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Abstract: - Interpolation for sampled-values with non-uniform sampling points is required for various cases of 
signal processing. In such a case, sampling functions are useful to interpolate sampled-values and then to generate 
signals as a linear combination of the sampling basis weighted by a sequence of the sampled-values. This paper 
proposes sampling functions for non-uniform sampling points, each of which is composed with piecewise 
polynomials of degree 2. We name the sampling functions the fluency DA functions of degree 2.  The fluency DA 
functions generate smooth and undulate signals from a sequence of sampled-values. 
 
Key-Words: - Fluency information theory, Fluency DA functions, Interpolation, Non-uniform sampling functions, 
Piecewise polynomials 
 
1   Introduction 
Multimedia, such as audio, still images and video, 
which exists in the real world is generally treated as 
analog signals. In order to treat the analog signals in 
the computer world, they must be converted into 
digital signals. The digital signals are converted into 
analog signals and then original multimedia is 
reproduced.  

Therefore, both of analog-to-digital(A/D) 
converter and digital-to-analog(D/A) one play 
important role in signal processing.  

In the conventional signal analysis and processing, 
Information Communication and 
Technologies(ICT) such as A/D and D/A 
technologies have been designed in the analytic 
function space S as subspace of typical Hilbert space 

L2, where L2 is the space spanned by square 
integrable functions. 

Shannon’s uniform sampling theorem which 
guarantees isomorphism between band-limited 
analog signal space and digital signal one of a 
sequence of sampled-values is well-known[1],[2] 
and is also considered in the analytic function space 
S.  

One of authors proposed and established  Fluency 
Information Theory [3],[4],[5] that generalizes 
Shannon’s sampling theorem. The Fluency 
Information Theory –based signal analysis and 
processing are considered in the dual space for the 
function space spanned by piecewise polynomials 

This paper proposes sampling functions for 
non-uniform sampling points, each of which is 
composed with piecewise polynomials of degree 2. 
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We name the sampling functions the fluency DA 
functions of degree 2.  The fluency DA functions are 
designed based on geometric criterion of curve. The 
fluency DA functions generate smooth and undulate 
signals from a sequence of sampled-values. 

 
 
2   Preliminaries 

 
2.1 Signal Space mD  composed of Piecewise 

Polynomials of Degree (m-1)  
 
In the conventional signal analysis and processing, 
Information Communication and 
Technologies(ICT) such as A/D and D/A 
technologies have been designed in the analytic 
functions space S as subspace of typical Hilbert 
space L2, where L2 is the signal space spanned by 
square integrable functions. 
   Dirac’s delta functions have been often used in 
making discussion on isomorphism property 
between analog signals and digital ones.  Moreover, 
sin and cos functions have been also used in 
DCT-based multimedia coding like as JPEG and 
MPEG.  However, these functions for signal analysis 
and processing do not belong to L2.  
   So, in treating these kinds of functions, it is 
necessary to expand the conventional  signal space 
L2 .  
   If X is a function space we can define its dual 
space 'X  to be the set of continuous linear functions 
T  from X to R or C , where R  and C are the sets 
of real and complex numbers, respectively. Such 
mappings themselves form a normed linear space 
using the operator norm 
 

   .sup
0, x

Tx
T

xXx ≠∈
=  

 
   If YX ⊂ , then '' XY ⊂ , since there are fewer 
continuous functions on a larger function space. 
Therefore, a highly restricted Schwartz function 
space S , which is the set of rapidly decreasing 
functions, i.e., the functions )(txx =  satisfying the 
following two conditions for each { },...2,1,0, ∈nk : 
 
   <1>  ),( ∞−∞∈ ∞Cx  

   <2>  ,0)(lim =
∞→

tx
dt
dt n

n
k

t
 

 
has a very large dual space. The dual space 'S  for the 
Schwartz function space S is larger than 2L . 
However, the dual space 'S  is too tempered. 
   We introduce appropriate signal space mD  for the 
signal analysis, which is composed of piecewise 
polynomials of degree (m-1) with only (m-2) times 
continuous differentiability in this paper, where 

{ },...3,2,1∈m .  In case of m=1, the signal pace 1D  is 
a function space spanned by discontinuous functions. 
In case of m=2, the signal pace 2D  is a function space 
spanned by continuous functions which are not 
differentiable. 
   It had been shown [5] that the signal space mD  
identical with a band-limited function space, which is 
treated in the Shannon’s uniform sampling theorem, 
when the parameter m  tends to infinity. Based on this 
fact, it became possible to deal with piecewise 
polynomial function spaces and band-limited function 
ones as a unified series of signal spaces of which 
characteristics vary with the parameter of degree of 
the polynomials. This series is fluent in the sense that 
we can choose a signal space out of the series which 
matches with each purpose of signal analysis and 
processing. So it was named as “fluency”. The signal 
spaces 1D , 2D  and ∞D  are identical with the sets of 
staircase, polygonal and band-limited functions, 
respectively.  
   The Fluency information theory-based signal 
analysis and processing are considered in the dual 
space '

mD  for the signal space mD . 

   The dual space '
mD  contains arbitrary derivatives of 

certain discontinuous functions.  Figure 1 shows 
signal space and its dual space. 
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            Fig.1  Signal space and its dual space 
    
 
   The signal space mD  and its dual space '

mD are 
appropriate function spaces for signal analysis and 
processing. 
 

Let   { }∞ −∞=kkt  be sampling points, then the 

sampling basis in  the signal space '
mD  is defined by  

the functions { }∞
−∞=kk

m
DA ψ][  satisfying 

 

[ ]' , ( ) ( ) ( )m
m k DA kk

u D u t u t tψ∞

=−∞
∈ = ⋅∑ .           

(1) 
 

Equation (1) gives a representation formula as a 
linear combination of the sampling basis in '

mD  
weighted by a sequence of sampled-values 
{ }∞ −∞=kktu )( .  We named each function of the 

sampling basis { }∞
−∞=kk

m
DA ψ][ the Fluency DA 

function.  In case that the interval between adjacent 
sampling points is constant, that is, htt kk =− −1 (h 

>0),  sampling functions in '
mD   are called by 

uniform Fluency DA functions of degree (m-1). In 
case that the interval is not constant, then those are 
called by non-uniform Fluency DA functions of 
degree (m-1) in this paper. 

 
2.2 Compactly Supported Uniform Fluency 

DA functions of Degree 2 
 
We proposed and developed an impulse response  that 
is suitable for DVD-Audio with a maximum sampling 
rate of 192KHz .   It had been designed in the dual 

space '3D  for the signal space 3D . The impulse 
response is composed of the compactly supported 
uniform Fluency DA functions of degree 2 [6].  
Practically, DVD-Audio players equipped with the 
Digital-to-Analog converters designed by the uniform 
Fluency DA functions of degree 2 have been 
commercialized. The 53 awards have been received.  
   There have been many ICT applications [7], [8], [9], 
[10] designed in the signal space '3D .  
   The quadratic uniform Fluency DA function 

)(0
3
][ tDAψ  as a sampling function in the signal space 

'3D was designed as is satisfied the following 4 
conditions <1>,<2>,<3> and <4>. 

<1> It is represented by the linear combination of 
quadratic B-spline functions. 

<2> It is only one time continuously differentiable 
at ),( ∞−∞ . 

<3> It converges to 0 at the left and right second 
sampling points from the origin, that is, at 

)2(2 ht −=−  and )2(2 ht = . 
<4> It takes the value of 1 at the origin 0=t .  It 

takes the value of  0 at sampling 
points hht 2,±±= . 

 
   Let )(tϕ  denotes the quadratic B-spline function 
defined as follows [11],[12]: 
 

  ∫
∞

∞− ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= .sin)( 2

3

dfe
fh

fht ftj π

π
πϕ                             (2) 

 
The quadratic B-spline function is expressed by 
piecewise polynomials of degree 2. Then, the 
compactly supported uniform fluency DA function of 
degree 2 )(0

3
][ tDAψ  is represented in the form of linear 

combination of the function systems { }1
12 )( −=− l

l htϕ  
as follows: 
 

  3 1 1
[ ] 0 2 2( ) ( ) 2 ( ) ( ).

2 2DA
h ht t h h t t hψ φ φ φ= − − + − +                 

(3) 
 
The DA function )(0

3
][ tDAψ was derived as 
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⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪
⎪
⎪
⎪

⎨

⎧

<≤−+−

<≤+−

<≤+−

<≤+−

<≤−+−

−<≤−++

−<≤−++

−<≤−−−−

=

.,0
,22/3,1/)4/(

,2/3,4/5/2)4/(3
,2/,4/7/3)4/(5

,2/0,1)4/(7
,02/,1)4/(7

,2/,4/7/3)4/(5
,2/3,4/5/2)4/(3

,2/32,1/)4/(

)(

22

22

22

22

22

22

22

22

0
3
][

otherwise
hthhtht
hthhtht

hthhtht
htht
thht

hthhtht
hthhtht

hthhtht

tDA ψ

                   

(4) 
Figure 1 shows the quadratic uniform Fluency DA 
function )(0

3
][ tDAψ . 

           
Fig. 1 Quadratic uniform Fluency DA function  
 
    It is noted that the quadratic uniform Fluency DA 
function )(0

3
][ tDAψ  is only one time continuously 

differentiable at 31
2 2, , , 2t h h h h= ± ± ± ± , which are 

connecting points of each piecewise polynomial . 
The sampling basis { }∞

−∞=kkDAψ
3
][ in the signal 

space '3D are derived as follows. 
 
   3 3

[ ] [ ] 0( ) ( ). 0, 1,....DA k DAt t kh kψ ψ= − = ±�@� @  
 

Thus the any signal u in '3D  is represented by  
 

3
3 [ ]

3
[ ] 0

' , ( ) ( ) ( )

( ) ( ).

k DA kk

DAk

u D u t u t t

u kh t kh

ψ

ψ

∞

=−∞

∞

=−∞

∈ = ⋅

= ⋅ −

∑
∑

 

 
 

3  Criterion for Designing Compactly 
Supported Non-Uniform Fluency DA 
Function Composed of Quadratic 
Piecewise Polynomials 
 
3.1 Formulation of Compactly Supported 

Non-Uniform Fluency DA Function of 
Degree 2 

 
The non-uniform Fluency DA function of degree 2 is 
designed by expanding the compactly supported 
uniform Fluency DA functions of degree 2.  

As is understood from Eq.(4), the uniform 
Fluency DA function of degree 2, that is, )(0

3
][ tDAψ , 

can be generally considered to be composed of 8 
piecewise polynomials in [-2h, 2h].  We formulate a  
compactly supported non-uniform Fluency DA 
function of degree 2 by )(ts  in this paper. 

The function )(ts  is designed as is satisfied the 
following 4 conditions <1’>,<2’>,<3’> and <4’>.  
<1’> It is represented by the linear combination of 

quadratic piecewise polynomials. 
<2’> It is only one time continuously differentiable 

at ),( ∞−∞ . 
<3’> It converges to 0 at the left and right second 

sampling points from the origin, that is, at 2t−  
and 2t . 

<4’> It takes the value of 1 at the origin 0 0t t= = .  
It takes the value of  0 at sampling 
points 2 1 1 2, , ,t t t t t− −= . 
 

Taking account of the above conditions <1’> and 
<3’>,  the function )(ts  can be formulated as 
follows. 
 

3
[ ] 0 ( )DA tψ

 0

 1

-3h -2h -h 0 h 2h 3h

t

ψ(t)
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⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎨

⎧

≤≤+Δ++

+≤≤Δ++

≤≤+Δ++

+≤≤Δ++

≤≤+Δ++

+≤≤Δ++

≤≤+Δ++

+≤≤Δ++

=

−

−−

−−−

−−−

.,0
,2/)(),(

,2/)(),(

,2/)(),(

,2/)(),(

,2/)(),(

,2/)(),(

,2/)(),(

,2/)(),(

)(

221888
2

8

211777
2

7

110666
2

6

100555
2

5

001444
2

4

011333
2

3

112222
2

2

122111
2

1

otherwise
tttttsctbta

tttttsctbta

tttttsctbta

tttttsctbta

tttttsctbta

tttttsctbta

tttttsctbta

tttttsctbta

ts

 

(5)  
Figure 2 shows general waveform of  the function s(t). 
 

 
Fig.2  Quadratic Non-uniform Fluency DA Function  

 
Taking account of the above condition <4’>,  the 

following relations are obtained.   
 

   0)( 21 =−ts                                                                     (6) 

   0)()( 1312 == −− tsts                                                    (7) 

   1)()( 0504 == tsts                                                       (8) 

   0)()( 1716 == tsts                                                       (9) 
.0)( 28 =ts                                                         (10) 

 
   Taking account of the above condition <2’>,  the 
following relations are obtained. 
 
   ( ) ( ) 22221

1212
−

++ Δ= −−−− dss tttt                                         (11) 

   ( ) ( ) 12423
0101

−
++ Δ= −− dss tttt                                            (12) 

   ( ) ( ) 12625
1010 dss tttt Δ= ++                                                (13) 

( ) ( ) .22827
2121 dss tttt Δ= ++                                         (14) 

 
   0)(' 21 =−ts                                                                (15) 

   ( ) ( )2221
1212 '' −−−− ++ = tttt ss                                               (16) 

   )(')(' 1312 −− = tsts                                                      (17) 

   ( ) ( )2423
0101 '' tttt ss ++ −− =                                                 (18) 

   )(')(' 0504 tsts =                                                        (19) 

   ( ) ( )2625
1010 '' tttt ss ++ =                                                    (20) 

   )(')(' 1716 tsts =                                                         (21) 

   ( ) ( )2827
2121 '' tttt ss ++ =                                                   (22) 

   .0)(' 28 =ts                                                       (23) 
 

Moreover, from Eqs.(6)-(23), the following 
simultaneous equations Eq.(24) concerning to 24 
unknown parameters { }8

1=kka , { }8
1=kkb and { }8

1=kkc are 
derived.  
 
   0121

2
21 =++ −− ctbta                                                  (24) 

   21121
2

121 44)(2)( −−−−− =++++ dcttbtta                     (25) 
   22122

2
122 44)(2)( −−−−− =++++ dcttbtta                     (26) 

   0212
2
12 =++ −− ctbta                                                 (27) 

   0313
2
13 =++ −− ctbta                                                 (28) 

   13013
2

013 44)(2)( −−− =++++ dcttbtta                     (29) 

   14014
2

014 44)(2)( −−− =++++ dcttbtta                     (30) 

   1404
2
04 =++ ctbta                                                   (31) 

   1505
2
05 =++ ctbta                                                    (32) 

   15105
2

105 44)(2)( dcttbtta =++++                     (33) 

   16106
2

106 44)(2)( dcttbtta =++++                     (34) 

   0616
2
16 =++ ctbta                                                    (35) 

   0717
2
17 =++ ctbta                                                   (36) 

   27217
2

217 44)(2)( dcttbtta =++++                     (37) 

   28218
2

218 44)(2)( dcttbtta =++++                     (38) 

   0828
2
28 =++ ctbta                                                   (39) 

   02 121 =+− bta                                                           (40) 

   21221121 )()( bttabtta ++=++ −−−−                      (41) 

   313212 22 btabta +=+ −−                                           (42) 

    40143013 )()( bttabtta ++=++ −−                        (43) 

   505404 22 btabta +=+                                             (44) 

 
t2 t0 t-2 

0 1
2

t t+ 1 2
2

t t+1 0
2

t t− +
2 1

2
t t− −+

0 t 
 

 1 

t-1 t1 
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   61065105 )()( bttabtta ++=++                             (45) 

   717616 22 btabta +=+                                              (46) 

   82187217 )()( bttabtta ++=++                             (47) 

   02 828 =+ bta                                                             (48) 
 

The 24 unknown parameters { }8
1=kka , { }8

1=kkb and 

{ }8
1=kkc  are obtained by solving the above 

simultaneous equations. 
From Eqs.(24),(25) and (40),  1a , 1b and 1c  are 

obtained as follows: 
 

.

,

,

2
21

2
2
2

2
21

22

2
21

2

)(
4

1

)(
8

1

)(
4

1

−−

−−

−−

−−

−−

−

−

−

−

−

=

=

=

tt
dt

tt
dt

tt
d

c

b

a

                                                            (49) 

 
From Eqs.(26),(27),(41) and (40),  2a , 2b and 2c  

are obtained as follows: 
 

.

,

,

2
21

2121

2
21

212

2
21

2

)(

)2(4
2

)(
)2(8

2

)(
12

2

−−

−−−−

−−

−−−

−−

−

−

+−

−

+

−

−

=

=

=

tt

dttt

tt
dtt

tt
d

c

b

a

                                                (50) 

 
From Eqs.(28),(29),(42) and (50),  3a , 3b and 3c  

are obtained as follows: 
 

( )
( ){ }
( ){ }.

,

,

21

012

10

11

10

1

21

012

10

11

10

21

2

10

1

10

24
3

38
3

44
3

−−

−−

−

−−

−

−

−−

−−

−

−−

−

−−

−

−

−

−

−
+

−−

−
+

−−
−

−−−

+=

+=

+=

tt
ttd

tt
dt

tt
t

tt
ttd

tt
dt

tt

tt
d

tt
d

tt

c

b

a

                                        

(51) 
     

From Eqs.(30),(31),(43) and (51),  4a , 4b and 4c  
are obtained as follows: 

 
( )

( ){ }
( ){ }.

,

,

21

0102

10

0110

10

2
01

10

21

012

10

01101

10

21

2

10

1

10

8)2(4)(1
4

32)2(2)(4
4

4314
4

−−

−−

−

−−

−

−

−

−−

−−

−

−−−

−

−−

−

−

−

−

−
+

−
+

−
+

−

−
+

−
+−+

−

−−
−

−

−−=

+−=

−=

tt
tttd

tt
ttdt

tt
tt

tt

tt
ttd

tt
ttdtt

tt

tt
d

tt
d

tt

c

b

a

   

(52) 

 
From Eqs.(32),(33),(45) and (54),  5a , 5b and 5c  

are obtained as follows: 
 

( )
( ){ }

( ){ }

1 2

1 0 1 0 2 1

2 1 00 1 1 1 0

1 0 1 0 2 1

2
2 0 1 00 1 0 1 1 0

1 0 1 0 1 0 2 1

1 3 44
5

2 3( ) 2 ( 2 )4
5

8( ) 4 (2 )1
4

,

,

.

d d
t t t t t t

d t tt t d t t
t t t t t t

d t t tt t t d t t
t t t t t t t t

a

b

c

−−
− − −

++ − +
− − −

++ +
− − − −

= −

= − +

= − −

                    (53) 

 
From Eqs.(34),(35),(46) and (55),  6a , 6b and 6c  

are obtained as follows: 
 

( )
( ){ }

( ).
,

,

12

2

01

1

01

12

012

01

11

01

12

2

01

1

01

44
6

38
6

44
6

tt
d

tt
d

tt

tt
ttd

tt
td

tt

tt
d

tt
d

tt

c

b

a

−−−

−
+

−−
−

−−−

+=

+=

+=

                                           (54) 

 
From Eqs.(36),(37),(47) and (56),  7a , 7b and 7c  

are obtained as follows: 
 

.

,

,

2
12

2211

2
12

221

2
12

2

)(
)2(4

7

)(
)2(8

7

)(
12

7

tt
dttt

tt
dtt

tt
d

c

b

a

−

+−

−

+

−

−

−=

=

=

                                                  (55) 

 
From Eqs.(38),(39) and (48),  8a , 8b and 8c  are 

obtained as follows: 
 

.

,

,

2
12

2
2
2

2
12

22

2
12

2

)(
4

8

)(
8

8

)(
4

8

tt
dt

tt
dt

tt
d

c

b

a

−

−

−

−

=

=

=

                                                            (56) 

 
As the results, it seems that 24 unknown 

parameters { }8
1=kka , { }8

1=kkb and { }8
1=kkc   can be 

obtaiend. However, 4 parameters 112 ,, ddd −−  and 

2d defined by Eqs. (11), (12), (13) and (14), 
respectively can be arbitrarily set.  It is noted that 
Eq.(44) has not been used in the above processes. 
This means that the 4 parameters 112 ,, ddd −− and 

2d are not independent. By substituting 454 ,, baa  
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and 5b  for Eq.(44), the following relation is 
obtained. 

 

01

1

12

2

01

1

12

2 212212
tt
d

tt
d

tt
d

tt
d

−
−

−−
−

− −=−
−

−

−−

−                                             

(57) 
 
   We consider a criterion for deciding any three 
parameters out of 112 ,, ddd −−  and 2d  in the next 
section. 
 
3.2 Criterion for deciding Compactly 

Supported Non-Uniform Fluency DA 
Function of Degree 2 

 
We consider how is the compactly supported 
non-uniform Fluency DA function of degree 2 

)(ts obtained in the section 3.1, in case that the 
sampling interval is constant, that is, 1h = .  

As is understood from Eq.(4), the quadratic 
uniform Fluency DA function has the property of 

3
[ ] 0 (0) 0d
DAdt ψ = . So, in deciding the function )(ts , 

the property of 0)(' 0 =ts  is also used.  By applying 
the property and 0 0t =  to Eq.(19),  the following 
relation  

 
4 5 0b b= =                                                                (58) 

 
is obtained. Moreover, 11 =−+ kk tt  for arbitrary 
integer k holds good. From Eqs.(52) and (53), the 
following relations 
  

,
,

12
1

2

12
1

2

dd
dd

−=
−= −−                                                           (59) 

 
are derived. Moreover, by using the property that the 
quadratic uniform Fluency DA function are symmetry, 
that is, 3 3

[ ] 0 [ ] 0( ) ( )DA DAt tψ ψ− = , the relations 

22 dd =− and 11 dd =−  hold good. When we put  
ddd Δ=− 11 ,   the following relation 

 
.2

1
22 ddd −==−                                                     (60) 

 
is derived. As the results, the quadratic uniform 
Fluency DA function )(ts  is represented as follows: 
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1,

( ) 2(2 1)(3 8 5), 1 ,
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0, .

t

s t d t t t

s t d t t
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≤ ≤

= − − + ≤ ≤

= − − ≤ ≤
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    (61) 
 
[Proposition 1]  Under the condition of 

, ( 0, 1, 2,...)kt k k= = ± ± , the quadratic non-uniform 

Fluency DA function )(ts  is identical with )(0
3
][ tDAψ  

in the criterion of  ∫
∞

∞−
→ .min)}('{ 2 dtts  

 
(Proof)   By substituting )(ts  of Eq.(61) for the 

relation 2{ '( )}s t dt
∞

−∞∫ , the following  relation 

{ } { } { }

{ } { } { }

{ } { }

( )

2

3/2 1 1/22 2 2
1 2 32 3/2 1

0 1/2 12 2 2
4 5 61/2 0 1/2

3/2 22 2
7 81 3/2

264
3

264 9 13
3 16 4

{ '( )}

'( ) '( ) '( )

'( ) '( ) '( )

'( ) '( )

24 10

s t dt

s t dt s t dt s t dt

s t dt s t dt s t dt

s t dt s t dt

d d

d

∞

−∞

− − −

− − −

−

= + +

+ + +

+ +

= − +

= − +

∫
∫ ∫ ∫
∫ ∫ ∫
∫ ∫

     

(62) 
 

is obtained.   As the results, the parameter ‘d’ which 
minimizes Eq.(62) is obtained as 16

9=d . When  we 
substitute 16

9=d  for ‘d’ of Eq.(61), the uniform 
Fluency DA function of degree 2 )(ts  is identical 
with )(0

3
][ tDAψ described in subsection 2.2. 

(Q.E.D.) 
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As is described in section 2.2, the compactly 
supported uniform Fluency DA function of degree 2 is 
useful for generating analog signals as continuous 
signals from digital signals as discrete signals.  

   We use the criterion of ∫
∞

∞−
→ .min)}('{ 2 dtts  to 

design the compactly supported non-uniform Fluency 
DA function of degree 2 in this paper. 
  
 
4  Design of Compactly Supported 
Non-Uniform Fluency DA Function of 
Degree 2 based on Geometric Criterion 
of Waveform 
 
In the previous section, the criterion for designing 
non-uniform Fluency DA function of degree2 is 
discussed. We use the criterion of 

∫
∞

∞−
→ .min)}('{ 2 dtts to decide any three parameters 

out of 112 ,, ddd −−  and 2d . 
 
4.1 Non-Uniform Fluency DA Function of 

Degree 2 with 0)(' 0 =ts  
 
The non-uniform Fluency DA function of degree 2 is 
formulated by )(ts  in section 3.1. The parameters  

112 ,, ddd −− and 2d are not fixed. So, taking account of 
the condition 0)(' 0 =ts , the following relations are 
obtained from Eq.(57). 
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                                                 (63) 

 
The non-uniform Fluency DA function of degree 

2 )(ts  is reduced by substituting 2−d  and 2d of 
Eq.(63) for Eqs.(49)-(56) as follows. 
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 0, otherwise. 
(64) 

 
As is understood from Eq.(64), the 2 parameters 

1−d and 1d  are not fixed. 
 
4.2 Non-Uniform Fluency DA Function of 

Degree 2 with 0)(' 0 =ts  and 

∫
∞

∞−
→ .min)}('{ 2 dtts  

 
The non-uniform Fluency DA function of degree 2 is 
decided by using the criterion of 
 

 ∫
∞

∞−
→ .min)}('{ 2 dtts  

 

By substituting Eq.(64) for ∫
∞

∞−
dtts 2)}('{  , we get 

 

{ }
{ }

2

2

2
0 1

2
1 0

2 2

28
0 2 1 2 1 0 1 2 1 03( )

28
2 0 1 2 1 0 1 2 1 03( )

{ '( )} { '( )}

4( ) (4 5 ) 2

4( ) (4 5 ) 2 .

t

t

t t

t t

s t dt s t dt

t t d t t t d t t t

t t d t t t d t t t

−

−

∞

−∞ −

− − − − − − −−

−−

=

= − + + − − − +

+ − − − + + + −

∫ ∫

 
(65) 

 

Based on the criterion of ∫
∞

∞−
→ .min)}('{ 2 dtts ,the 

parameters 1−d and 1d  are fixed as follows: 
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Based on the geometric criterion of waveform, all of 
the four parameters 112 ,, ddd −−  and  2d  are fixed 
from  Eqs.(63) and (66), Therefore, the compactly 
supported non-uniform Fluency DA functions of 
degree 2 )(ts  is derived as follows: 
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   0,   otherwise. 
(67) 

 
Figures 3 demonstrates the non-uniform Fluency 

DA Function  of degree 2 )(ts  for sampling points 
,4,0,2,5 1012 ==−=−= −− tttt . 

Since the non-uniform Fluency DA function of 
degree 2 )(ts  at 0t t=  is obtained in Eq.(67), the 
interpolation of any signal u  with non-uniform 
sampling points { }k k

t ∞

=−∞
 in '3D  is also formulated.  

 

Fig.3 An example of the non-uniform fluency DA   
function s(t) 

 
[Proposition 2]  Let [ ] ( )DA ks t  denotes the 
non-uniform Fluency DA function of degree 2 at each 
non-uniform sampling point , ( 0, 1,...)kt t k= = ±  .   

Then any signal u  in '3D  is expressed as 
 

3 [ ]' , ( ) ( ) ( ),k DA kk
u D u t u t s t∞

=−∞
∈ = ⋅∑  

 
where each Fluency DA function [ ] ( )DA ks t  is 
expressed by eight quadratic piecewise polynomials  

{ }8
, 1
( )k l l

s t
=

 as follows. 
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 0,   otherwise. 
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By using Proposition 2, any signal u  with 

non-uniform sampling points { }k k
t ∞

=−∞
 in '3D  cab 

be interpolated.  
Figures 4 demonstrate an interpolation by using 

Proposition 2. 
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 Fig. 4 Interpolation by using the 

non-uniform fluency DA 
function 

 
 
5  Discussions 

 
This section discusses interpolation results by 

using the non-uniform Fluency DA function which 
is derived in subsection 3.2.  In order to evaluate 
their effectiveness, interpolation results by using 
cubic splines are also demonstrated.  

In the field of computer graphics, cubic splines 
have been often used to interpolate a sequence of 
sampled-values with non-uniform sampling points. 
This is because a cubic spline )(tu  interpolates the 
sampled-values with the most smooth in the sense of 

 

  { }

{ }

2

5/22

''( ) 2

1 '( )
{ ''( )} min .u t

u t
dt u t dt

∞ ∞

⎡ ⎤−∞ −∞+⎢ ⎥⎣ ⎦

≤ →∫ ∫               

(68) 
 

The curve smoothness 2{ ''( )}u t dt
∞

−∞∫  in Eq.(68) 

is an upper bound of square of curve curvature  . 
Figures 5 and 6 demonstrate interpolation results 

for a kind of step function and for a typical case, 
respectively. Interpolated curves by using the 
non-uniform Fluency DA functions are drawn with 

solid lines, and then those by using cubic splines are 
drawn with dotted lines. 
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Fig. 5  Interpolation results for step 

function 
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Fig. 6 Interpolation results for a typical 

case 
 
As are understood from these results, we draw 
interpolated curves with less overshoot or undershoot.   
   Furthermore, we evaluate the interpolated results 
from the view of curve length. For fig. 5, the ratio of 
curve length by cubic splines to curve length by 
proposed method is approximately 1.59. Furthermore, 
for fig. 6, the ratio is approximately 1.03. From these 
results, interpolated curves by non-uniform fluency 
DA functions pass through sampled-values shorter 
than those by cubic splines.   
 
 
6  Conclusions 
This paper proposed fluency DA functions as 
sampling functions for non-uniform sampling points, 

kt  2kt +1kt +  2kt −  1kt −  

[ ] 1( )DA ks t+[ ] 2 ( )DA ks t−  [ ] 1( )DA ks t−  

[ ] ( )DA ks t  
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each of which is composed with piecewise 
polynomials of degree 2. Each of them was designed 
based on geometric criterion of curve. The fluency DA 
functions of degree 2 generate smooth and undulate 
signals from a sequence of sampled-values. 
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