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Abstract: - Wu Elimination Method is applied to obtain analytical solution of power flow equations without 
either extraneous roots or missing roots. The symbolic process of Wu Elimination is implemented by software 
MAPLE. A minor group of solutions is obtained under low load other than the major group of solutions. Based 
on computation, analytical V P ,  curves as well as the steady state operation area. The results are 
compared with the results of Homotopy Method. Discussion on unstable equilibrium points is presented which is 
potentially valuable for research on voltage stability and angle stability of complex power systems. 
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1 Introduction 
Wu Elimination Method (WEM) is proposed to solve 
simultaneous polynomial equations, and provide 
efficient algorithm to calculate not only with 
numbers but also with symbols. So far, WEM, also 
called the mechanized mathematics, has already 
been applied in the proof of theorems by machine in 
many theoretic aspects (mathematics, physics, etc.). 
WEM is able to enumerate all the solutions of 
polynomial equations without either extraneous or 
missing roots. The solutions are analytical and 
superior to numerical methods. Papers [1],[2] were 
on WEM applied in power system, and others in 
constrained dynamics [3] and in rotor dynamics [4]. 
This paper presents WEM applied in solving power 
flow equations. 

Newton-Ralfson method [5] and fast decoupled 
method [6], etc. are well known in solving power 
flow equations. Those numerical methods depend on 
the initial conditions and are not possible to obtain 
the unstable parts since the Jacobian matrix does not 
converge under those conditions. Power flow 
equations which are nonlinear exhibit multiple 
solutions [7]-[9]. Homotopy method was employed 
in [9]-[11] and genetic algorithms was applied in [12] 
to obtain all the possible solutions. An iteration 
method was newly proposed in [13] for low-voltage 
power flow solution. WEM can obtain all the 
solutions to simultaneous nonlinear equations, so as 
solutions to the power flow equations. 

Voltage stability is the most widespread power 
quality issue. Research on propagation of voltage 
fluctuation along practical power distribution 
systems is presented in [14].Continuation power 
flow is used in static voltage stability [15]. A novel 

approach is applied to determine the Hopf 
bifurcation point of dynamic voltage stability [16]. 
On basis of results obtained by WEM, the V P−  is 
discussed, and the voltage stability is analyzed in this 
paper. 
 
 
2 Basic Concept of WEM 
The basic concept of WEM is presented in this 
section. Comparison between WEM and Gaussian 
Elimination Method is discussed for clear 
comprehension of WEM. Furthermore, the process 
to apply WEM is given in this section. 
 
 
2.1 Wu Elimination Method and Gaussian 
Elimination Method 
Gaussian Elimination method is well known in 
solving linear equations. A set of triangular 
equations is obtained by elimination and equivalent 
to the original equation set. Then the triangular 
equation set is easy to be solved by simple 
substitution. The Wu Elimination is implemented by 
addition or subtraction of polynomials, after the 
process a set of triangular equations is obtained. The 
format of the triangular polynomial equation set is as 
follows:  
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where , , ,  are all the parameter 
variables in the polynomials above. 

1u 2u L n ru −

Wu Elimination intends to reduce the number of 
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parameters similar to Gaussian Elimination. 
However, the set of triangular equations is not 
exactly equivalent to the original set of equations 
during Wu Elimination which is different from the 
Gaussian Elimination. The solutions of the set of 
original equations are the solutions of the set of 
triangular equations, but not necessarily vice versa. 
The Wu Elimination is implemented by calculating 
the remainder of polynomials. 
 
2.2 Calculation of Characteristic Set in Wu 
Elimination 
The kernel of WEM is calculating the characteristic 
set ( ). The process of calculating the CS  is 
actually the process to eliminate the variables. 

CS

 

No

1PS PS=

Classify PSi

Form BSi

Re ( / )i i iRS md PS AS=

iRS = ∅

1 ( , )i i iPS PS RS+ =

Yes, i=k

kCS BS=  
Fig. 1 Flow chart of calculation of characteristic set. 

 
The procedure is composed by finite repeats of 

the steps as follows [17]: 
1 2{ , }kPS P P P= L  is denoted as . 1PS

In  round of elimination, the operation on 
 is as follows: 

thi
iPS
Step 1: Classify the polynomials in  by class 

which is determined by the variables in the 
polynomials. Polynomials with the same class are in 
the same group. 

iPS

Step 2: Form the basic set ( ). Select the 
polynomial with the lowest order exponent of the 
main variable in each group to form a triangular set 
and then transform the set into an ascending set. 

iBS

Step 3: Calculate the remainder set ( ) of  
about , which is denoted by . 
Then put  into  to get . That means 

. 

iRS
(md

iPS
)BSiBS

i PS=

Re /RS PS=

1iPS +iRS
( ,i RS

iPS

1PS + )i

If , which means the remainders of  
about  are zeroes, then  is the characteristic 
set of , denoted by ; Otherwise, continue to 
repeat the steps above. 

iRS = ∅

iBS
PS

iPS

iBS
CS

The process of elimination is described by the 
flow chart in Fig. 1. 
 
 
3 WEM Applied in Solving Power 
Flow Equations 
A power system contains  nodes, of which 1n + sn  
are PV  nodes, sn n−  are  nodes and one is 
the slack node. The power flow equations are 
denoted in Cartesian coordination. The voltage of 

 node is denoted as V e  

PQ

i i= +thi ijf ( 1j = − ) . All 
the power flow equations are in  order as 
follows: 

2nd

PQ  node: 

( ) (
1 1

1 1
0

n n

is i ik k ik k i ik k ik k
k k

P e G e B f f G f B e
+ +

= =
)− − − + =∑ ∑  (2a) 

( ) (
1 1

1 1

0,
n n

is i ik k ik k i ik k ik k
k k

Q f G e B f e G f B e
+ +

= =
)− − + + =∑ ∑  (2b) 

where 1,2, si n n= ⋅⋅⋅ − . 
PV  node: 

( ) (
1 1

1 1

0
n n

is i ik k ik k i ik k ik k
k k

P e G e B f f G f B e
+ +

= =
)− − − + =∑ ∑  (3a) 

2 2 2( )is i iV e f− + = 0,  (3b) 
where 1, 2,s si n n n n n= − + − + ⋅⋅⋅ ,  and  are 
the real part and imaginary part of  node’s 
admittance respectively. The power injection at 

ikG ikB
thi

PQ

isP
 

node  is denoted as , in which  
is the active power, is the reactive power. For 

i is isS P= +

isQ
isjQ

PV node, the voltage magnitude is a constant, 
denoted by isV θ∠  and the active power injection is 
denoted by . isP

The procedure of applying WEM in solving 
power flow equations is a process to solve the  
of the power flow equations. According to the 
calculation flow chart, power flow equations should 
be classified according to the class. For a power 
system with 

CS

1n +  nodes, there are  power flow 
equations containing variables which are denoted by 

, 

2n

1(e 1f , , 2e 2f ,  , L ne )nf . For convenience, 
suppose the sequence of eliminating variables is , 1(e

1f , , 2e 2f ,  , L en )nf , then all the power flow 
equations are classified into  groups according to 
the class of each equation. 

2r

The polynomial series is denoted by 
1 2 1 11 1 1 2 1 2 1 1 2 2

{ , , ; , ; ; , }
r rn n n n n n n n n nPS P P P P P P P
−+ + + + + + + + += L LL L L L , 

where  
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  (4) 

1 2 2 2 .rn n n n+ + + =L  
The main variable in the first group which 

contains  polynomials is . The main variable 
in the  group which contains  polynomials 
is . 

1n
thr

rf
2 2rn

1e
According to the calculation flow in Figure 1, 

select a polynomial with the lowest power exponent 
of the main variable in the  groups respectively 
to form the  of after classifying all the 
equations, then solve the remainder set which is 
denoted by  of  about , and then  
together with  is denoted by , which means 

  . Repeat the elimination operation 
until , that means the remainder of any 
polynomial in  about  is zero. At last, there 
are  polynomials in  which is denoted as 
follows: 

2r

iBS

i

1BS

1RS
PS

1)RS

iPS

PS

PS 1BS

2PS
1RS

2PS ( ,PS=

iRS

2n

= ∅

BS

1

2

2 1 1

2 1

( ) 0
( , ) 0

( , , , , ) 0
( , , , , , ) 0

n

n n

n n n r r

n n n r r

B f
B f e

B f e f e f
B f e f e f e

−

=⎧
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⎪ =⎪
⎪ =⎩

L
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    (5) 

iBS  is a set of triangular equations which is easy 
to solve. However,  is not equivalent to the 
original set of equations . In order to obtain the 
true solutions of , it is necessary to deal with the 
solutions of  according to the theorems in WEM. 
A three-node system below is an example used to 
explain the application of WEM specifically. 

iBS
PS

PS
iBS

 
 
4 Case Study 
Fig. 2 shows a three-node system [10], [18]. The 
power injection of each node and reactant of each 
branch are also showed in the figure. All the 
parameters are per unit value. Node 1 is a  node. 
The voltage of node 1 is unknown, denoted by 

. Node 2 is a 

PQ

1 1V e jf= + PV

2 2V e= +

 node. The voltage of 
node 2 is denoted by . WEM is applied 
to solve the power flow equations of the system 
shown in Fig. 2. 

1.0 0∠

 
Fig. 2  Three-node system. 

 
 
4.1 The calculation procedure 
According to (2)-(3), four equations about , , 

,  are as follows: 
1e 1f

2e 2f
 

2
1 1 1 2 1 2

2
1 1 1 2 12

2
2 1 1 2 1 2

2
1 1 2 1 2 1

3 1

 0.2 1.7214 0.6807 2.5187 1.0407

1.7214 0.6807 2.5187 1.8552

0.1 4.3739 0.6807 2.5187 1.0407

4.3739 0.6807 2.5187 1.8552

1.13430 0.6807

1

1

p e e e e f

f f f f e f

e

p f f e f f

e e f e e e

p e

= − − + + +

+ −

= − − + + +

+ +

= − +

− −

− −

2 1 2

2 1 2 1 2 2

2 2
4 2 2

2.5187

0.7536 .6807 2.5187 1.2351

1.00

0
e f e

e f f e f f

p e f
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+

= −

⎧
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪ + − −
⎪

−⎪⎩

f

  (6) 

By calculation, the sequence of eliminating 
variable is , , , .The process of solving 
Eq. (6) by WEM is as follows: 

1f

CLS

2f

1 2( )p

1e

CLS

2e

( p3( ) ) 4CLS p = = = , 4( ) 3CLS p = . 
Select  and  to form basic set , and 
calculate the remainder set , ; Then 

3p
(

2 1(PS p

4p 1BS

12 )R11R
= , , , , , . Select  and 

 to form basic set , and calculate the 
remainder set of  about . Repeat the 
procedure to obtain the  of ( , . It is 
necessary to mention that the kernel of the procedure 
is forming the basic set. As mentioned before, 
polynomial with low power exponent of main 
variable is the first choice to form basic set. So it is 
unnecessary to do some calculation which would 
create remainder with very high power exponent of 
main variable. 

2p 3p 4p

2PS

11 12R

4p
2

R

BS

CS

)

2BS

12R

1 2 3 4, , )p p p p

The Table 1 below shows the process to calculate 
the  of (6), in which  has been classified 
into groups separated by parentheses. 

CS iPS

The  of , , ,  is ,  
, . According to WEM theorems, the zero set 

of the equations can be expressed by the formula 

CS

)

1( p 2p 3p 4 )p 51(R 41R

12R 3 )p

(Zero PS  = ( / )Zero CS I  + ( , )iZero PS∑ I  [17]. 
Under accurate calculation condition, the zero set is 
obtained by eliminate extra roots from zero set of 

. However, due to the complexity of power flow CS

2jf
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equations and limit calculating ability of the 
software Maple, it is difficult to eliminate the 
extraneous roots under finite precision and the 
remainders of original equations on  are not 
void. 

CS

In order to obtain the solutions of original 
equations, the following method is used in the paper: 

first obtain the solutions of the , and then back 
substitute the solutions into the original equations to 
calculate the errors. Extraneous roots are taken off 
by setting a certain error. Analysis of the results 
shows that the results obtained by WEM in the way 
are correct and highly precise. 

CS

 
 

Table 1 
Solving CS of power flow equations of three-node system 

 
 

iPS  iBS  iRS  
1 

1 2 3 4( , , ), ( )p p p p  4 3( , )p p  11 1 1Re ( / )R md p BS=  

12 2 2Re ( / )R md p BS=  
2 

1 2 3 4 11 12( , , ), ( , , )p p p p R R  12 3( , )R p  21 4 2Re ( / )R md p BS=  

22 11 2Re ( / )R md R BS=  
3 

1 2 3 4 11 12( , , ), ( , , )p p p p R R 21( , )22R R

22R R

22R R

 22 12 3( , , )R R p  31 21 3Re ( / )R md R BS=  
4 

1 2 3 4 11 12( , , ), ( , , )p p p p R R 21 31( , , )R  31 12 3( , , )R R p  41 22 4Re ( / )R md R BS=  
5 

1 2 3 4 11 12( , , ), ( , , )p p p p R R 21 31 41( , , , )R R  41 12 3( , , )R R p  51 41 5Re ( / )R md R BS=  

 
Table 2 

 Solutions of three-node system by WEM 
 

 
1e  1f  2e  2f  

1 0.031676 -0.041021 0.923984 -0.382430 
2 0.967058 0.012746 0.996533 0.083196 
3 -0.005182 -0.238396 -0.489061 -0.872249 
4 -0.009146 -0.107354 -0.238492 -0.971144 
5 0.187180+j0.849019 0.823769+j0.177733 -1.010476+j0.066342 -0.243358-j0.275469 
6 0.187180-j0.849019 0.823769-j0.177733 -1.010476-j0.066342 -0.243358+j0.275469 

 
Table 3 

Solutions of three-node system by Homotopy method 
 

 
1E  1E *  2E  2E *  

Power system solutions (E and E* are conjugate pairs) 
1 0.031675-j0.041027 0.031675+j0.041027 0.923969-j0.382479 0.923969+j0.382479 
2 0.967058+j0.012747 0.967058-j0.012747 0.996533+j0.083196 0.996533-j0.083196 
3 -0.005173-j0.238416 -0.005173+j0.238416 -0.489059-j0.872251 -0.489059+j0.872251 
4 -0.009159-j0.107433 -0.009159+j0.107433 -0.238363-j0.971148 -0.238363+j0.971148 

None power system solutions (E and E* are not conjugate pairs) 
5 0.009447+j0.025249 0.364886+j1.672836 -0.735006-j0.177015 -1.285946+j0.309700 
6 0.364886-j1.672837 0.009447-j0.025249 -1.285945-j0.309669 -0.735006+j0.177016 

 
Table 4 

Comparison of complex results by WEM and Homotopy method 
 

 5 6 
 

1V  2V  1V  2V  
Wu  0.009447+j0.025250 -0.735007-j0.177015 0.364913-j1.672788 -1.285945-j0.309700 
Homotopy 0.009447+j0.025249 -0.735006-j0.177015 0.364886-j1.672837 -1.285945-j0.309669 
Difference 0+j0.000001 -0.000001+j0 0.000017+j0.00049 0-j0.000001 

 
 
4.2 Analysis of Results 
Set the digits as 50 when solving  by 

WEM.  in the  is a polynomial with the only 
variable , the highest order exponent being 40. So 
solve  first to obtain the 40 groups of solutions. 
Back substitute all the 40 groups of solutions to 1 2 3 4( , , , )p p p p

51R

2e
CS

CS
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obtain the solutions of the original set. Table 2 shows 
all the 6 groups of solutions obtained by WEM, in 
which all the solutions are displayed in 6 digits for 
convenience. 
Homotopy method is used to calculate power flow of 
the three-node system [10]. As shown in Table 3, 
there are 4 groups of power system solutions and 2 
groups of non power system solutions. By 
comparing results in Table 2 and Table 3, the 4 
groups of power system solutions are almost the 
same. As for the two groups of complex solutions in 
[10], the real part  and the imaginary part  of 
the voltage can not be separated from the results by 
Homotopy method. So add  and  obtained by 
WEM by the formula  to calculate  
and . Table 4 shows the comparison of complex 
results by the two methods. By comparison, it can be 
concluded that the results obtained by WEM and 
Homotopy method are almost the same. 

e f

e
V e= +

f
jf 1V

2V

 
 
5 Plotting analytical V  and V QP− −  
curves 
WEM can obtain all the solutions of power flow 
equations. Change the system operation condition to 
calculate the power flow by WEM while removing 
the complex results which do not satisfy the power 
system. Plot the analytical V P−  and  curves 
with all the results obtained by WEM. System 
operation stability can be analyzed through V P

V Q−

−  
and  curves. The procedure of plotting the 

 and  curves at  node in the 
three-node system is as follows. 

V Q−
PV − V Q− PQ

The active and reactive power injections are 
negative at the  node in the three-node system. 
In the paper, the absolute values of the active and 
reactive powers are used for convenience to plot and 
explain. 

PQ

In the three-node system, change  with 1P 1 0.1Q =  
to obtain all the power flow solutions to plot V P−  
curve at node 1, as shown in Fig. 3. When  is 
small, there are four groups of real solutions; as  
increases, two groups of the solutions tend to 
converge. When , the upper branch and 
the lower branch of curve 2 converge at one point. 
As  continues to increase, the remaining two 
groups of solutions also tend to converge. When 

, the upper branch and the lower branch of 
curve 1 converge at one point. Curve 3 and curve 4 
in Fig. 3 are the mean value of voltage (MVV) of 
curve 1 and curve 2, respectively, as changing . 

1P

1P

1P

1 0.278P =

1P

1.461 2P =

 

 
Fig. 3 V P−  curve with . 1 0.1Q =

 

 
Fig. 4 V Q−  curves with . 1 0.2P =

 
By analysis of V P−  curve in Fig. 3, the upper 

branches of curve 1 and curve 2 has similar changing 
trend. Further discussion should be made to make 
sure whether operational points in curve 2 are stable 
or unstable. The lower branches are clearly the 
unstable operation conditions. 

In the three-node system, change  with 1Q

1 0.2P =  to obtain all the power flow solutions to 
plot V Q−  curve at node 1, as shown in Fig. 4. The 
V Q−  curve is similar to V  curve. When P−

1 0.14Q 47= , the upper branch and the lower branch 
of curve 2 converge at one point. When 1Q 1.178= , 
the upper branch and the lower branch of curve 1 
converge at one point. Curve 3 and curve 4 in Fig. 4 
are the MVV of curve 1 and curve 2 respectively as 
changing . 1Q

The fitting curves in Fig. 5 show the relationship 
between  and  of operation limit 
conditions while , .The shadow area A 
in Fig. 5 is the set of all the steady state operation 
conditions while the shadow area B is the set of 

maxQ maxP
Q >0P > 0
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possible stable operation conditions with relatively 
high voltage under low voltage with light load. 

 

 
Fig. 5  Curves of . max maxQ P−

 
 
6 Properties of Jacobian matrix 
The relationship between power and voltage as well 
as angle could be expressed in the linearized 
equations as follows: 

P PV

Q QV

J JP
J

J JQ V V
θ

θ

θ θΔ Δ Δ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= =⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥Δ Δ Δ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

  (7) 

where  is the incremental change in bus active 
power;  is the incremental change in bus 
reactive power; 

PΔ
ΔQ

θΔ
VΔ
 is the incremental change in 

bus voltage angle;  is the incremental change in 
bus voltage magnitude. 

1[ ]R QV Q P PVJ J J J Jθ θ
−= −  is the reduced Jacobian 

matrix. 
By Schur’s formula[19], we could obtain the 

following equation: 
det( ) det( ) det( )P RJ J Jθ=    (8) 

The precondition of Schur formula is that 1
PJ θ
−  

exists. PJ θ  is proved to be strictly invertable under 
general power system condition and an inreducible 
diagonally dominant matrix in [20]. As a result, 
Jacobian matrix J  is singular when the reduced 
Jacobian matrix RJ  is singular. The conclusion is to 
judge the voltage stability by Jacobian matrix or by 
the reduced Jacobian matrix using  sensitivity 
method are equivalent. 

V Q−

The rank of the Jacobian matrix for the 
three-node system is three. Keep reactive power 
constant while changing active power to calculate 
the operational parameters , 1V 1θ , 2θ . When P is 
small, there are four groups of solutions; when P is 
large, there are only two groups of solutions. 

As shown in Table 5, when  (labeled 
as  with an arrow line in Fig. 3), 

1 0.27826P =

max1P det( )J  
corresponding to the two groups of solutions are 
almost zero; when 1 1.46P 22=  (labeled as  
with an arrow line in Fig. 3), corresponding to the 
two remaining groups of solutions are almost zero. 
The first, second, third and fourth columns in Table 5, 
Table 6 and Table 7 are corresponding with the I, II, 
III, IV branches in Fig. 3, respectively. 

max 2P

V Q−  sensitivity analysis is used to measure the 
degree of system stability. 

Let 0PΔ =

QV

, then , where RQ J VΔ = Δ

[RJ J= −  1 ]Q P PVJ J Jθ θ
− . So . 1

RV J −Δ = ΔQ 1
RJ −  is 

the reduced V Q−  Jacobian matrix in which  
diagonal element is the  sensitivity at bus . 
When 

thi
iV −Q

V Q−  sensitivity is positive, the system is 
stable; the smaller the sensitivity, the more stable the 
system. Oppositely, when V  sensitivity is 
negative, the system is unstable. 

Q−

The 1
RJ −  of three-node system is first order matrix. 

So the V Q−  sensitivity equals the determinant of 
the matrix. The results are shown in Table 6 by 
which the degree of stability under different 
operation conditions can be measured. 

 
Table 5  

Determinant of Jacobian matrix with 1 0.1Q =  
 

P 1 2 3 4 
0.1 49.523 -0.94215 0.26508 -0.58195 
0.2 47.377 -0.68007 0.32121 -0.87177 

0.2783 45.58 -0.00193 0.00192 -1.1033 
0.4 42.581   -1.4355 
0.8 30.908   -2.324 
1.2 15.948   -3.2417 
1.4 6.0196   -2.8313 

1.4622 0.026957   -0.02684 
 

As shown in Table 6, when , the 
number of the groups of solutions changes from 4 to 
2; when P there is no solution of the power 
flow equations. The V Q

0.2782P >

1.4622> , 
−  s vities in the 1st 

and 2nd column are positive, so the system is stable. 
The V Q

ensiti

−  sensitivities in 3rd and 4th column are 
negative, so the system is unstable. The sensitivity is 
very large when reaching the stability limit. Even 
very small QΔ  would lead to large change of the 
voltage. 

Table 7 shows the sign of det( )J , det( )PJ θ  and 
det( )RJ  under different operational conditions in 
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Figure 3. 
Analyze the changing process of det( )J  first 

which is corresponding to operation conditions, as 
shown in curves 1 in Figure 3: det( ) 0J > , 
corresponding to the upper branch of curve 1, as P 
increases; det( ) 0J = , when P reaches the limit. In 
other words, J  is singular; det( ) 0J < , 
corresponding with the lower branch of curve 1. The 
changing process of det( )RJ  is similar with that of 
det( )J , while det( P )J θ  remains positive during the 

s. 
The c

proces
hanging process of det( )J  which is 

corresponding to operational conditions, as shown in 
curves 2 in Figure 3 is that: det( ) 0J < , 
corresponding with the upper branch of curve 2, as P 
increases; det( ) 0J = , when P reaches the limit. In 
other words, J  is singular; det( ) 0J > , 
corresponding with the lower branch of curve 2. The 
changing process of det( )RJ−  is similar with that of 
det( )J , while det( P )J θ  remains negative during the 

s. proces
 

Table 6 
Determinant of red  Jacobian matrix uced V −Q

0.1with 1Q =  
 

P 1 2 3 4 
0 0.2 0.6 -0.4 30 -0.1 27 .1 0650 2638 72 66
0.2 0.20889 0.81873 -0.58465 -0.11176 

0.  

1.  

2783 0.21113 196.560 -196.300 -0.09018 
0.4 0.21539   -0.07315 
0.8 0.24007   -0.0632 
1.2 0.31740   -0.11914 
1.4 0.54430   -0.34211 
4622 71.74   -71.522 

 
Table 7 

The sign of det( )J , det( P )J θ ,and det( )RJ  with 

 1 2 3 4 
1Q 0.1=  

det )(J  + − + − 
det( P )J θ  + − − + 
det( )RJ  + + − − 

 
By WEM, properties of Jacobian matrix are 

thoroughly analyzed above. The V Q−  sensitivities 
corresponding with the I and II branches in V P−  
curve are positive. However, the properties shown in 

Table 5 and Table 7 are not the same, indicating 
different operational mode of power system. 
 
 
7. Analysis of Equilibriums 

 static voltage 

 5, s

le stability are two 
asp

Analysis in sections above focuses on
stability. On basis of calculation, V P−  curve with 
four branches is obtained in section howing that 
upper branches and lower branches with similar 
changing trend respectively. Through analysis of the 
Jacobian in section 6, further discussion should be 
made on these equilibriums.  

Voltage stability and ang
ects of power system stability. The relationship 

between the two aspects is discussed [21]. A general 
energy function frame is presented for voltage and 
angle stability [22]. Since all the solutions of power 
flow equations could be obtained by WEM, it’s 
convenient to analyze the operational mode of 
system. On the basis of the three-node system in Fig. 
1, PV node connects with a generator denoted by a 
simple model compromising an internal voltage 
behind an effective reactance, as shown in Fig. 6. 
The results are denoted in polar coordinate form 
shown in Table 8, where gV and gθ  represent the 
amplitude and angle of the internal voltage. 

1.0 0∠

 
Fig. 6 Three-node system with a generator 

Tab  8 
System equilibr ined by WEM 

 
 

 
le

iums obta

/(°) gV  gθ /(1V  1θ /(°) 2θ °) 
1 0.05 -22.48 1.2774 -21.14 2 -52.3 
2 0.108 -94.8 -103.8 1.4527 -102.61 
3 0.238 -91.2 -119.3 1.4564 -118.10 
4 0.967 0.76 4.72 0.9989 6.49 

 
Analysis of the relationship between voltage and 

angle stability is presented in [23], showing that the 
relationship could be linked by the unstable 
equilibrium points (UEP) which are classified into 
voltage stability mode with low voltage- small angle 
and angle stability mode with high voltage-large 
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angle. The first Equilibrium in Table 8 is voltage 
stability mode UEP, corresponding with point in IV 
branch in V P−  curve; the second equilibrium is 
with low bu oltage-large angle, corresponding 
with point in III branch in V P−  curve; the third 
equilibrium is angle sta y mode UEP, 
corresponding with point in II branch in V P

s v

bilit
−  

curve; the fourth equilibrium is the stable operational 
mode corresponding with point in I branch in V P−  
curve. 

 

 
Fig. 7 1 1Pθ −  curve  

 
Fig. 7 displays the locus curves of variation in the 

PQ

 

 bus angle with load. The arrows indicate the 
changing direction. The II branch is with large angle, 
corresponding with II branch in V P−  curve, 
indicating angle instability. 
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(b) 

Fig. 8 1 1Vθ −  curve in polar coordinates  
The 1 1Vθ −  curves clearly show that the bus 

voltage decreases quickly after the bifurcation point 
denoted by an arrow line, while the bus voltage with 
large angle corresponding with the II branch in 
V P−  curve begins to decrease quickly before the 
bifurcation point. 

Fig. 9 shows the variation in internal angle with 
the load. The equilibriums on the upper branch of 
curve 2 in V P−  curve are with large angle despite 
relatively high voltage, similarly with 1 1Pθ − curve. 

 
Fig. 9 

1g Pθ −  curve  
 

Fig. 10 display the variation in angular separation 
between buses of the three lines and inject active 
power with the load respectively, where 21 2 1θ θ θ= − �

31 3 1θ θ θ= − � 32 3 2θ θ θ= − � 3 0θ = .The power directions 
are from bus 2 to bus 1, from bus 3 to bus 1, and 
from bus 3 to bus 1 respectively. In an idealized 
two-node model, the relationship between power and 
angle is sinusoidal. The variation in power with 
angular separation between buses of the three-node 
system is different from the sinusoidal relationship. 
However, valuable information could be obtained 
from the analysis of the relationship between power 
and angle. 

(a) 
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(c1)      (c2) 

Fig.10 a1) 21 1Pθ −  curve, a2) curve; 21 1Pf P−

 b1) 31 1Pθ −  curve, b2) curve; 31 1Pf P−

 c1) 32 1Pθ −  curve, c2) curve. 32 1

Figures above show the locus of active power in 
each line of the three-node system with the change of 
the load. Table 9 shows the change trend of the 
active power in the three lines. The active power in 
the three lines increases with the load under 
operational mode corresponding with the I branch in 

 curve, while there is “fluctuation” of active 
power in the lines under other operational mode 
corresponding to the other branches in  curve. 

Pf P−

V P−

V P−
 

Table 9 
Change of active power in each line 

 
 Curve 1 Curve 2 
 I 

branch 
IV 
branch 

II 
branch 

III  
branch 

Line 1-2 2→1↑ 2→1↑↓ 2→1↑ 2→1↑↓ 
Line 2-3 2→3↓ 

3→2↑ 
3→2↑↓ 
 

3→2↑↓ 
 

3→2↓↑ 
 

Line 1-3 1→3↓ 
3→1↑ 

3→1↑↓ 
 

3→1↑↓ 3→1↓↑ 

 
The practical power system is far more complex 

than the three-node system. However, the locus 
curves of operational parameters (e.g. the internal 
voltage of generation) could provide potentially 
valuable information for research on complex 
systems. 

 
 
8. Conclusion 
WEM can obtain all the analytical solutions of 
simultaneous polynomial equations without either 
extraneous roots or missing roots. As a result, WEM 
can solve power flow equations to plot analytical 
V P− , V Q− curves as well as the steady operation 
area. The properties of power-flow Jacobian matrix 
are also analyzed, as well as testifying the properties 
of the active power/angle sub-matrix in the power 
flow Jacobian. Analysis of equilibriums is presented, 
showing that stable equilibrium point with high 
voltage-small angle, one UEP with low 
voltage-small angle, one UEP with high 
voltage-large angle, one UEP with low voltage-large 
angle. WEM provides a new way to study the 
characteristic of power system by obtaining all the 
solutions of power flow equations. However, it is 
difficult to solve the power flow equations by WEM 
when the number of nodes increases, for the 
exponent of variable in the equations are much high 
during the calculation procedure. 
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