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Abstract—In this paper, we formulate a new X-architecture routing problem in presence of 
non-rectangular obstacles, and propose an X-architecture timing-driven routing algorithm to minimize 
the maximum source-to-sink delay and the total wirelength simultaneously. First, a spanning graph is 
constructed by the terminals and the corners of the obstacles. A minimal spanning tree is then 
produced by performing searching algorithm to the spanning graph. The feasible X-architecture is 
constructed by transforming all slant edges of the minimal spanning tree. For the initial X-architecture 
routing tree, the delay of source-to-terminal is estimated by the modified Elmore delay model. 
According to the user defined delay threshold, an efficient rerouting algorithm is used to fix the timing 
violated nets. The critical terminals iteratively are rerouted by splitting two sub-trees and merging into 
one tree. Compared to the routing result without rerouting, the maximum source-to-sink delay is 
improved by 49.1% and only 2.5% of additional total wirlength is increased.

Key-Words: Timing-driven, Non-rectangular obstacle, A-shaped pattern routing, Routing, X-architecture.  

1  Introduction  
Routing plays a very important role in physical 
design such as the synthesis [14], placement [3] and 
routing [9] stages, since it is a very complex step in 
nanometer IC. Traditional routers are designed for 
the Manhattan-based architecture (M-based for 
short). Modern routers present various challenges, 
including the novel X-based architecture (X-based 
for short), the obstacles in SOC design and the 
serious timing issues. 

Construction for Steiner minimal tree is proved 
to be NP-hard, and many heuristic algorithms are 
developed to reduce the wirelength for 
X-architecture [17]. Teig [18] implemented a 
Toshiba microprocessor by using the octagonal 
technique, reducing the total wirelength, via count 
and die size, by 20%, 40% and 11%, respectively. 
Coulston [2] presented a two-step algorithm that 
generates all possible full components and merges 
them into an optimal tree. Kahng et al. [10] 
presented the wirelength-driven heuristic algorithm 
that adopts the batched-based triple contraction with 
complexity O(mlg2m). Chiang et al. [1] presented 
the octilinear Steiner tree by using the 
edge-conversion and Steiner-sliding technique. In 
contrast to indirect transformation, some 
graph-based methods have been presented to build 
routing trees directly [5][6][16][20]. But, some 
cannot handle the obstacles and timing issues. 

Many IPs, macros and routed paths are involved 
in SOC design. Modern routers must handle 
obstacles in routing. Many algorithms have 
presented spanning- graph based methods to build 
routing trees with rectangular obstacles [12][16][19]. 

Feng et al. [5] presented a three-step method to 
construct an obstacle-avoiding routing tree that 
minimizes the total wirelength under the 
λ-Geometry plane with the non-rectangular 
obstacles. Some algorithms cannot deal with 
non-rectangular obstacles, and some algorithms do 
not consider the timing issues.  

Many algorithms that consider timing issues 
have been presented for nanometer VLSI design. 
Some algorithms attempt to reduce detours made 
during routing. These detours result in the large 
maximum source-to-terminal delays [8][11][15]. 
Some algorithms have been presented to adjust the 
initial routing tree based on timing constraints [13]. 
Hu et al. [7] presented the concept of soft edge to 
move the Steiner points, and Lin et al. [13] proposed 
a recalling function to update the critical paths. 
However, some algorithms cannot manage the 
routing with obstacles. Some cannot construct the 
timing-driven initial tree, and only reduce the delay 
by passively adjusting the tree. 

This study makes the following major 
contributions. First, the rectangular and 
non-rectangular obstacle-avoiding X-based Steiner 
minimal tree problem is formulated and solved by a 
new algorithm. To the best of our knowledge, no 
existing literature discusses X-based timing-driven 
trees with non-rectangular obstacles. Second, the 
effective rerouting method, which splits violated 
terminals and merges two subtrees, is proposed to 
enhance the timing of the violated terminals. 
Experimental results indicate that if the initial 
routing tree is not optimal, then rerouting not only 
minimizes the delay but also reduces the wirelength.  

Shu-Ping Chang1, Hsin-Hsiung Huang2, Cheng-Chiang Lin3 and Tsai-Ming Hsieh3 
1Dept.of CAD, Genesys Logic Company, Taipei Country, Taiwan, R.O.C. 

2Dept. of Electronic Engineering, Lunghwa Univ. of Science and Technology, Taoyuan, Taiwan, R.O.C. 
3Dept. of Information and Computer Engineering, Chung Yuan Christian University, Chung-Li, Taiwan, R.O.C. 

Email: Patty.Chang@genesyslogic.com.tw; pp022@mail.lhu.edu.tw; matrix_lin2002@yahoo.com; hsieh@cycu.edu.tw 

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS
Shu-Ping Chang, Hsin-Hsiung Huang, 
Cheng-Chiang Lin, Tsai-Ming Hsieh

ISSN: 1109-2734 433 Issue 6, Volume 8, June 2009



        
       (a)               (b) 

Fig.1   Drawback of the traditional method.         Fig. 2  Non-rectangular obstacle-avoiding routing.       
   

Third, non-rectangular obstacles are handled by 
superimposing a bounding rectangle for the 
non-rectangular obstacles. The concept of virtual 
nodes is presented to further reduce the wirelength. 
An extension is shown to reveal that the proposed 
method handle obstacles with any geometric shapes. 

The remainder of this paper is organized as 
follows. Section 2 describes the problem domain, 
including the motivation and problem definition. 
Section 3 presents the proposed algorithm. 
Experimental results are shown in section 4. Finally, 
conclusions are drawn in Section 5. 

 
2  Preliminary 
This section describes the motivation to study the 
importance of non-rectangular obstacles. For the 
X-based routing tree, the maximum source-to-target 
delay is calculated and the delay threshold is defined 
as the timing constraint for rerouting. Finally, the 
rectangular obstacle-avoiding X-based Steiner 
minimal tree (ROA-XSMT) and rectangular and 
non-rectangular obstacle-avoiding X-based Steiner 
minimal tree (NOA-XSMT) problems are 
formulated. 

 
2.1 Motivation  
A routed path of an X-architecture for terminals and 
obstacles becomes a non-rectangular obstacle for 
the un-routed paths, as shown in Fig. 1(a). Hence, to 
minimize the wirelength and delay, the modern 
router must handle routing with non-rectangular 
obstacles. No routers for X-architectures have yet 
been reported in the literature. A router generally 
treats a non-rectangular obstacle as a rectangular 
obstacle. However, this approach does not produce 
the optimal wirelength or delay, as indicated in Fig. 
1(b). For the Fig. 1(a), the traditional router, which 
treats a non-rectangular obstacle as a rectangular 
obstacle, has the results in Fig. 1(b) but the total 
wire length is long. However, the short total 
wirelength in Fig. 2 is obtained by the modern 
router which can handle routing with 
non-rectangular obstacles.  We observe that the 
algorithms which can handle the routing with 
non-rectangular are necessary. This observation 
indicates that a router that can handle 
non-rectangular obstacles minimizes the wirelength 
and the maximum source-to-terminal delay.   

2.2 Problem Definition 
Due to the lack of timing constraints, the delay 
threshold is given by max  D r× , where maxD  and r 
represent the maximum source-to-terminal delay 
and user-defined ratio ( 0 1r≤ ≤ ), respectively. A 
larger (smaller) ratio denotes looser (tighter) timing 
constraints. Clearly, more timing violations occur 
when a tighter timing constraint is applied. Due 
space limitations in this article, only the result of 
r=0.7 is addressed herein. The critical nodes with 
delays over the threshold are rerouted them to 
further reduce the delay. Rerouting is further 
discussed in Section 3.4. The total wirelength 
(abbreviated as talL ) is increased after performing 
the rerouting algorithm.  

This study formulates two problems, and 
develops algorithms to solve them. The first 
ROA-XSMT problem is defined as follows: 

Given a set of obstacles and a set of terminals 
with the source under the given delay threshold, the 
objective of the paper is to construct the 
timing-driven X-architecture routing tree that 
minimizes the maxD among the rectangular obstacles. 

As well as rectangular obstacles, circuits also 
contain some non-rectangular obstacles. The 
differences between these types of obstacles are 
discussed in Sub-section 3.2. The second 
NOA-XSMT problem is defined as follows: 

Given a set of rectangular and non-rectangular 
obstacles, and a set of terminals with the source 
under the user defined delay threshold, the objective 
of the paper is to minimize the maxD among all 
obstacles. 
 
3  Timing-Driven X-based Routing       
   Tree with Obstacles 
This section describes two algorithms for the 
routing with obstacles. Algorithm1 in Sub-section 
3.1 is directly applied for the rectangular obstacles 
and Algorithm1 reroutes the initial tree to improve 
the maxD . Algorithm2, which is applied to both 
rectangular and non-rectangular obstacles, consists 
of three steps, namely spanning graph construction 
(Sub-section 3.2), transformation for X-based 
routing tree (Sub-section 3.3) and rerouting all 
violated terminals (Sub-section 3.4).
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(a) Original circuit             (b) Spanning graph              (c) Spanning tree 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 (d) Violations                 (e) Remove an edge              (f) Final Result  

Fig. 3   An X-based tree with the rectangular obstacles. 
 
3.1 Routing Tree with Rectangular Obstacles 
The X-based routing tree is constructed using a 
spanning graph without obstacles [17]. In contrast 
with the work of Lin et al. [10], the proposed 
algorithm can not handle the X-based routing. Our 
proposed algorithm comprises three steps, which are 
described as follows. First, a spanning graph is built 
from the terminals and the obstacles. Second, the 
slant edge of the minimal spanning tree in the 
spanning graph is transformed into the X-based 
feasible routing tree. Finally, the violated terminals 
are rerouted if their delays are over the delay 
threshold discussed in Sub-section 2.2. 

The spanning graph (Fig. 3(b)) is built from the 
terminal and obstacles (Fig. 3(a)), to yield the 
spanning tree (Fig.3(c)) in the spanning graph. The 
spanning tree is then transformed into the feasible 
X-based routing tree (Fig. 3(d)). For the violated 
terminals (marked as gray color) over delay 
threshold, the original tree is split into two sub-trees 
by removing one edge, as shown in Fig. 3(e). 
Finally, the two sub-trees are merged, see Fig. 3(f). 
The proposed algorithm is shown in Fig.4. 

 
 
 
 

Algorithm1: Rectangular Obstacle-Avoiding X-based  
Steiner Minimal Tree (ROA-XSMT) 
Input: (1) A set of n pins and a source 
      (2) A set of m rectangular obstacles  
      (3) User-defined delay threshold 
Output: A timing-driven X-based routing tree  
begin  
 

1 Spanning graph construction for obstacles; 
2 Construct the feasible X-based routing tree;  

2.1 Obtain the minimal spanning tree; 
2.2 Transform the spanning tree into the 

X-based routing tree;  
3 Reroute the violated terminals; 

3.1 Estimate the delay by applying the 
modified Elmore delay model; 

3.2 Split the routing tree by the delay threshold; 
3.3 Merge two sub-trees into one tree by the 

shortest feasible paths with obstacles; 
3.4 Goto Step 3.2 and 3.3 iteratively until all 

violated terminals are rerouted; 
end.    

Fig. 4   Algorithm1 for ROA-XSMT.
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Fig. 5  Terminals inside the virtual obstacles. 
   

Algorithm1 can handle routing with rectangular 
obstacles, but cannot handle non-rectangular 
obstacles. To solve this limitation, a bounding 
rectangle-based transformation is presented for 
non-rectangular obstacles, and the routing tree is 
then constructed by algorithm1. However, 
algorithm1 cannot handle the case that some 
terminals are inside the virtual obstacles. If some 
terminals are located in the bounding rectangle as 
shown in Fig. 5(a), a correct and good solution 
might not be found, in Fig. 5(b). Our proposed 
algorithm can find the result in Fig. 5(c). In next 
sub-section, the bounding rectangle-based 
transformation and A-shaped pattern routing, are 
presented to build a spanning graph with both 
rectangular and non-rectangular obstacles. 
 
 
3.2 Spanning   Graph    Construction    for   

Rectangular and Non-rectangular Obstacles 
For the NOA-XSMT problem, we can simplify 
superimpose a square bounding rectangle for the 
non-rectangular obstacle and then transform the 
NOA-XSMT to the ROA-XSMT problem, and use 
algorithm1 to solve it. 

First, a virtual obstacle is produced for each 
non-rectangular obstacle by superimposing a square 
bounding rectangle for each non-rectangular 
obstacle. This process is called bounding 
rectangle-based transformation. 

Second, the spanning graph is built based on the 
terminals and boundaries of obstacles. Terminals are 
classified as being inside or outside the virtual 
obstacles. The spanning graph is first built for 
terminals outside the virtual obstacles. Terminals 
inside the virtual obstacles are then added. 

Third, A-shaped pattern routing is adopted to 
reduce the talL . For the terminals inside the virtual 
square obstacles, some extra edges are added into 
the spanning graph of the previous paragraph. 
A-shaped pattern routing method that produces two 
virtual nodes on the boundary of a virtual obstacle 
can guarantee to generate one routing result. In 
Fig.6(a), the spanning graph (Fig.6(b)) is generated  

 

by applying the two-virtual-node A-shaped routing, 
yielding the routing result in Fig. 6(c). Fig. 6(d) and 
(e) respectively show the spanning graph and 
routing result generated using three-virtual-node 
A-shaped routing. Fig. 6(f) illustrates the 
n-virtual-node A-shaped pattern routing. A 
comparison between Fig. 6(c) and (e) indicate that 
two-virtual-node A-shaped routing leads to efficient 
spanning graph construction, since a shorter routing 
path cannot be found with three (or n) virtual nodes. 
Similarly, A-shaped pattern routing can handle n 
terminals inside a virtual obstacle. 

 
 

 

 

 

 

 

(a)           (b)              (c) 
 
 
 
 

 
 (d)            (e)             (f) 

Fig. 6  Possible virtual nodes. 
 

 

 

 

 

 

 

 

  (a) Virtual obstacle   (b) Spanning graph 
 

 

 

 

 

 

(c) Inside virtual obstacle (d) A-shaped pattern routing 
Fig. 7  Spanning graph construction.
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To summarize, this sub-section explains 
spanning graph construction using a simple example. 
In Fig.7, the method first builds the spanning graph 
for terminals, obstacle and the virtual obstacles (Fig. 
7(a) and (b)), and then builds the spanning graph for 
the terminals inside the virtual square obstacles (Fig. 
7(c)). To further minimize talL , A-shaped pattern 
routing is then adopted to generate three additional 
edges to reduce the total wirelength, as shown in Fig. 
7(d). 

In Sub-section 3.2, the spanning graph 
construction is only addressed to triangles. Other 
polygons, such as hexagons and octagons are 
handled by the bounding rectangle-based 
transformation, which superimposes the smallest 
feasible bounding rectangle to the obstacles, and 
builds the spanning graph for the corner points and 
terminals inside the virtual obstacle. A bounding 
rectangle is superimposed for the triangle to produce 
the spanning graph, as shown in Fig. 8(a). Fig. 8(b) 
and 8(c) respectively show the handling of 
hexagonal and octagonal obstacles.   

term inalcorner points

obstaclesbounding rectangle

(a)          (b)           (c) 
Fig. 8. Bounding rectangle-based transformation. 

 

S S

 (a) The spanning tree    (b) X-based routing tree                               
Fig. 9  Transformation of the minimal spanning tree. 

In this step, a spanning graph is simplified by 
bounding rectangle-based transformation and 
A-shaped pattern routing. The next step attempts to 
obtain the X-based routing tree with the shortest 
wirelength. 

 
 

3.3 Construct the Feasible X-Based Routing 
Tree 

In this step, the slant edges of the minimal spanning 
tree are transformed in order to obtain a feasible 
X-based routing tree. Each feasible edge is formed 
by combining the horizontal, vertical and ±45° 
edges outside the obstacles. Fig. 9(a) shows the 
minimal spanning tree in the spanning graph of 
Fig.7(c). Post-processing is performed on the 
X-based routing tree to further reduce the talL . For 
each feasible X-based edge, the wirelength is longer 
if the common edges are not considered. The 
common edges are then merged after the neighbor 
edges are checked. Therefore, the post-processing 
successfully minimizes the wirelnegth. Each slant 
edge of Fig. 9(a) is transformed into a set of the 
feasible edges, namely the horizontal, vertical and 
±45° edges. Finally, the X-based routing tree (Fig. 
9(b)) is constructed by transforming the minimal 
spanning tree.  

The delay of each terminal is calculated by the 
X-based delay model. In next step, we will explain 
rerouting for the violated terminals by delay 
threshold. 

 
 
3.4 Reroute for All Violated Terminals 
To minimize maxD , this step reroutes the terminals 
with delays over the given delay threshold for the 
initial X-based routing tree in Sub-section 2.2. In 
Fig. 10, the delays of all terminals are estimated by 
using the delay model [4]. Due the lack of delay 
constraints, the delay threshold (r=0.7) is taken as 
the timing constraint. If we apply the large delay 
threshold, there are few terminals are rerouted. 
Hence, the maximum source-to-target delay is not 
very good.   

To summarize, an example in Fig. 10 is used to 
show the whole algorithm. In Fig. 10 (a), (b) and (c), 
the initial routing tree is constructed by the stages of 
the spanning graph, the minimal spanning tree and 
the X-architecture routing tree. For the initial 
routing tree, the violated terminals are identified 
from the delay threshold, and labeled as the gray 
points (Fig. 10(d)). At the first rerouting iteration, 
the delays of the terminals marked in gray are over 
delay threshold ( maxr D× ). These terminals are 
labeled as violated terminals, and a proper edge is 
removed to produce two sub-trees, see Fig.10(e).
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(a) The spanning graph       (b) The minimal spanning tree       (c) X-architecture routing tree         
 

 
 
 
 
 
 
 
 
          
 

(d) The violated terminals            (e) Two sub-trees               (f) A routing tree  
 

 

 

 

 

 

 

     

 

 

(g) Two sub-trees                 (h) Final result 
 

Fig. 10  An X-based tree with the non-rectangular obstacles. 
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To minimize the maxD , two sub-trees are merged by 
the selected edge, which connects the one sub-tree 
to the node close to the source, as indicated in 
Fig.10(f). A proper edge is removed to split the 
routing tree into two sub-trees. Similarly, in the next 
rerouting step, two sub-trees are produced by 
removing a proper (see Fig. 10(g)) edge and 
merging by an edge (see Fig. 10(h)). Hence, each 
violated terminal of the initial X-based routing tree 
is rerouted once. 

In summary, the X-based routing tree is built by 
performing the steps in Sub-sections 3.2~3.4. To 
indicate the effect of the proposed methods, the 

maxD before and after rerouting were compared. We 
observe that the maxD of the original routing tree (Fig. 
9(c)) was better than the maxD of the rerouted results 
in Fig. 10(d). Obviously, the additional wirelength 
was increased because the short routing paths are 
updated to the long routing path. These findings 
indicate that the improvement on the maxD is 
significant, while the additional total wirelength is 
small. Fig.11 shows the proposed algorithm for 
solving the NOA-XSMT problem. 

 
Algorithm2: Rectangular  and  Non-rectangular 
Obstacle-Avoiding X-based Steiner Minimal Tree 
(NOA-XSMT) 
Input: (1) A set of n pins and a source 
      (2) A set of m rectangular obstacles 

  (3) A set of w non-rectangular obstacles  
      (4) User-defined delay threshold 
Output: A timing-driven X-based routing tree  
begin  

1 Spanning graph construction for 
nonrectangular and rectangular obstacles; 
1.1 Superimpose a bounding rectangle for the 

non-rectangular obstacles; 
1.2 Construct spanning graph for terminals, 

rectangular and non-rectangular obstacles; 
1.3 A-shaped pattern routing for terminals 

inside the non-rectangular obstacles; 
2 Construct the feasible X-based routing tree;  

2.1 Obtain the minimal spanning tree; 
2.2 Transform the spanning tree into the 

X-based routing tree;  
3 Reroute the violated terminals; 

3.1 Estimate the delay by applying the 
modified Elmore delay model; 

3.2 Split the routing tree by the delay threshold; 
3.3 Merge two sub-trees into one tree by the 

shortest feasible paths with obstacles; 
3.4 Goto Step 3.2 and 3.3 iteratively until all 

violated terminals are rerouted; 
end. 
 

Fig. 11  Algorithm2 for NOA-XSMT. 
 

4 Experimental Results 
All experiments were implemented by the C++ 
language on Intel Core2 CPU 1.86GHz 1.87GHz 
machine with 3GB memory. The objective of was to 
construct the routing tree with the smallest maxD . The 
X-based delay model was adopted to estimate the 
delay for each terminal by the 0.18um technology 
parameters. In Table 1, “Term”, “OB1” and “OB2” 
denote the numbers of terminals, rectangular 
obstacles and non-rectangular obstacles, 
respectively. Because of the lack of source 
information in these benchmarks, Huang’s approach 
[17] was adopted to test the stability under three 
sources. Due to limited space, Table 2 only shows 
the results of source located at the center of gravity. 
The user-defined delay threshold is the delay value 
above which rerouting is performed. 

First, the talL and maxD produced by the two 
proposed methods were compared. Because there is 
no algorithm available for NOA-XSMT problem, 
only the two proposed algorithms without and with 
rerouting were compared. Because of paper limit, 
Table 2 only shows the result of source type I. In fact, 
rerouting stably improved the maxD under three 
source types. In Table 2, the second and third 
column respectively represent the methods without 
the rerouting (steps 1~2 in Fig.11 and with the 
rerouting (steps 1~3 in Fig.11). “ talL ” and “ maxD ” 
denote the total wirelength and the maximum 
source-to-terminal delay, respectively. The rerouting 
improved the maxD by 49.1% with only 2.5% 
additional talL . Moreover, the rerouting reduced the 

talL of T6, T8 and T9. These results indicate that the 
proposed rerouting technique can effectively 
minimize both the talL and maxD , even when the 
initial X-based routing tree is not the optimal 
solution. For the small benchmark, Fig.12 shows the 
rerouting effect on delay, indicating that the detour 
in routing (the red line) is reduced. For the larger 
benchmark, Fig.13 shows the rerouting significantly 
improves the detour in routing (the red line). If the 
rerouting does not improve the maxD of the initial 
solution, the initial routing tree is retained (T10 and 
T12). In other words, rerouting guarantees a feasible 
solution under all cases. 

Second, the CPU runtimes of two proposed 
algorithms were compared. We observe that the 
proposed algorithms are quite efficient, since the 
additional CPU runtime for performing the rerouting 
is about 27.35 minutes (2519-878 second) for the 
largest testcase. In Sub-section 3.4, the delay 
threshold is given by the formula maxD r× , where 

maxD and r denote the maximum source-to-terminal 
delay and ratio, respectively. Due to limited space, 
only the results of r=0.7 are shown. Actually, the 
proposed method is stably improved the maxD under 
any given delay threshold. Furthermore,  

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS
Shu-Ping Chang, Hsin-Hsiung Huang, 
Cheng-Chiang Lin, Tsai-Ming Hsieh

ISSN: 1109-2734 439 Issue 6, Volume 8, June 2009



5 Conclusions 
This study formulates a novel NOA-XSMT problem 
with the rectangular ad non-rectangular obstacles. 
Additionally, this work presents an effective 
timing-driven algorithm that minimizes the maxD  to 
construct an X-based routing tree with 
non-rectangular obstacles. Experimental results 
indicate that the maxD is improved by 49.1% with 
2.5% additional talL . 
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Table 1   Benchmark circuits. 

 
Table 2   Results of talL and maxD  under the source type I. 

 
 

 Term OB1 OB2 
T1 12 5 4 
T2 34 5 5 
T3 56 5 5 
T4 76 5 5 
T5 106 5 5 
T6 142 250 250 
T7 248 250 250 
T8 268 400 400 
T9 282 500 500 
T10 540 50 50 
T11 1048 50 50 
T12 1112 5000 5000 

 
 

iT  
(initial tree) 

rT  
(rerouted tree) 

Comparison 
(=( iT - rT )/ iT ) 

 maxD  talL  Time(s) maxD  talL  Time(s) maxD  (%) talL  (%) 

T1 1.4 29319.7 <1 0.9 30100.3 <1 35.7 -2.7 
T2 3.8 42151.9 <1 1.8 42967.5 <1 52.6 -1.9 
T3 9.8 55210.7 <1 5.2 61389.6 <1 46.9 -11.2 
T4 8.2 59208.2 <1 4.1 67554.8 <1 50 -14.1 
T5 24.5 74593.5 <1 8.6 75924 <1 64.9 -1.8 
T6 90.6 148212 2 20.3 148018 3 77.6 0.1 
T7 89.9 179967 3 45 180588 4 49.9 -0.3 
T8 153.8 194117 4 65.3 192414 12 57.5 0.9 
T9 159.4 206586 7 35.7 205482 11 77.6 0.5 
T10 57.1 181586 1 57.1 181586 3 0 0 
T11 554.0 242841 2 129 242997 4 76.7 -0.1 
T12 1058.1 1365180 878 1058.1 1365180 2519 0 0 

Avg. - - - - - - 49.1 -2.5 
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(a)                                              (b) 
Fig.12   Rerouting impact on maxD .(a) without and (b) with the rerouting (for small circuit T5). 

 
 

   
(a)                                              (b) 

Fig.13  Rerouting impact on maxD .(a) without and (b) with the rerouting (for larger circuit T11). 
 

 
      

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS
Shu-Ping Chang, Hsin-Hsiung Huang, 
Cheng-Chiang Lin, Tsai-Ming Hsieh

ISSN: 1109-2734 442 Issue 6, Volume 8, June 2009




