for
short). Modern routers present various challenges,
including the novel X-based architecture (X-based
for short), the obstacles in SOC design and the
serious timing issues.

Construction for Steiner minimal tree is proved
to be NP-hard, and many heuristic algorithms are
developed to reduce the wirelength for
X-architecture [17]. Teig [18] implemented a
Toshiba microprocessor by using the octagonal
technique, reducing the total wirelength, via count
and die size, by 20%, 40% and 11%, respectively.
Coulston [2] presented a two-step algorithm that
generates all possible full components and merges
them into an optimal tree. Kahng et al. [10]
presented the wirelength-driven heuristic algorithm
that adopts the batched-based triple contraction with
complexity O(mlg2m). Chiang et al. [1] presented
the octilinear Steiner tree by using the
edge-conversion and Steiner-sliding technique. In
contrast to indirect transformation, some
graph-based methods have been presented to build
routing trees directly [5][6][16][20]. But, some
cannot handle the obstacles and timing issues.

Many IPs, macros and routed paths are involved
in SOC design. Modern routers must handle
obstacles in routing. Many algorithms have
presented spanning- graph based methods to build
routing trees with rectangular obstacles [12][16][19].

Feng et al. [5] presented a three-step method to
construct an obstacle-avoiding routing tree that
minimizes the total wirelength under the
λ-Geometry plane with the non-rectangular
obstacles. Some algorithms cannot deal with
non-rectangular obstacles, and some algorithms do
not consider the timing issues.

Many algorithms that consider timing issues
have been presented for nanometer VLSI design.
Some algorithms attempt to reduce detours made
during routing. These detours result in the large
maximum source-to-terminal delays [8][11][15].
Some algorithms have been presented to adjust the
initial routing tree based on timing constraints [13].
Hu et al. [7] presented the concept of soft edge to
move the Steiner points, and Lin et al. [13] proposed
a recalling function to update the critical paths.
However, some algorithms cannot manage the
routing with obstacles. Some cannot construct the
timing-driven initial tree, and only reduce the delay
by passively adjusting the tree.

This study makes the following major
contributions. First, the rectangular and
non-rectangular obstacle-avoiding X-based Steiner
minimal tree problem is formulated and solved by a
new algorithm. To the best of our knowledge, no
existing literature discusses X-based timing-driven
trees with non-rectangular obstacles. Second, the
effective rerouting method, which splits violated
terminals and merges two subtrees, is proposed to
enhance the timing of the violated terminals.
Experimental results indicate that if the initial
routing tree is not optimal, then rerouting not only
minimizes the delay but also reduces the wirelength.

Shu-Ping Chang1, Hsin-Hsiung Huang2, Cheng-Chiang Lin3 and Tsai-Ming Hsieh3
1Dept.of CAD, Genesys Logic Company, Taipei Country, Taiwan, R.O.C.

2Dept. of Electronic Engineering, Lunghwa Univ. of Science and Technology, Taoyuan, Taiwan, R.O.C.
3Dept. of Information and Computer Engineering, Chung Yuan Christian University, Chung-Li, Taiwan, R.O.C.

Email: Patty.Chang@genesyslogic.com.tw; pp022@mail.lhu.edu.tw; matrix_lin2002@yahoo.com; hsieh@cycu.edu.tw

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS
Shu-Ping Chang, Hsin-Hsiung Huang,
Cheng-Chiang Lin, Tsai-Ming Hsieh

ISSN: 1109-2734 433 Issue 6, Volume 8, June 2009

 (a) (b)

Fig.1 Drawback of the traditional method. Fig. 2 Non-rectangular obstacle-avoiding routing.

Third, non-rectangular obstacles are handled by
superimposing a bounding rectangle for the
non-rectangular obstacles. The concept of virtual
nodes is presented to further reduce the wirelength.
An extension is shown to reveal that the proposed
method handle obstacles with any geometric shapes.

The remainder of this paper is organized as
follows. Section 2 describes the problem domain,
including the motivation and problem definition.
Section 3 presents the proposed algorithm.
Experimental results are shown in section 4. Finally,
conclusions are drawn in Section 5.

2 Preliminary
This section describes the motivation to study the
importance of non-rectangular obstacles. For the
X-based routing tree, the maximum source-to-target
delay is calculated and the delay threshold is defined
as the timing constraint for rerouting. Finally, the
rectangular obstacle-avoiding X-based Steiner
minimal tree (ROA-XSMT) and rectangular and
non-rectangular obstacle-avoiding X-based Steiner
minimal tree (NOA-XSMT) problems are
formulated.

2.1 Motivation
A routed path of an X-architecture for terminals and
obstacles becomes a non-rectangular obstacle for
the un-routed paths, as shown in Fig. 1(a). Hence, to
minimize the wirelength and delay, the modern
router must handle routing with non-rectangular
obstacles. No routers for X-architectures have yet
been reported in the literature. A router generally
treats a non-rectangular obstacle as a rectangular
obstacle. However, this approach does not produce
the optimal wirelength or delay, as indicated in Fig.
1(b). For the Fig. 1(a), the traditional router, which
treats a non-rectangular obstacle as a rectangular
obstacle, has the results in Fig. 1(b) but the total
wire length is long. However, the short total
wirelength in Fig. 2 is obtained by the modern
router which can handle routing with
non-rectangular obstacles. We observe that the
algorithms which can handle the routing with
non-rectangular are necessary. This observation
indicates that a router that can handle
non-rectangular obstacles minimizes the wirelength
and the maximum source-to-terminal delay.

2.2 Problem Definition
Due to the lack of timing constraints, the delay
threshold is given by max D r× , where maxD and r
represent the maximum source-to-terminal delay
and user-defined ratio (0 1r≤ ≤), respectively. A
larger (smaller) ratio denotes looser (tighter) timing
constraints. Clearly, more timing violations occur
when a tighter timing constraint is applied. Due
space limitations in this article, only the result of
r=0.7 is addressed herein. The critical nodes with
delays over the threshold are rerouted them to
further reduce the delay. Rerouting is further
discussed in Section 3.4. The total wirelength
(abbreviated as talL) is increased after performing
the rerouting algorithm.

This study formulates two problems, and
develops algorithms to solve them. The first
ROA-XSMT problem is defined as follows:

Given a set of obstacles and a set of terminals
with the source under the given delay threshold, the
objective of the paper is to construct the
timing-driven X-architecture routing tree that
minimizes the maxD among the rectangular obstacles.

As well as rectangular obstacles, circuits also
contain some non-rectangular obstacles. The
differences between these types of obstacles are
discussed in Sub-section 3.2. The second
NOA-XSMT problem is defined as follows:

Given a set of rectangular and non-rectangular
obstacles, and a set of terminals with the source
under the user defined delay threshold, the objective
of the paper is to minimize the maxD among all
obstacles.

3 Timing-Driven X-based Routing
 Tree with Obstacles
This section describes two algorithms for the
routing with obstacles. Algorithm1 in Sub-section
3.1 is directly applied for the rectangular obstacles
and Algorithm1 reroutes the initial tree to improve
the maxD . Algorithm2, which is applied to both
rectangular and non-rectangular obstacles, consists
of three steps, namely spanning graph construction
(Sub-section 3.2), transformation for X-based
routing tree (Sub-section 3.3) and rerouting all
violated terminals (Sub-section 3.4).

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS
Shu-Ping Chang, Hsin-Hsiung Huang,
Cheng-Chiang Lin, Tsai-Ming Hsieh

ISSN: 1109-2734 434 Issue 6, Volume 8, June 2009

S

S S S

S
S

t e r m i n a l o b s t a c l e v i o l i a t e d t e r m i n a l

(a) Original circuit (b) Spanning graph (c) Spanning tree

 (d) Violations (e) Remove an edge (f) Final Result

Fig. 3 An X-based tree with the rectangular obstacles.

3.1 Routing Tree with Rectangular Obstacles
The X-based routing tree is constructed using a
spanning graph without obstacles [17]. In contrast
with the work of Lin et al. [10], the proposed
algorithm can not handle the X-based routing. Our
proposed algorithm comprises three steps, which are
described as follows. First, a spanning graph is built
from the terminals and the obstacles. Second, the
slant edge of the minimal spanning tree in the
spanning graph is transformed into the X-based
feasible routing tree. Finally, the violated terminals
are rerouted if their delays are over the delay
threshold discussed in Sub-section 2.2.

The spanning graph (Fig. 3(b)) is built from the
terminal and obstacles (Fig. 3(a)), to yield the
spanning tree (Fig.3(c)) in the spanning graph. The
spanning tree is then transformed into the feasible
X-based routing tree (Fig. 3(d)). For the violated
terminals (marked as gray color) over delay
threshold, the original tree is split into two sub-trees
by removing one edge, as shown in Fig. 3(e).
Finally, the two sub-trees are merged, see Fig. 3(f).
The proposed algorithm is shown in Fig.4.

Algorithm1: Rectangular Obstacle-Avoiding X-based
Steiner Minimal Tree (ROA-XSMT)
Input: (1) A set of n pins and a source
 (2) A set of m rectangular obstacles
 (3) User-defined delay threshold
Output: A timing-driven X-based routing tree
begin

1 Spanning graph construction for obstacles;
2 Construct the feasible X-based routing tree;

2.1 Obtain the minimal spanning tree;
2.2 Transform the spanning tree into the

X-based routing tree;
3 Reroute the violated terminals;

3.1 Estimate the delay by applying the
modified Elmore delay model;

3.2 Split the routing tree by the delay threshold;
3.3 Merge two sub-trees into one tree by the

shortest feasible paths with obstacles;
3.4 Goto Step 3.2 and 3.3 iteratively until all

violated terminals are rerouted;
end.

Fig. 4 Algorithm1 for ROA-XSMT.

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS
Shu-Ping Chang, Hsin-Hsiung Huang,
Cheng-Chiang Lin, Tsai-Ming Hsieh

ISSN: 1109-2734 435 Issue 6, Volume 8, June 2009

. . .

virtual nodes corner point

routable region

virtual obstacle

f r a m e
(virtual obstacle)

o b s t a c l e sc o r n e r
p o i n t s

SS

S S

 (a) (b) (c)

Fig. 5 Terminals inside the virtual obstacles.

Algorithm1 can handle routing with rectangular
obstacles, but cannot handle non-rectangular
obstacles. To solve this limitation, a bounding
rectangle-based transformation is presented for
non-rectangular obstacles, and the routing tree is
then constructed by algorithm1. However,
algorithm1 cannot handle the case that some
terminals are inside the virtual obstacles. If some
terminals are located in the bounding rectangle as
shown in Fig. 5(a), a correct and good solution
might not be found, in Fig. 5(b). Our proposed
algorithm can find the result in Fig. 5(c). In next
sub-section, the bounding rectangle-based
transformation and A-shaped pattern routing, are
presented to build a spanning graph with both
rectangular and non-rectangular obstacles.

3.2 Spanning Graph Construction for

Rectangular and Non-rectangular Obstacles
For the NOA-XSMT problem, we can simplify
superimpose a square bounding rectangle for the
non-rectangular obstacle and then transform the
NOA-XSMT to the ROA-XSMT problem, and use
algorithm1 to solve it.

First, a virtual obstacle is produced for each
non-rectangular obstacle by superimposing a square
bounding rectangle for each non-rectangular
obstacle. This process is called bounding
rectangle-based transformation.

Second, the spanning graph is built based on the
terminals and boundaries of obstacles. Terminals are
classified as being inside or outside the virtual
obstacles. The spanning graph is first built for
terminals outside the virtual obstacles. Terminals
inside the virtual obstacles are then added.

Third, A-shaped pattern routing is adopted to
reduce the talL . For the terminals inside the virtual
square obstacles, some extra edges are added into
the spanning graph of the previous paragraph.
A-shaped pattern routing method that produces two
virtual nodes on the boundary of a virtual obstacle
can guarantee to generate one routing result. In
Fig.6(a), the spanning graph (Fig.6(b)) is generated

by applying the two-virtual-node A-shaped routing,
yielding the routing result in Fig. 6(c). Fig. 6(d) and
(e) respectively show the spanning graph and
routing result generated using three-virtual-node
A-shaped routing. Fig. 6(f) illustrates the
n-virtual-node A-shaped pattern routing. A
comparison between Fig. 6(c) and (e) indicate that
two-virtual-node A-shaped routing leads to efficient
spanning graph construction, since a shorter routing
path cannot be found with three (or n) virtual nodes.
Similarly, A-shaped pattern routing can handle n
terminals inside a virtual obstacle.

(a) (b) (c)

 (d) (e) (f)

Fig. 6 Possible virtual nodes.

 (a) Virtual obstacle (b) Spanning graph

(c) Inside virtual obstacle (d) A-shaped pattern routing
Fig. 7 Spanning graph construction.

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS
Shu-Ping Chang, Hsin-Hsiung Huang,
Cheng-Chiang Lin, Tsai-Ming Hsieh

ISSN: 1109-2734 436 Issue 6, Volume 8, June 2009

To summarize, this sub-section explains
spanning graph construction using a simple example.
In Fig.7, the method first builds the spanning graph
for terminals, obstacle and the virtual obstacles (Fig.
7(a) and (b)), and then builds the spanning graph for
the terminals inside the virtual square obstacles (Fig.
7(c)). To further minimize talL , A-shaped pattern
routing is then adopted to generate three additional
edges to reduce the total wirelength, as shown in Fig.
7(d).

In Sub-section 3.2, the spanning graph
construction is only addressed to triangles. Other
polygons, such as hexagons and octagons are
handled by the bounding rectangle-based
transformation, which superimposes the smallest
feasible bounding rectangle to the obstacles, and
builds the spanning graph for the corner points and
terminals inside the virtual obstacle. A bounding
rectangle is superimposed for the triangle to produce
the spanning graph, as shown in Fig. 8(a). Fig. 8(b)
and 8(c) respectively show the handling of
hexagonal and octagonal obstacles.

term inalcorner points

obstaclesbounding rectangle

(a) (b) (c)
Fig. 8. Bounding rectangle-based transformation.

S S

 (a) The spanning tree (b) X-based routing tree
Fig. 9 Transformation of the minimal spanning tree.

In this step, a spanning graph is simplified by
bounding rectangle-based transformation and
A-shaped pattern routing. The next step attempts to
obtain the X-based routing tree with the shortest
wirelength.

3.3 Construct the Feasible X-Based Routing
Tree

In this step, the slant edges of the minimal spanning
tree are transformed in order to obtain a feasible
X-based routing tree. Each feasible edge is formed
by combining the horizontal, vertical and ±45°
edges outside the obstacles. Fig. 9(a) shows the
minimal spanning tree in the spanning graph of
Fig.7(c). Post-processing is performed on the
X-based routing tree to further reduce the talL . For
each feasible X-based edge, the wirelength is longer
if the common edges are not considered. The
common edges are then merged after the neighbor
edges are checked. Therefore, the post-processing
successfully minimizes the wirelnegth. Each slant
edge of Fig. 9(a) is transformed into a set of the
feasible edges, namely the horizontal, vertical and
±45° edges. Finally, the X-based routing tree (Fig.
9(b)) is constructed by transforming the minimal
spanning tree.

The delay of each terminal is calculated by the
X-based delay model. In next step, we will explain
rerouting for the violated terminals by delay
threshold.

3.4 Reroute for All Violated Terminals
To minimize maxD , this step reroutes the terminals
with delays over the given delay threshold for the
initial X-based routing tree in Sub-section 2.2. In
Fig. 10, the delays of all terminals are estimated by
using the delay model [4]. Due the lack of delay
constraints, the delay threshold (r=0.7) is taken as
the timing constraint. If we apply the large delay
threshold, there are few terminals are rerouted.
Hence, the maximum source-to-target delay is not
very good.

To summarize, an example in Fig. 10 is used to
show the whole algorithm. In Fig. 10 (a), (b) and (c),
the initial routing tree is constructed by the stages of
the spanning graph, the minimal spanning tree and
the X-architecture routing tree. For the initial
routing tree, the violated terminals are identified
from the delay threshold, and labeled as the gray
points (Fig. 10(d)). At the first rerouting iteration,
the delays of the terminals marked in gray are over
delay threshold (maxr D×). These terminals are
labeled as violated terminals, and a proper edge is
removed to produce two sub-trees, see Fig.10(e).

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS
Shu-Ping Chang, Hsin-Hsiung Huang,
Cheng-Chiang Lin, Tsai-Ming Hsieh

ISSN: 1109-2734 437 Issue 6, Volume 8, June 2009

v i o l a t e d t e r m i n a l
 t e r m i n a l

o b s t a c l e
n o n - r e t a n g u l a r o b s t a c l e

SS

SS
S

SS S

(a) The spanning graph (b) The minimal spanning tree (c) X-architecture routing tree

(d) The violated terminals (e) Two sub-trees (f) A routing tree

(g) Two sub-trees (h) Final result

Fig. 10 An X-based tree with the non-rectangular obstacles.

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS
Shu-Ping Chang, Hsin-Hsiung Huang,
Cheng-Chiang Lin, Tsai-Ming Hsieh

ISSN: 1109-2734 438 Issue 6, Volume 8, June 2009

To minimize the maxD , two sub-trees are merged by
the selected edge, which connects the one sub-tree
to the node close to the source, as indicated in
Fig.10(f). A proper edge is removed to split the
routing tree into two sub-trees. Similarly, in the next
rerouting step, two sub-trees are produced by
removing a proper (see Fig. 10(g)) edge and
merging by an edge (see Fig. 10(h)). Hence, each
violated terminal of the initial X-based routing tree
is rerouted once.

In summary, the X-based routing tree is built by
performing the steps in Sub-sections 3.2~3.4. To
indicate the effect of the proposed methods, the

maxD before and after rerouting were compared. We
observe that the maxD of the original routing tree (Fig.
9(c)) was better than the maxD of the rerouted results
in Fig. 10(d). Obviously, the additional wirelength
was increased because the short routing paths are
updated to the long routing path. These findings
indicate that the improvement on the maxD is
significant, while the additional total wirelength is
small. Fig.11 shows the proposed algorithm for
solving the NOA-XSMT problem.

Algorithm2: Rectangular and Non-rectangular
Obstacle-Avoiding X-based Steiner Minimal Tree
(NOA-XSMT)
Input: (1) A set of n pins and a source
 (2) A set of m rectangular obstacles

 (3) A set of w non-rectangular obstacles
 (4) User-defined delay threshold
Output: A timing-driven X-based routing tree
begin

1 Spanning graph construction for
nonrectangular and rectangular obstacles;
1.1 Superimpose a bounding rectangle for the

non-rectangular obstacles;
1.2 Construct spanning graph for terminals,

rectangular and non-rectangular obstacles;
1.3 A-shaped pattern routing for terminals

inside the non-rectangular obstacles;
2 Construct the feasible X-based routing tree;

2.1 Obtain the minimal spanning tree;
2.2 Transform the spanning tree into the

X-based routing tree;
3 Reroute the violated terminals;

3.1 Estimate the delay by applying the
modified Elmore delay model;

3.2 Split the routing tree by the delay threshold;
3.3 Merge two sub-trees into one tree by the

shortest feasible paths with obstacles;
3.4 Goto Step 3.2 and 3.3 iteratively until all

violated terminals are rerouted;
end.

Fig. 11 Algorithm2 for NOA-XSMT.

4 Experimental Results
All experiments were implemented by the C++
language on Intel Core2 CPU 1.86GHz 1.87GHz
machine with 3GB memory. The objective of was to
construct the routing tree with the smallest maxD . The
X-based delay model was adopted to estimate the
delay for each terminal by the 0.18um technology
parameters. In Table 1, “Term”, “OB1” and “OB2”
denote the numbers of terminals, rectangular
obstacles and non-rectangular obstacles,
respectively. Because of the lack of source
information in these benchmarks, Huang’s approach
[17] was adopted to test the stability under three
sources. Due to limited space, Table 2 only shows
the results of source located at the center of gravity.
The user-defined delay threshold is the delay value
above which rerouting is performed.

First, the talL and maxD produced by the two
proposed methods were compared. Because there is
no algorithm available for NOA-XSMT problem,
only the two proposed algorithms without and with
rerouting were compared. Because of paper limit,
Table 2 only shows the result of source type I. In fact,
rerouting stably improved the maxD under three
source types. In Table 2, the second and third
column respectively represent the methods without
the rerouting (steps 1~2 in Fig.11 and with the
rerouting (steps 1~3 in Fig.11). “ talL ” and “ maxD ”
denote the total wirelength and the maximum
source-to-terminal delay, respectively. The rerouting
improved the maxD by 49.1% with only 2.5%
additional talL . Moreover, the rerouting reduced the

talL of T6, T8 and T9. These results indicate that the
proposed rerouting technique can effectively
minimize both the talL and maxD , even when the
initial X-based routing tree is not the optimal
solution. For the small benchmark, Fig.12 shows the
rerouting effect on delay, indicating that the detour
in routing (the red line) is reduced. For the larger
benchmark, Fig.13 shows the rerouting significantly
improves the detour in routing (the red line). If the
rerouting does not improve the maxD of the initial
solution, the initial routing tree is retained (T10 and
T12). In other words, rerouting guarantees a feasible
solution under all cases.

Second, the CPU runtimes of two proposed
algorithms were compared. We observe that the
proposed algorithms are quite efficient, since the
additional CPU runtime for performing the rerouting
is about 27.35 minutes (2519-878 second) for the
largest testcase. In Sub-section 3.4, the delay
threshold is given by the formula maxD r× , where

maxD and r denote the maximum source-to-terminal
delay and ratio, respectively. Due to limited space,
only the results of r=0.7 are shown. Actually, the
proposed method is stably improved the maxD under
any given delay threshold. Furthermore,

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS
Shu-Ping Chang, Hsin-Hsiung Huang,
Cheng-Chiang Lin, Tsai-Ming Hsieh

ISSN: 1109-2734 439 Issue 6, Volume 8, June 2009

5 Conclusions
This study formulates a novel NOA-XSMT problem
with the rectangular ad non-rectangular obstacles.
Additionally, this work presents an effective
timing-driven algorithm that minimizes the maxD to
construct an X-based routing tree with
non-rectangular obstacles. Experimental results
indicate that the maxD is improved by 49.1% with
2.5% additional talL .

References

[1] C. Chiang, Q. Su, and C.S. Chiang, “Wirelength
Reduction by Using Diagonal Wire,” in Proc. of
ACM Great Lakes Symposium on VLSI,
pp.104-107, 2003.

[2] C.S. Coulston, “Constructing Exact Octagonal
Steiner Minimal Trees,” in Proc. of ACM Great
Lakes Symposium on VLSI, pp.1-6, 2003.

[3] C.M. Ko, Y.J. Huang, S.L. Fu, M.H. Guo,
“MCM Placement Based on Multi-objective
Optimization Approach,” in WSEAS
Transactions on Circuits and Systems, 2006,
pp.753-758.

[4] W. C. Elmore, “The Transient Response of
Damped Linear Networks with Particular Regard
to Wideband Amplifiers,” Journal of Applied
Physics, Vol. 19, pp.55-63, 1948.

[5] Z. Feng, Y. Hu, T. Jing, X. Hong, X. Hu and G.
Yan, “An O(n log n) Algorithm for
Obstacle-Avoiding Routing Tree Construction in
the λ-Geometry Plane,” in Proc. of ACM/IEEE
International Symposium on Physical Design, pp.
48-55, 2005.

[6] T.Y. Ho, C.F. Chang, Y.W. Chang, and S.J. Chen,
“Multilevel Full-Chip Routing for the X-based
Architecture,” in Proc. of ACM/IEEE Design
Automation Conference, pp. 597-602, 2005.

[7] J. Hu and S. Sapatnekar, “A Timing- Constrained
Algorithm for Simultaneous Global Routing of
Multiple Nets,” in Proc. of IEEE/ACM
International Conference on Computer-Aided
Design, pp. 99-103, 2000.

[8] H.H. Huang, T.F. Chiu, Y.C. Lin and T.M Hsieh,
“Large-Scale Timing-Driven Rectilinear Steiner
Tree Construction in Presence of Obstacles,” in
Proc. of IEEE International Midwest Symposium
on Circuits and Systems, 2007.

[9] H.H. Huang, H.Y. Huang, D.J. Huang and T.M.
Hsieh, “An Obstacle-Avoiding Efficient
Rectilinear Steiner Tree Construction,” in
WSEAS Transactions on Circuits and Systems,
2006, pp.1775-1782.

[10] A.B. Kahng, I.I. Mandoiu and A.Z. Zelikovsky,
“Highly Scalable Algorithm for Rectilinear and
Octilinear Steiner Trees,” in Proc. of ACM/IEEE
Asia South Pacific Design Automation
Conference, pp.827-833, 2003.

[11] S. Lee and Martin D.F. Wong, “Timing-Driven
Routing for FPGAs Based on Lagrangian
Relaxation,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits
and Systems, pp. 506-511, 2003.

[12] C.W. Lin, S.Y. Chen, C.F. Li, Y.W. Chang, and
C.L. Yang, “Efficient Obstacle-Avoiding
Rectilinear Steiner Tree Construction,” in Proc.
of ACM International Symposium on Physical
Design, pp. 127-134, 2007.

[13] S.P. Lin and Y. W. Chang, “A Novel
Framework for Multilevel Routing Considering
Routability and Performance,” in Proc. of
IEEE/ACM International Conference on
Computer-Aided Design, pp. 44-50, 2002.

[14] Y.C. Lin, H.H. Huang, C.C. Lin and T.M.
Hsieh, “Optimal Assignment Approach for Low
Power under Dual Voltages,” in WSEAS
Transactions on Circuits and System,2008,
pp.728-737.

[15] M. Pan and C. Chu, “A Novel
Performance-Driven Topology Design
Algorithm,” in Proc. of ACM/IEEE Asia and
South Pacific Design Automation Conference, pp.
244-249, 2007.

[16] Z. Shen, C.N. Chu and Y.M. Li, “Efficient
Rectilinear Steiner Tree Construction with
Rectilinear Blockages,” in Proc. of IEEE
International Conference on Computer Design,
pp. 38-44, 2005.

[17] W.X. Shen, Yici Ca, Jiang Hu, X.L. Hong,
Bing Lu, “High Performance Clock Routing in
X-architecture” in Proc. of IEEE International
Symposium on Circuits and Systems, pp.
2081-2084, 2006.

[18] S. Teig, “The X Architecture: Not Your
Father’s Diagonal Wiring,” ACM International
Workshop on System-Level Interconnect
Prediction, pp. 33-37, 2002.

[19] P.C. Wu, J.R. Gao and T.C. Wang, “A Fast and
Stable Algorithm for Obstacle-Avoiding
Rectilinear Steiner Minimal Tree Construction,”
in Proc. of Asia and South Pacific Design
Automation Conference, pp. 262-267, 2007.

[20] Q. Zhu, H. Zhou, T. Jing ,X.L. Hong, and Y.
Yang, “Spanning Graph-Based Nonrectilinear
Steiner Tree Algorithms,” IEEE Transactions
on Computer-Aided Design of Integrated
Circuits and Systems, pp.1066-1075, 2005.

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS
Shu-Ping Chang, Hsin-Hsiung Huang,
Cheng-Chiang Lin, Tsai-Ming Hsieh

ISSN: 1109-2734 440 Issue 6, Volume 8, June 2009

Table 1 Benchmark circuits.

Table 2 Results of talL and maxD under the source type I.

 Term OB1 OB2
T1 12 5 4
T2 34 5 5
T3 56 5 5
T4 76 5 5
T5 106 5 5
T6 142 250 250
T7 248 250 250
T8 268 400 400
T9 282 500 500
T10 540 50 50
T11 1048 50 50
T12 1112 5000 5000

iT
(initial tree)

rT
(rerouted tree)

Comparison
(=(iT - rT)/ iT)

 maxD talL Time(s) maxD talL Time(s) maxD (%) talL (%)

T1 1.4 29319.7 <1 0.9 30100.3 <1 35.7 -2.7
T2 3.8 42151.9 <1 1.8 42967.5 <1 52.6 -1.9
T3 9.8 55210.7 <1 5.2 61389.6 <1 46.9 -11.2
T4 8.2 59208.2 <1 4.1 67554.8 <1 50 -14.1
T5 24.5 74593.5 <1 8.6 75924 <1 64.9 -1.8
T6 90.6 148212 2 20.3 148018 3 77.6 0.1
T7 89.9 179967 3 45 180588 4 49.9 -0.3
T8 153.8 194117 4 65.3 192414 12 57.5 0.9
T9 159.4 206586 7 35.7 205482 11 77.6 0.5
T10 57.1 181586 1 57.1 181586 3 0 0
T11 554.0 242841 2 129 242997 4 76.7 -0.1
T12 1058.1 1365180 878 1058.1 1365180 2519 0 0

Avg. - - - - - - 49.1 -2.5

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS
Shu-Ping Chang, Hsin-Hsiung Huang,
Cheng-Chiang Lin, Tsai-Ming Hsieh

ISSN: 1109-2734 441 Issue 6, Volume 8, June 2009

(a) (b)
Fig.12 Rerouting impact on maxD .(a) without and (b) with the rerouting (for small circuit T5).

(a) (b)

Fig.13 Rerouting impact on maxD .(a) without and (b) with the rerouting (for larger circuit T11).

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS
Shu-Ping Chang, Hsin-Hsiung Huang,
Cheng-Chiang Lin, Tsai-Ming Hsieh

ISSN: 1109-2734 442 Issue 6, Volume 8, June 2009

