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Abstract: - In this paper a new pattern recognition methodology is described for the classification of the daily 
chronological load curves of power systems, in order to estimate their respective representative daily load 
profiles, which can be mainly used for load forecasting and feasibility studies of demand side management 
programs. It is based on pattern recognition methods, such as k-means, adaptive vector quantization, self-
organized maps (SOM), fuzzy k-means and hierarchical clustering, which are theoretically described and 
properly adapted. The parameters of each clustering method are properly selected by an optimization process, 
which is separately applied for each one of six adequacy measures: the error function, the mean index 
adequacy, the clustering dispersion indicator, the similarity matrix indicator, the Davies-Bouldin indicator and 
the ratio of within cluster sum of squares to between cluster variation. This methodology is applied for the 
Greek power system, from which is proved that the separation between work days and non-work days for each 
season is not descriptive enough.  
 
Key-Words: - Load profiles, clustering algorithms, adaptive vector quantization, fuzzy k-means, hierarchical 
clustering, k-means, self-organized maps, pattern recognition, adequacy measures  
 
1 Introduction 
In a deregulated electricity market, load profiles 
categorization can be useful to the power systems 
and their customers. The first ones can be used for 
load leveling, demand side management, fluctuation 
smoothing and load forecasting. It is an alternative 
solution for various problems of the conventional 
electrical power transmission and distribution 
systems, which can reduce the respective 
operational cost providing their customers with 
satisfactory services at low cost, particularly for 
special cases such as supply of discontinuous 
villages or autonomous islands [1], emergency 
power source [2], etc. The customers can participate 
into the competitive electricity market using demand 
side bidding mechanism [3] based on powerful 
technologies of the energy storage systems [4-5].  

In order to carry out this classification, the 
chronological load curves per year, season or month 
can be used. During the last years, a significant 
research effort has been devoted to load curves 
classification, in order to solve the short-term load 
forecasting of anomalous days [6-7] and to cluster 
the customers of the power systems [8-13]. The 
clustering methods used so far are the self-
organizing map [6-8], the “modified follow the 
leader” [8], the k-means [8], the fuzzy k-means [8-

10] and the average and Ward hierarchical methods 
[8-10]. These methods generally belong to pattern 
recognition techniques [11]. Alternatively, the 
customers classification problem can be solved by 
using data mining [12], wavelet packet 
transformation [13], frequency-domain data [14], 
stratified sampling [15] etc. For the reduction of the 
size of the clustering input data set Sammon map, 
principal component analysis and curvilinear 
component analysis have been proposed [8]. The 
most commonly used respective adequacy measures 
are the mean index adequacy [9], the clustering 
dispersion indicator [8-9], the similarity matrix 
indicator [9], the Davies-Bouldin indicator [7-9], the 
modified Dunn index [8], the scatter index [8] and 
the mean square error [10].  

The objective of this paper is to present a new 
methodology for the classification of the daily 
chronological load curves for power systems. 
Specifically, the respective load curves set is 
organized into well-defined and separate classes, in 
order to successfully describe the demand behavior 
of a power system. The proposed methodology 
compares the results obtained by certain clustering 
techniques (k-means with special weights 
initialization, adaptive vector quantization (AVQ), 
mono-dimensional and bi-dimensional self 
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organizing maps (SOM), fuzzy k-means and seven 
hierarchical agglomerative clustering methods) 
using six adequacy measures (mean square error, 
mean index adequacy, clustering dispersion 
indicator, similarity matrix indicator, Davies-
Bouldin  indicator, ratio of within cluster sum of 
squares to between cluster variation). The basic 
aspects of this methodology are:  

• the estimation of the typical days through 
the study period and the respective representative 
typical daily load profiles for the power system;  

• the modification of the clustering 
techniques for this kind of classification problem, 
such as the appropriate weights initialization for the 
k-means and fuzzy k-means; 

• the proper parameters calibration, such as 
the training rate of adaptive vector quantization, in 
order to fit the classification needs; 

• the comparison of the clustering algorithms 
performance for each one of the adequacy measures; 

• the selection of the proper adequacy 
measures. 

Finally, the results of the application of the 
developed methodology are thoroughly presented 
for the Greek power system for the summer of the 
year 2000, while the respective ones are collectively 
registered for the seasons (summer-winter) and 
years of the time period 1985-2000. It is mentioned 
that the proposed methodology is applicable to any 
power system, leading to reliable results.  

 
2 Proposed Pattern Recognition 
Methodology for the Classification of 
Load Curves of Power System 
The classification of daily chronological load curves 
of power system is achieved by applying the pattern 
recognition methodology, as shown in Fig. 1.  

The main steps are the following: 
• Data and features selection: The active and 

reactive energy values are registered (in MWh and 
Mvarh) for each time period in steps of 1 hour. The 
daily chronological load curves are determined for 
the study period. 

• Data preprocessing: The load diagrams are 
examined for normality, in order to modify or delete 
the values that are obviously wrong (noise 
suppression). If it is necessary, a preliminary 
execution of a pattern recognition algorithm is 
carried out, in order to track bad measurements or 
networks faults, which will reduce the number of 
the useful typical days for a constant number of 
clusters, if they are uncorrected. 

• Main application of pattern recognition 
methods: For the load diagrams, a number of 

clustering algorithms (k-means, fuzzy k-means, 
adaptive vector quantization, self-organized map 
and hierarchical clustering) is applied. Each 
algorithm is trained for the set of load diagrams and 
evaluated according to six adequacy measures. The 
parameters of the algorithms are optimized, if 
necessary. The developed methodology uses the 
clustering methods that provide the most 
satisfactory results. 

Data selection

Training process

Parameters' 
optimization

Data preprocessing

Evaluation process

Main applcation 
of pattern 
recognition methods

Short- & mid-term
load forecasting, etc

Load estimation 
after DSM application

Feasibility studies 
of DSM progams

PROPOSED METHODOLOGY

For each one of the next algortihms:
k-means, fuzzy k-means,   

7 hierchical agglomerative ones

Typical load diagrams & respective day classes 

Fig. 1.  Flow diagram of pattern recognition methodology 
for the classification of daily chronological load curves of 
power system 

 
The results of the developed methodology can be 

used for power system short-term and mid-term load 
forecasting, energy trades, techno-economic studies 
of the energy efficiency and demand side 
management programs and the respective load 
estimation after the application of these programs. 

 

3 Mathematical Modeling of 
Clustering Methods and Clustering 
Validity Assessment  
3.1 General  
In the case study of the chronological typical load 
curves of a power system a number of N analytical 
daily load curves is given. The main target is to 
determine the respective sets of days and load 
patterns. Generally N is defined as the population of 
the input vectors, which are going to be clustered. 
The ( 1 2, ,... ,... T

i dx x x x x=l l l l l )r  symbolizes the -th 
input vector and d its dimension, which equals to 24 

l
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(the load measurements are taken every hour). The 
corresponding set is given by { : 1,..., }X x N= =l

r
l . It 

is worth mentioning that ixl

d

 are normalized using 
the higher and lower values of all elements of the 
original input patterns set, in order to have better 
results from the application of clustering methods. 

Each classification process makes a partition of 
the initial N input vectors to M clusters. The j-th 
cluster has a representative, which is the respective 
load profile and is represented by the vector 

 of d dimension. The 
vector 

( 1 2, ,..., ,...
T

j j j ji jw w w w w=
r )

jwr

{ , 1,...kW w k M= =
r

 expresses the cluster center. The 
corresponding set is the classes set, which is defined 
by . The subset of input 
vectors

}
xl
r , which belong to the j-th cluster, is jΩ  

and the respective population of load diagrams is 
. For the study and evaluation of classification 

algorithms the following distance forms are defined: 
jN

a. the Euclidean distance between ,  input 
vectors of the set X: 

1l 2l

               ( ) ( )1 2
, i id x x x x−l l l l

r r
1 2

2

1

1 d

id =

= ∑             (1) 

b. the distance between the representative vector 
jwr  of j-th cluster and the subset jΩ , calculated as 

the geometric mean of the Euclidean distances 
between jwr  and each member of jΩ :  

             ( ) ( )21,
xj ∈Ω
∑
l
r

,
j

j j jd w d w x
N

Ω = l

r r r             (2) 

c. the infra-set mean distance of a set, defined as 
the geometric mean of the inter-distances between 
the members of the set, i.e. for the subset jΩ : 

               ( ) ( )21ˆ ,
2

j

j
x ∈Ω
∑
l
r

j
j

d d x
N

Ω = Ωl

r             (3) 

The basic characteristics of the three clustering 
methods being used are the following. 
 

3.2 K-means model 
The k-means clustering method groups the set of the 
N input vectors to M clusters using an iterative 
procedure. Initially the weights of the M clusters are 
determined. In the classical model a random choice 
among the input vectors is used [8], while in the 
developed algorithm the wji of the j-th center is 
initialized as: 

               (0) ( 1)j − ( 1)jiw a b M= + ⋅ −                    (4) 
where  and b  are properly calibrated parameters. 
During epoch t for each training vector 

a
xl
r  its 

Euclidean distances ( , )jd xl wr r  are calculated for all 

centers. The -th input vector is put in the set l ( )t
jΩ , 

for which the distance between xl
r  and the 

respective center is minimum. When the entire 
training set is formed, the new weights of each 
center are calculated as:   

                        
( )

( 1)
( )

1
t
j

t
j t

xj

wr x
N

+

∈Ω

= ∑
l

l
r

r                    (5)  

where ( )t
jN  is the population of the respective set 

( )t
jΩ  during epoch t. This process is repeated until 

the maximum number of iterations is used or the 
variation of the weights is not significant. The 
algorithm’s main purpose is to minimize the error 
function: 

                    (2
:

1

1 ,
k

N

k xJ d x w
N ∈Ω

=

= ∑ l
r

l
l

r r )                (6)                      

The main difference compared to the classical 
model is that the process is repeated for different 
pairs of (a,b). The best results for each adequacy 
measure are recorded for different pairs (a,b).  
 
3.3 Fuzzy k-means  
Each input vector xl

r  does not belong to only one 
cluster, but it participates to every j-th cluster by a 
membership factor jul , where: 

                  
1

1ju
M

j=

=∑ l ,                (7)  : 0 1,j ju u≤ ≤l l j∀

Theoretically, the membership factor gives more 
flexibility in the vector’s distribution. During the 
iterations the following objective function is 
minimized:   

                   ( , j )2

1 1

1 M N

fuzzy j
j

J u d x
N = =

= ⋅∑∑ l
l

wl

r r

)

          (8) 

The membership factors and the cluster centers 
are calculated in each epoch as: 

                   ( )
( )( )
( )(

1

1

,
1

,

t
M jt

j t
k k

d x w

d x w
+

=

= ∑ l

l

l

r r

r ru

( )

                  (9) 

         ( )( ) ( )( )1 1

1 1

N N
1t t t

j j jw u x+ + +

= =

⎛ ⎞= ⋅⎜ ⎟
⎝ ⎠
∑ l l
l l

r rq q
u∑ l        (10) 

where q is the amount of fuzziness in the range 
( )1,∞  which increases as fuzziness decreases. The 
weights of the clusters centers are initialized by (4), 
which is similar to the developed k-means. 
 

3.4 Adaptive vector quantization   
This algorithm is a variation of the k-means method, 
which belongs to the unsupervised one-layer neural 
networks. It classifies input vectors into clusters by 
using a competitive layer with a constant number of 
neurons. During epoch t each input vector xl

r  is 
randomly presented and its respective Euclidean 
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distances from every neuron are calculated. The 
weights of the winning neuron (with the smallest 
distance) are updated as: 
               (11) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )1t t t

j j jw n w n t x w nη+ = + ⋅ −l
r r r r

where n is the number of input vectors, which have 
been presented during the current epoch, 

( )0 0.5, ,jiw = ∀j i  and  is the learning rate 
according to: 

( )tη

                    ( ) ( )0 0expt t Tη minη η η= ⋅ − >               (12) 
where 0η , minη and 0Tη  are the initial value, the 
minimum value and the time parameter respectively. 
The remaining neurons are unchangeable for xl

r , as 
introduced by the Kohonen winner-take-all learning 
rule [14-15]. This process is repeated until either the 
maximum number of epochs is reached or the 
weights converge or the appropriate error function is 
not improving. 
 
3.5 Hierarchical agglomerative algorithms  
Agglomerative algorithms are based on matrix 
theory [11]. The input is the  dissimilarity 
matrix 

N N×
0P . At each level t, when two clusters are 

merged into one, the size of the dissimilarity matrix 
Pt becomes ( ) ( )N t N t− × − . Matrix Pt is obtained 
from Pt-1 by deleting the two rows and columns that 
correspond to the merged clusters and adding a new 
row and a new column that contain the distances 
between the newly formed cluster and the old ones. 
The distance between the newly formed cluster 

(the result of merging  and qC iC jC ) and an old 
cluster sC  is determined as: 

      
( ) ( ) ( )

( ) ( ) ( )
, ,

, ,

q s i i s j j s

i j i s j s

d C C a d C C a d C C

b d C C c d C C d C C

= ⋅ + ⋅

+ ⋅ + ⋅ −

,

,
     (13) 

where ,ia ja ,  and  correspond to different 
choices of the dissimilarity measure. It is noted that 
in each level t the respective representative vectors 
are calculated by (4).  

b c

The basic algorithms, which are going to be used in 
our case, are: 

• the single link algorithm (SL) -it is obtained 
from (13) for ,0.5i ja a= = 0b =  and : 0.5c = −

                (14) ( ) ( ) ({, min , , ,q s i s j sd C C d C C d C C= )}

)}

• the complete link algorithm (CL) -it is 
obtained from (13) for ,  and 

: 
0.5i ja a= = 0b =

0.5c =
                (15) ( ) ( ) ({, max , , ,q s i s j sd C C d C C d C C=

• the unweighted pair group method average 
algorithm (UPGMA): 

( ) ( ) ( ){ } ( ), , ,q s i i s j j s i jd C C n d C C n d C C n n= ⋅ + ⋅ + (16) 

where  and  are the respective members 
populations of clusters  and . 

in jn

iC jC
• the weighted pair group method average 

algorithm (WPGMA): 
             ( ) ( ) ( ){ }, 0.5 , ,q s i s j sd C C d C C d C C= ⋅ +      (17) 

• the unweighted pair group method centroid 
algorithm (UPGMC): 

( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

( )

1

1 1 1

2

,

, ,

q s

i i s j j s i
i j

i j i j

d C C

n d C C n d C C d C C
n n

n n n n
−

=

⋅ + ⋅
⋅ ⋅

+ +

, j (18) 

where  ( ) ( ) 21 ,q s q sd C C w w= −
r r  and qwr  is the 

representative center of the q-th cluster (eq. 5). 
• the weighted pair group method centroid 

algorithm (WPGMC): 

     ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )1 1 1

1 , ,
,

2 4
i s j s i j

q s

d C C d C C d C C
d C C

+
= −

,
  (19) 

• the Ward or minimum variance algorithm 
(WARD): 

               

( ) ( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( ) ( )
( )

2

2 2

2 ,

, ,

, i s i s

j s j s s i j

q s
i j s

i j s

n n d C C

n n d C C n d C C

d C C
n n n

n n n

+ ⋅

+ ⋅ − ⋅

=
+ +

+
+ +

     (20) 

where  ( ) ( ) ( ) ( ) ( ) ( )2 1, ,i j i j i j i jd C C n n n n d C C= ⋅ + ⋅ . 
 
3.6 Self-Organized maps  
The Kohonen SOM [16-19] is a topologically 
unsupervised neural network that projects a d-
dimensional input data set into a reduced dimension 
space (usually a mono-dimensional or bi-
dimensional map). It is composed of a predefined 
grid containing 1 2M M×  d-dimensional neurons kwr , 
which are calculated by a competitive learning 
algorithm that updates not only the weights of the 
winning neuron, but also the weights of its neighbor 
units in inverse proportion of their distance. The 
neighborhood size of each neuron shrinks 
progressively during the training process, starting 
with nearly the whole map and ending with the 
single neuron. The training of SOM is divided into 
two phases: 

• rough ordering, with high initial learning rate, 
large radius and small number of epochs, so that 
neurons are arranged into a  structure which 
approximately displays the inherent characteristics 
of the input data, 

• fine tuning, with small initial learning rate, 
small radius and higher number of training epochs, 
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in order to tune the final structure of the SOM. 
The transition of the rough ordering phase to fine 

tuning one is happened after 
0sT epochs. 

Once all vectors of neurons  have been 
initialized, the SOM training starts by first choosing 
an input vector 

kwr

xl
r , at t epoch, randomly from the 

input vectors’ set. The Euclidean distances between 
the n-th presented input pattern xl

r  and all kwr  are 
calculated, so as to determine the wining neuron i′  
that is closest to xl

r . The j-th reference vector is 
updated according to: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )1t t t
j j i j jw n w n t h t x w nη ′+ = + ⋅ ⋅ −l
r r r r  (21) 

where  is the learning rate according to eq. 12. 
During the rough ordering phase 

( )tη

,r Tηη  are the initial 
value and the time parameter respectively, while 
during the fine tuning phase the respective values 
are ,f Tηη . The  is the neighborhood 
symmetrical function, that will activate the j neurons 
that are topologically close to the winning neuron 

, according to their geometrical distance, who will 
learn from the same 

( )i jh t′

i′
xl
r . In this case the Gauss 

function is proposed: 
                     ( ) ( )( )2 2exp 2i j i jh t d tσ′ ′⎡ ⎤= − ⋅⎣ ⎦              (22) 

where i j i jd r r′ ′= −
r r  is the respective distance 

between  and j neurons,  are the 
respective co-ordinates in the grid, 

is the decreasing neighbor-

hood radius function where 

i′

expt = ⋅

( ,j j jr x y=
r

0

)

)T( ) ( 00 /t σσ σ −

σ  and 
0

Tσ  are the 
respective initial value and time parameter of the 
radius correspondingly. 

The case studies deal with the matters of the 
shape of the map, the parameters calibration and the 
weights initialization. Especially, the multiplicative 
factors φ  and ξ  are introduced -without decreasing 
the generalization ability of the parameters 
calibration: 

   
0sT T

0η
φ= ⋅     (23)           

0 0 0/ lnT Tσ ηξ σ= ⋅        (24) 

The supposed best trained SOM is the one trained 
with a number of t epochs for which the following 
index Is get the minimum value [7]: 

                 ( )( ) ( ) ( )Is t J t ADM t TE t= + +              (25) 
where ( )J t  is the respective quantization error -
given by eq. (6)-, ( )ADM t

2i′

 is the average distortion 
measure -given by eq. (26)- and is the 
topographic error which measures the distortion of 
the map as the percentage of input vectors for which 
the first  and second  winning neuron are not 

neighboring map units -given by eq. (27): 

( )TE t

1i′

           ( ) ( ) ( )2
,

1 1

,
N M

i x j j
j

ADM t h t d x w N′→
= =

= ⋅∑∑ l
r

l
l

r r      (26) 

                            ( )1 2
1

,
N

TE neighb i i N
=

′ ′= ∑
l

                (27) 

It is noted that for each input vector 
( )1 2,neighb i i′ ′ equals to 1, if  and  neurons are not 

neighbors, either 0. 
1i′ 2i′

 
3.7 Adequacy measures  
In order to evaluate the performance of the 
clustering algorithms and to compare them with 
each other, six different adequacy measures are 
applied. Their purpose is to obtain well-separated 
and compact clusters, in order to make the load 
curves self explanatory. The definitions of these 
measures are the following: 

1. Mean square error or error function (J) 
[10] given by eq. 6.  

2. Mean index adequacy (MIA) [9], which is 
defined as the average of the distances between each 
input vector assigned to the cluster and its center: 

                  ( )2

1

1 ,
M

j j
j

MIA d w
M =

= Ω∑ r                  (27) 

3. Clustering dispersion indicator (CDI) [9], 
which depends on the mean infra-set distance 
between the input vectors in the same cluster and 
inversely on the infra-set distance between the class 
representative load curves: 

                ( ) ( )2

1

1 ˆ ˆ
M

k
k

CDI d d W
M =

= Ω∑               (28) 

4. Similarity matrix indicator (SMI) [9], which 
is defined as the maximum off-diagonal element of 
the symmetrical similarity matrix, whose terms are 
calculated by using a logarithmic function of the 
Euclidean distance between any kind of class 
representative load curves: 

( )( ){ }1
max 1 1 ln ,p qp q

SMI d w w
−

〉
⎡ ⎤= − ⎣ ⎦

r r : p, q=1,…,M   (29) 

5. Davies-Bouldin indicator (DBI) [20], which 
represents the system-wide average of the similarity 
measures of each cluster with its most similar 
cluster: 

   
( ) ( )

( )1

ˆ ˆ1 max
,

M
p q

p qk p q

d d
DBI

M d w w≠=

⎧ ⎫Ω + Ω⎪ ⎪= ⎨ ⎬
⎪ ⎪⎩ ⎭

∑ r r : p,q=1,…,M  (30) 

6. Ratio of within cluster sum of squares to 
between cluster variation (WCBCR) [21], which 
depends on the sum of the distance square between 
each input vector and its cluster representative 
vector, as well as the similarity of the clusters 
centres: 
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( ) ( )2 2

1 1
, ,

k

M M

k p
k x q p

WCBCR d w x d w w
= ∈Ω ≤ <

= ∑ ∑ ∑
l

l
r

r r r r
q    (32) 

The success of the various algorithms for the 
same final number of clusters is expressed by 
having small values of the adequacy measures. By 
increasing the number of clusters all the measures 
decrease, except of the similarity matrix indicator. 
An additional adequacy measure could be the 
number of the dead clusters, for which the sets are 
empty. It is intended to minimize this number. It is 
noted that in eq. (6), (29) - (32), M is the number of 
the clusters without the dead ones. 

 
4 Application of the Proposed 
Methodology  
4.1 Case study  
The developed methodology is applied on the Greek 
power system, analytically for the summer of the 
year 2000 and concisely for the period of years 
1985-2002 per epoch and per year. The data used 
are hourly load values for the respective period, 
which is divided into two epochs: summer (from 
April to September) and winter (from October to 
March of the next year). In the case of the summer 
of the year 2000, the respective set of the daily 
chronological curves has 183 members, from which 
none is rejected through data pre-processing. In the 
next paragraphs the application of each clustering 
method is analyzed. 

 
4.2 Application of the k-means 
The proposed model of the k-means method is 
executed for different pairs (a,b) from 5 to 25 
clusters, where a={0.1,0.11,…,0.45} and 
a+b={0.54,0.55,…,0.9}. For each cluster 1332 
different pairs (a,b) are examined. The best results 
for the six adequacy measures do not refer to the 
same pair (a,b) –as it is presented in Table 1. The 
alternative model is the classical one with the 
random choice of the input vectors during the 
centers’ initialization. For the classical k-means 
model 100 executions are carried out and the best 
results for each index are registered. The superiority 
of the proposed model applies in all cases of 
neurons, while a second advantage is the 
convergence to the same results for the respective 
pairs (a,b), which can not be achieved using the 
classical model. 

 

4.3 Application of the fuzzy k-means 
In the fuzzy k-means algorithm the results of the 
adequacy measures depend on the amount of 
fuzziness increment. In Fig. 2 SMI and WCBCR 
adequacy measures are indicatively presented for 

different number of clusters for three cases of 
q={2,4,6}. The best results are given by q=4 for J, 
MIA , CDI and WCBCR adequacy measures, by q=6 
for SMI and DBI indicators. It is noted that the 
initialization of the respective weights is similar to 
the proposed k-means. 
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Fig. 2.  SMI and WCBCR for the fuzzy k-means 
method for the set of 183 load curves of the 
summer of the year 2000 with q=2, 4, 6 for 5 to 25 
clusters 

 

4.4 Application of hierarchical agglomerative 
algorithms 
In the case of the seven hierarchical models the best 
results are given by the WARD model for J, by the 
UPGMC model for MIA, by the WPGMA model for 
CDI, by the UPGMC and UPGMA models for SMI, 
by the UPGMC and WPGMC models for DBI, by 
the UPGMC, UPGMA, WPGMC and WPGMA 
models for WCBCR adequacy measure, according to 
Fig. 3. 
 
4.5 Application of adaptive vector 
quantization  
The initial value 0η , the minimum value minη and the 
time parameter 0Tη  of learning rate must be properly 
calibrated. For example in Fig. 4 the sensitivity of 
the mean index adequacy MIA to the 0η  and 0Tη  
parameters is presented for 90 experiments. The best 
results of the adequacy measures are not given for 
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the same 0η  and 0Tη , according to the results of 
Table 1. The minη  value does not practically improve 
the neural network’s behavior assuming that it 
ranges between 10-5 and 10-6. 
 
4.6 Application of self-organized map  

Although the SOM algorithm is theoretically well 
defined, there are several issues that need to be 
solved for the effective training of SOM. The major 
problems for the mono-dimensional SOM are: 
♦  the proper termination of the SOM’s 

training process, which is solved by minimizing the 
index Is (eq. 27).  
♦  the proper calibration of (a) the initial value 

of the neighborhood radius 0σ , (b) the 
multiplicative factor φ  between 

0sT (epochs of the 

rough ordering phase) and 
0

Tη (time parameter of 
learning rate), (c) the multiplicative factor ξ  
between 

0
Tσ  (time parameter of neighborhood 

radius) and 
0

Tη , (d) the proper initial values of the 
learning rate rη and fη  during the rough ordering 
phase and the fine tuning phase respectively. These 
are suitably selected through extended research of 
the parameters’ values, like the aforementioned one 
for the parameters 0η and 

0
Tη of the AVQ method. 

♦  the proper initialization of the weights of 
the neurons. Three cases are examined through 
preliminary executions: (a)  (which 
finally presents the best behaviour) (b) the random 
initialization of each neuron’s weight, (c) the 
random choice of the input vectors for each neuron.  
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Fig. 3.  Adequacy measures for the 7 hierarchical clustering algorithms for the set of 183 load 
curves of the summer of the year 2000  for 5 to 25 clusters  
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The optimization process for the mono-
dimensional SOM parameters is repeated for any 
population of clusters. 

In the case of the bi-dimensional SOM the 
additional issues that must be solved, are the shape, 
the population of neurons and their respective 
arrangement.  The rectangular shape of the map is 
defined with rectangular or hexagonal arrangement 
of neurons. It must be mentioned that the two kinds 
of arrangement practically give the same results. 
The population of the neurons is recommended to be 
5 N×  to 20 N×  [18-19]. The height / width ratio 

1 2M M of the rectangular grid can be calculated as 
the ratio between the two major eigenvalues of the 
covariance matrix of the input vectors set. The 
initialization of the neurons can be a linear 
combination of the respective eigenvectors of the 

two major eigenvalues or can be equal to 0.5 giving 
equivalent results substantially.  

In the case of the set of 183 load curves for the 
summer of the year 2000 the map can have 67 
( 5 183≅ × ) to 270 ( 20 183≅ × ) neurons. Using the 
ratio between the two major eigenvalues the 
respective value is 22.739 (=0.26423/0.01162) and 
the proposed grids can be 46x2 and 68x3. 
Practically the clusters of the bi-dimensional map 
can not be directly exploited because of the size and 
the location of the neurons into the grid (see Fig. 5). 

This problem is solved by the application of a 
basic classification method -like the proposed k-
means- for the neurons of the bi-dimensional SOM 
[7]. 
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Fig. 5.  46x2 SOM after the application of the proposed k-means method at the neurons of 
SOM for the set of 183 load curves of the summer of the year 2000  for 10 neurons 
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The adequacy measures are calculated using the 
load curves of the neurons which form the 
respective clusters of the basic classification method 
and the best results are given by the 46x2 grid for all 
adequacy measures for different pairs (a,b) of the k-
means method. 

 

4.7 Comparison of clustering models & 
adequacy indicators 
In Fig. 6 the best results achieved by each clustering 
method (proposed k-means, fuzzy k-means, 
adaptive vector quantization, hierarchical algorithms 
and self-organized maps) are depicted.  
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h. Dead clusters for proposed k-means method 

Fig. 6.  The best results of each clustering method for the set of 183 load curves of the summer of 
the year 2000 for 5 to 25 clusters  
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The proposed k-means model has the smallest 
values for the MIA and WCBCR indicators, the bi-
dimensional SOM (with the application of the 
proposed k-means at the second level) for the J and 
SMI indicator and the adaptive vector quantization 
for DBI indicator. The proposed k-means model and 
the bi-dimensional SOM give equivalent results for 
the CDI indicator.  All indicators -except DBI- 
exhibit improved performance, as the number of 
clusters is increased. Observing the number of dead 
clusters for the proposed k-means model (Fig. 6.h) it 
is obvious that the use of WCBCR indicator is 
slightly superior to MIA and J indicators. It is also 
noted that the basic theoretical advantage of the 
WCBCR indicator is that it combines the distances 
of the input vectors from the representative clusters 
and the distances between clusters, covering also the 
J and CDI characteristics. The behavior of DBI and 
SMI indicators for different clustering techniques 
appears significant variability. For the above 
reasons the proposed indicator is WCBCR.    

The improvement of the adequacy indicators is 
significant until 10 clusters. After this value the 
behavior of the most indicators is gradually 
stabilized. It can also be estimated graphically by 
using the rule of the “knee”, which gives values 
between 8 to 10 clusters (see Fig. 7). In Table 1 the 
results of the best clustering methods are presented 
for 10 clusters, which is the finally proposed size of 
the typical days for this case.   

Having also taken into consideration that the 
analogy of the computational training time for the 
under study methods is 0.05:1:24:28:36:50 
(hierarchical: proposed k-means: mono-dimensional 
SOM: AVQ: fuzzy k-means: bi-dimensional SOM), 
the use of the hierarchical and k-means models is 
proposed. It is mentioned that the computational 
training time for the proposed k-means method is 
approximately 20 minutes for a Pentium 4, 1.7 GHz, 
768 MB. 
 

TABLE 1 
COMPARISON OF THE BEST CLUSTERING MODELS FOR 10 CLUSTERS FOR THE SET OF 183 LOAD CURVES OF 

THE SUMMER OF THE YEAR 2000 FOR THE GREEK POWER SYSTEM 
Adequacy Measure Methods -Parameters 

J MIA CDI SMI DBI WCBCR  
Proposed k-means  0.01729 0.02262 0.1778 0.7331 2.0606 0.002142 

a- b  parameters 0.26 – 
0.39 0.15-0.44 0.45-0.45 0.10-0.78 0.15-0.43 0.14-0.61 

Classical k-means  0.01934 0.02434 0.1935 0.7549 2.7517 0.002346 
AVQ  0.01723 0.02819 0.2615 0.7431 1.9973 0.004145 

00 min Tηη η− −  parameters 0.5-5x10-7 

-1000 
0.4-5x10-7 

-4000 
0.5-5x10-7 

-5000 
0.4-5x10-7 

-2000 
0.8-5x10-7 

-1000 
0.4-5x10-7-

4000 
Fuzzy k-means  0.02208 0.03036 0.25328 0.7482 2.1936 0.003894 

q- a- b  parameters 4-0.22-
0.46 

4-0.18-
0.62 

4-0.18-
0.70 

6-0.12-
0.62 

6-0.14-
0.74 4-0.18-0.62 

CL 0.01960 0.02974 0.2636 0.7465 2.4849 0.004233 
SL 0.06249 0.04435 0.2950 0.7503 2.3509 0.006103 

UPGMA 0.02334 0.02885 0.2544 0.7423 2.2401 0.003186 
UPGMC 0.02200 0.02847 0.2603 0.7455 2.1934 0.003412 
WARD 0.01801 0.02858 0.2645 0.7635 2.5964 0.004227 

WPGMA 0.02094 0.02743 0.2330 0.7373 2.2638 0.002619 
WPGMC 0.02227 0.02863 0.2418 0.7378 2.1498 0.003008 

Mono-dimensional SOM 0.02024 0.03043 0.3366 0.7752 3.1656 0.007126 

00 f r Tησ φ ξ η η− − − − −  

parameters 

10-1.0-0.6-
0.15-10-3-

1500 

10-2.0-0.2-
0.10-10-3-

1750 

10-1.0-0.6-
0.15-10-3-

1500 

10-1.0-0.6-
0.15-10-3-

1500 

10-1.0-0.6-
0.10-10-3-

1500 

10-2.0-0.2-
0.10-10-3-1750 

2D SOM 46x2 using proposed 
k-means for classification in a 

2nd level 
0.01685 0.02697 0.1785 0.7271 2.2572 0.002459 

00 f r Tησ φ ξ η η− − − − − -a- b  

parameters 

46-1.0-1.0-
0.30-10-3-
500-0.28-

0.36 

46-1.0-1.0-
0.30-10-3-
500-0.15-

0.58 

46-1.0-1.0-
0.30-10-3-
500-0.44-

0.46 

46-1.0-0.2-
0.20-10-3-
500-0.10-

0.77 

46-1.0-0.2-
0.20-10-3-
500-0.44-

0.25 

46-1.0-1.0-
0.30-10-3-500-

0.15-0.58 
 

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS
G. J. Tsekouras, F. D. Kanellos, V. T. Kontargyri, 
I. S. Karanasiou, A. D. Salis, N. E. Mastorakis

ISSN: 1109-2734 1099 Issue 12, Volume 7, December 2008



0.000

0.005

0.010

0.015

5 7 9 11 13 15 17 19 21 23 2
Number of Clusters

W
C

B
C

5

R

 
Fig. 7.  Indicative estimation of the necessary clusters for the typical load daily chronological curves of 
the summer of the year 2000 for the WCBCR adequacy indicator 

 
 
4.7 Representative daily load curves of the 
summer of the year 2000 for the Greek 
power system 
The results of the respective clustering for 10 
clusters using the proposed k-means model with the 
optimization of the WCBCR indicator are presented 
in Table 2 (total number of days per cluster & 
number of days per cluster & per day of week -
Monday, Tuesday, etc-), Table 3 (calendar of the 
summer of the year 2000 with the kind of cluster) 
and Fig. 8 (representative load curves per cluster). 
Additionally, in Fig. 8 the confidence limits of the 
variations (mean value ± standard deviation) are 
presented and this has a probability of occurrence 
equal to 68.27% assuming a normal distribution. 

 
TABLE 2 

RESULTS OF THE PROPOSED K-MEANS MODEL WITH 
OPTIMIZATION TO WCBCR  FOR 10 CLUSTERS FOR A SET 

OF 183 LOAD CURVES OF THE SUMMER OF THE YEAR 2000 
FOR THE GREEK POWER SYSTEM 

Day (1 for Monday, 2 for 
Tuesday etc.) Load 

cluster 
1 2 3 4 5 6 7 

Days 
per 

cluster 
1 0 0 0 0 0 0 1 1 
2 1 0 0 0 1 0 0 2 
3 0 1 0 0 0 2 13 16 
4 9 8 9 8 7 12 2 55 
5 4 3 2 3 4 4 8 28 
6 4 6 6 4 3 7 1 31 
7 4 3 4 6 6 0 1 24 
8 4 3 2 3 3 2 0 17 
9 0 2 3 1 2 0 0 8 

10 0 0 0 1 0 0 0 1 
 

Specifically, the cluster 1 represents Easter, the 
cluster 2 Holy Friday and Monday after Easter, the 
cluster 3 the Sundays of April, May, early June and 
September, Holy Saturday and Labor day. The 
cluster 4 contains the workdays of very low demand 
(during April, early May and September) with 

normal temperatures (22-28oC) and Saturdays of 
April, May, early June and September, while the 
cluster 5 includes the workdays of low demand and 
Sundays of high peak load demand during the hot 
summer days. The cluster 6 represents the workdays 
of medium peak load demand and Saturdays of high 
peak load demand, while the clusters 7 to 10 mainly 
involves workdays with gradually increasing peak 
load demand. 
 
4.8 Application of the Proposed Methodology 
for the Greek Power System Per Season and 
Per Year for the time period 1985-2002 
The same process is repeated for the summers 
(April–September) and the winters (October-March) 
for years 1985-2002. The load curves of each season 
are qualitatively described by using 8-10 clusters. 
The performance of these methods is presented in 
Table 4 by indicating the number of seasons which 
achieve the best value of adequacy measure 
respectively. 

The comparison of the algorithms shows that the 
developed k-means method achieves a better 
performance for MIA, CDI and WCBCR measures, 
the bi-dimensional SOM model using proposed k-
means for classification in a second level for J and 
SMI indicators and the adaptive vector quantization 
for DBI adequacy measure. 

The methodology is also applied for each year 
during the period 1985-2002, where the load curves 
are qualitatively described by using 15-20 clusters. 
The respective performance is presented in Table 5 
by indicating the number of years which achieves 
the best value of adequacy measure respectively. By 
comparing the algorithms it is obvious that the 
developed k-means method achieves a better 
performance for MIA, CDI, DBI and WCBCR 
measures, the 2-D SOM model using the proposed 
k-means for classification in a second level for J 
indicator and the unweighted pair group method 
centroid algorithm for SMI index.  
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k. Cluster 10 
Fig. 8.  Typical daily chronological load curves for the set of 183 curves of the summer of the year 
2000 for the Greek power system using the proposed k-means model with optimization to WCBCR   
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TABLE 3 
CALENDAR FOR 10 CLUSTERS FOR A SET OF 183 LOAD CURVES OF THE SUMMER OF THE YEAR 2000 FOR THE 

GREEK POWER SYSTEM 
Month April May June July August September 
Day 
of 

Month 

Day 
of 

week 

Kind 
of 

cluster 

Day 
of 

week 

Kind 
of 

cluster 

Day 
of 

week 

Kind 
of 

cluster 

Day 
of 

week 

Kind 
of 

cluster 

Day 
of 

week 

Kind 
of 

cluster 

Day 
of 

week 

Kind 
of 

cluster 
1 6 4 1 2 4 6 6 6 2 7 5 6 
2 7 3 2 3 5 5 7 5 3 7 6 5 
3 1 4 3 4 6 4 1 8 4 7 7 4 
4 2 4 4 4 7 3 2 9 5 7 1 6 
5 3 4 5 4 1 5 3 9 6 6 2 6 
6 4 4 6 3 2 6 4 10 7 5 3 5 
7 5 4 7 3 3 6 5 9 1 7 4 5 
8 6 4 1 4 4 7 6 8 2 7 5 5 
9 7 3 2 4 5 6 7 7 3 7 6 4 

10 1 4 3 4 6 5 1 8 4 7 7 3 
11 2 4 4 4 7 4 2 9 5 7 1 5 
12 3 4 5 4 1 6 3 9 6 5 2 5 
13 4 4 6 4 2 6 4 8 7 5 3 5 
14 5 4 7 3 3 7 5 8 1 6 4 5 
15 6 4 1 4 4 8 6 6 2 4 5 5 
16 7 3 2 4 5 8 7 5 3 6 6 4 
17 1 4 3 4 6 5 1 7 4 7 7 3 
18 2 4 4 4 7 3 2 8 5 7 1 5 
19 3 4 5 4 1 4 3 8 6 6 2 6 
20 4 4 6 4 2 6 4 7 7 5 3 6 
21 5 4 7 3 3 6 5 7 1 7 4 6 
22 6 4 1 4 4 6 6 6 2 8 5 6 
23 7 3 2 5 5 7 7 5 3 8 6 4 
24 1 4 3 4 6 6 1 7 4 8 7 3 
25 2 4 4 5 7 5 2 8 5 8 1 4 
26 3 4 5 5 1 8 3 9 6 6 2 4 
27 4 4 6 4 2 7 4 9 7 5 3 4 
28 5 2 7 3 3 7 5 9 1 6 4 4 
29 6 3 1 5 4 7 6 8 2 6 5 4 
30 7 1 2 5 5 7 7 6 3 6 6 4 
31   3 6   1 8 4 6   

 
TABLE 4 

COMPARISON OF THE CLUSTERING MODELS FOR THE SETS OF LOAD CURVES OF THE GREEK POWER SYSTEM 
PER SEASON FOR THE TIME PERIOD 1985-2002 

Adequacy Measure 
Methods 

J MIA CDI SMI DBI WCBCR 
Proposed k-means 1 24 31 7 12 29 
Classical k-means 0 0 0 0 0 0 

AVQ 2 0 0 7 16 0 
Fuzzy k-means 0 0 0 0 0 1 

UPGMA 0 3 0 0 0 1 
UPGMC 0 7 0 2 5 3 
WPGMA 0 0 0 0 1 0 
WPGMC 0 3 0 0 2 2 

CL / SL / WARD / Mono-dimensional SOM 0 0 0 0 0 0 
Bi-dimensional SOM using proposed k-

means for classification in a 2nd level 34 0 6 21 1 1 
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TABLE 5 
COMPARISON OF THE CLUSTERING MODELS FOR THE SETS OF LOAD CURVES OF THE GREEK POWER SYSTEM 

PER YEAR FOR THE TIME PERIOD 1985-2002 
Adequacy Measure 

Methods 
J MIA CDI SMI DBI WCBCR 

Proposed k-means 0 8 18 0 13 14 
Classical k-means 0 0 0 0 0 0 

AVQ 1 0 0 1 3 0 
UPGMA 0 1 0 0 0 0 
UPGMC 0 6 0 14 1 2 
WPGMA 0 1 0 0 0 0 
WPGMC 0 1 0 0 0 2 

Fuzzy k-means / CL/ SL / WARD /  
Mono-dimensional SOM 0 0 0 0 0 0 

Bi-dimensional SOM using proposed k-
means for classification in a second level 17 1 0 3 1 0 

 
The main disadvantage of the load curves 

classification per year is that each cluster does not 
contain the same family of days during the time 
period under study. I.e. if 20 clusters are selected to 
represent the load demand behavior of the Greek 
power system per year, the 20th cluster will contain 
the workdays with the highest peak load demand of 
the winter for the years 1985-1992 and that of 
summer for the rest years. In order to avoid this 
problem, the classification per season is proposed. 

 
5 Conclusions 
This paper presents an efficient pattern recognition 
methodology for the study of the load demand 
behavior of power systems. The unsupervised 
clustering methods can be applied, such as the k-
means, fuzzy k-means, adaptive vector quantization 
(AVQ), mono-dimensional and bi-dimensional self 
organizing maps (SOM) and hierarchical methods. 
The performance of these methods is evaluated by 
six adequacy measures: mean square error, mean 
index adequacy, clustering dispersion indicator, 
similarity matrix indicator, Davies-Bouldin  
indicator, the ratio of within cluster sum of squares 
to between cluster variation. Finally the 
representative daily load diagrams along with the 
respective populations per each typical day are 
calculated. This information is valuable for the 
electric companies, because it facilitates the load 
forecasting and the techno-economic studies of 
demand side management programs.  

By applying the proposed methodology to the 
Greek power system the classification per season is 
suggested, where 8 to 10 clusters are necessary in 
order to describe satisfactory the daily load curves 
of each season (describing the year with two seasons 

-winter and summer). It is practically impossible to 
describe the load curves satisfactory dividing the 
respective days into work days and non-work days, 
as it has been done until now. It is also concluded 
that, generally, the optimal clustering technique is 
the developed k-means, while the optimal adequacy 
measure is the ratio of within cluster sum of squares 
to between cluster variation. 

The proposed methodology is applicable to any 
power system, either to active power, or reactive 
power, in any time period (day, week, etc.) and time 
step (15 minutes, 1 hour, etc.), leading to reliable 
results.   
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