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Abstract: - This paper presents a framework and an efficient method to determine SOC test schedules. We 
increase the test TAM widths by the framework. Our method deals with the traditional scan chains and 
reconfigurable multiple scan chains. Experimental results for ITC’02 SOC TEST Benchmarks show that we 
obtain better test application time when compared to previously published algorithms. Test access mechanism 
(TAM) and test schedule for System-On-chip (SOC) are challenging problems. Test schedule must be effective 
to minimize testing time, under the constraint of test resources. This paper presents a core section method based 
on generalized 2-D rectangle packing. A core cuts into many pieces and utilizes the design of reconfigurable 
core wrappers, and is dynamic to change the width of the TAM executing the core test. Therefore, a core can 
utilize different TAM width to complete test. 
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1 Introduction 
The heading of each section should be printed in 
small, 14pt, left justified, bold, Times New Roman. 
You must use numbers 1, 2, 3, … for the sections' 
numbering and not Latin numbering (I, II, III, …) 
Although the SOC design also called core-based-
design is still a developing technology, but a lot of 
researches has proposed many idea to solve the 
problem in the future that will occur, especially how 
to test the SOC chip with efficiency method. Base 
on this reason, we have made a research to solve it. 
Now, I will first introduce the concept about SOC 
design below. 
 
 
1.1 Test challenges in Core-based SOC 

designs 
The more and more widening design productivity 
gap between VLSI system capabilities and design 
engineering capability, in a limited time to market 
scenario, has prompted many design houses to adopt 
a policy of design reuse at the core level [3]. The 
Semiconductor Industry Association’s Technology 
Roadmap [1] predicts the percentage of reusable 
cores in SOC to be rising to 80% in 2006. However, 
with the increasing complexity and reduction of 
design cycle, the test application time of SOC is 
becoming a major bottleneck for time-to-market. It 
is more and more important for reusability of design 
to reduce the design time, but it is not enough when 

the verification and testing for reusable cores take 
up the most of design time.  

  One of the most effective and popular 
techniques is Boundary Scan Test, defined as IEEE 
standard 1149.1 (‘JTAG’). The Boundary Scan Test 
standard defines the additional hardware for the IC, 
in order to solve the board interconnect test problem. 
Unfortunately, the boundary scan architecture 
allows only one pin for test data input and another 
one for data output, and hence can not efficiently 
support multiple scan chains of the core on SOC. So 
for testing a SOC, JTAG may not suitable. 

There still exists an important challenge. For 
SOC integrators, the information inside the cores 
may be invisible. Most of cores are encrypted 
Intellectual Property blocks or hard cores that the 
users don’t have enough information about the 
internal part of the cores. So it is difficult and 
inefficient for core user to develop the test set. Core 
vendors have responsibility to develop the core test. 
The most common method is Design-For-Testability 
(DFT). Core vendors would offer information to 
SOC integrators to design test processes.  

The information is such as the I/O pins, internal 
scan chains, test patterns, power constraints, clock 
timing and etc. In order to increase the 
interoperability of the internal test with the core, the 
internal test to accompany its corresponding core 
need to be described in accepted standard format. 
Such a standard format is currently being developed 
by IEEE P1500 [4][5] and referred to as 
standardization of a core test description language. 
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1.2 TAM architecture 
The basic TAM architecture is shown in Figure 1. It 
can be divided into three structural elements [6]: 

Source and Sink: the source generates the test 
pattern for the embedded cores and sink compares 
the obtained responses with the excepted one to 
know if there exists difference. The two elements 
can generate two test methods on-chip and off-chip 
by its different position. With the method on-chip, 
like BIST or built-in ATE, all of that have the 
trouble with increasing area, but in opposite way, 
the requirement of TAM can be loosen. With the 
method off-chip, the total chip pins will decide the 
bandwidth under testing. If we increase the TAM 
width, it will raise the expensive cost on hardware. 

 
Fig. 1 The test access architecture overview 

 
Test access mechanism (TAM): TAM is the 

mechanism of transporting the test data. TAM can 
transport the test set to the CUT and transport the 
response from CUT to the sink. With TAM design, 
there must be a trade-off between test bandwidth 
(capacity) and test cost. The larger TAM width can 
provides more bandwidth but it also increases the 
cost on routing. If the test source designs outside the 
SOC and the IC only with few pins, there is 
unmeaning to increase the TAM width. 

Core test wrapper: wrapper is the interface 
between the embedded core and SOC, it connects 
between the core terminals and TAM and provides 
the switching mechanism to the function I/O and 
TAM. 

 
1.2.1. Basic TAM architecture 
There are three main kinds of test access 
architectures [7]: (a)Multiplexing Architecture; 
(b)Daisy-chain Architecture; (c)Distribution 
Architecture. 
 
1.2.2. Test Bus architecture 
Varma and Ahatia [9] proposed the Test Bus 
Architecture which combines the Multiplexing and 
Distribution Architectures. A single test bus actives 

the same as the operation of Multiplexing 
Architecture. Modules which connected to the same 
test bus can be only tested sequentially. The Test 
Bus Architecture allows that multiple test buses 
exist on one SOC and operate independently just 
like the Distribution Architecture. So modules 
connected to a same test bus will be in the common 
detrimental conditions to make the core-external 
testing difficult as in the Multiplexing Architecture. 

 
1.2.3. TestRail architecture 
The TestRail Architecture presented by Marinissen 
et al. [10] is a combination of the Daisychain and 
Distribution Architectures. A single TestRail is in 
essence the same as what is described by the 
Daisychain Architecture. Modules connected to the 
same TestRail can be tested simultaneously, as well 
as sequentially. The TestRail Architecture allows 
for multiple TestRails on same SOC, which operate 
independently, as in the Distribution Architecture. 
The advantage of the TestRail Architecture over the 
Test Bus Architecture is that it allows access to 
multiple or all wrappers simultaneously, which 
facilitates module-external testing. 

TestRail Architecture supports multiple types of 
test schedules. It allows the modules on the common 
TAM operating in both serial testing mode and 
parallel testing mode. In parallel testing mode, the 
modules on TAM will be tested simultaneously. 

 
 

1.3 Wrapper architecture 
Good wrapper design will make the internal scan 
chains of core as balance as possible to reduce the 
core testing time. A standardized, but scalable test 
wrapper is an integral part of the IEEE P1500 
working group proposal [11]. Apart from these 
mandatory modes, a core test wrapper might have 
several optional modes, e.g., a detach mode to 
disconnect the core from its system chip 
environment and the test access mechanism, or a 
bypass mode for the Universal BIST Scheduler [12] 
and the TestRail [13] test access mechanism. 

Wrappers may need to perform test width 
adaptation when the TAM width is not equal to the 
number of core terminals. This will often be 
required in practice, since large cores typically have 
hundreds of core terminals, while the total TAM 
width is limited by the number of SOC pins. 

 
 

1.4 Reconfigurable Core Wrappers Design 
For easy testing, the providers usually use necessary 
Design-For-Testability (DFT) skills to the SOC 
chips. The integrators were allowed to insert a 
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wrapper cell to each input and output by these DFT 
skills. All the internal scan chains, input ports and 
output ports would be assigned into new scan chains. 
Test vectors will be recombined with the new scan 
chains. Reconfigurable Multiple Scan Chains is one 
kind of architecture to reassign the scan chains. 

 
Fig. 2 An example of Reconfigurable Multiple Scan 

 
 

2 Problem Formulation 
2.1 Core test time 
A scan test for a core consists of three phases: (1) 
scan in of the test patterns to the scan registers and 
ready for normal execution, (2) normal execution, 
and (3) capture and scan out of the responses by 
scan registers. We define for each core i the number 
of test pattern pi. Let si be the length of the longest 
wrapper scan-in chain to fill all flip flops for a core i, 
and so is the time of the longest wrapper scan-out to 
scan out all flip flops.  

We assume that in each pattern exactly one time 
slot is used for the normal execution step; this 
means that the right input data has to be available at 
the core inputs at the moment of the normal 
execution step. This can be accomplished by adding 
scannable flip flops around the core [14]. The test 
time ti of core i becomes the sum of the scan-in time, 
the time for normal execution, and the scan-out time: 

ioiiii psppst ⋅++⋅=      (Eq. 1) 
In the scan test process it is common practice to 

use pipelining; when one pattern is scanned out, the 
next pattern is scanned in. This reduces the test time 
of a core to: 

},min{}),max{1( oiioii sspsst +⋅+=      (Eq. 2) 
When the term ‘+1’ indicates that pipelining 

cannot be used for the scanning out the last pattern. 
The test time for a core decreases as both si and so 
are reduced. Therefore, the balance wrapper scan 
chains are important because the number of cycles 
to scan a test pattern to (from) a core is a function of 

the length of the longest wrapper scan-in (scan-out) 
chain. 
 
 
2.2 The Popular Rectangle Packing Model 
E.J. Marinissen presented a Rectangle Packing 
Model [15] as fixed width test buses. The total TAM 
width was partitioned among a number of fixed-
width test buses and each core was assigned to one 
of these TAMs. 

In Fig .5, each test of cores could be modeled as 
a rectangle by a fixed TAM width and the testing 
time. This is defined as a wrapper/TAM design 
problem in [16]. For different TAM widths, the 
same test could be modeled in different rectangles 
by width and the testing time. The rectangles in Fig. 
3 are using the Design_wrapper algorithm [16] to 
model the Core 6 in SOC p93791. So based on the 
model, a test schedule problem would be treated as a 
2D Bin-packing problem. 

 
Fig. 3 Example rectangles for Core 6 in SOC p93791 

 

 
Fig. 4 TAM design using generalized rectangle 

packing 
 

 
Fig. 5 The test schedule of fig.4 
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2.3 The General Test Schedule 
Test schedule is the schedule for testing a SOC. 
Basically, a test schedule for a SOC should maintain 
all processes on testing. It includes the order of the 
cores for testing, the width for each core, and most 
important is that the test schedule would show the 
total test time. The test schedule is based on what 
TAM architecture the testing process used. 

The total test time is one of the main factors to 
evaluate the testing cost. For designing a test 
schedule, there are three categories: (1) Serial Test 
Schedules, (2) Parallel Test Schedules, (3) Mixed 
test schedules. 
 
 
2.4 Using dynamic TAM width to test a core 
The past test scheduling that the partition of TAM 
width is fixed. The test scheduling will have a lot of 
idle time. An example is showed in Fig. 6 there are 
three idle time times existing in test scheduling. The 
more idle time will enable a result of the test 
scheduling worse. 

 
Fig. 6 SOC test scheduling 
 

 
Fig. 7 Virtual TAM architecture 
 

2.5 Virtual TAM 
Sehgal [25] proposed an ideal to increase the test 
TAM width by using virtual TAM. We usually 
assume that the automatic test equipment (ATE) 
operates at the same frequency as the SOC core’s 
internal scan chains frequency. In fact, the ATE 
operating frequency is higher than SOC core’s 
internal scan chains frequency. Sehgal uses the 

characteristic of such frequency to increase the test 
width. Fig. 7 is the virtual TAM architecture. 
Quasem & Gupta (2004) proposed a framework of 
Reconfigurable Multiple Scan Chains. The frame 
can reduce the test application time, but it requires a 
lot of control signals. We proposed an algorithm to 
combine those methods and virtual enable signals. 
The attempt to minimize the test application time 
was a success. 

We propose two methods for solving the problem of 
test scheduling. The first method is called stairway 
scheduling witch cut each core to become many piece 
among SOC. The second is using virtual TAM to 
control signal. 
 
 
3 Proposed stairway scheduling 
3.1 Concept of stairway scheduling 
We propose a new test scheduling method. This 
method considers that testing of the core is cut many 
pieces and use different width of TAM to test. Then, 
the test scheduling of the core will become a form of 
stairway. We call stairway scheduling. Such, we can 
reduce the test application time of the core. In this 
paper we assume that all cores in the SOC can test 
at the same time, and we want to insert the core 
testing in the idle time. Then, the core must change 
the TAM width that to satisfy of TAM width of the 
current idle time. Such the core testing can use 
different TAM width to complete. 

 
Fig. 8 SOC test of stairway scheduling 

 
 
3.2 Proposed algorithm 
We partition into two parts. One part describes basic 
core testing to complete the scheduling. This part 
not dynamically changes the TAM width to test the 
core. The design follow is shown in Fig. 9. Then, 
the width of TAM must have enough numbers to 
schedule the core at the current time. Until not exist 
any core enough to satisfy the TAM width at the 
current time. Then, we assign remnant TAM width 
to the largest core of scheduling. At this time, 
doesn’t have any width of TAM enough to schedule 
any core. The total TAM width is zero at current 
time. 
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Another part describes dynamic testing of a 
core. That is called stairway scheduling. In this 
part, we can utilize the TAM width at the 
current time to test the core. Therefore, the core 
is completed testing through different testing 
resource (TAM). The scheduling is shown in 
Fig. 8 before. 

In Fig. 10 we show the design follow of the 
stairway scheduling. The total TAM width is zero at 
current time. We move the current time to the next 
time and free the TAM width to test the core. This 
action is hold until to finish the testing of the core. 
Then, the TAM width equals the total width, we 
execute basic core testing (In Fig. 9) 

 
Fig. 9 The design follows of basic test scheduling 

(no stairway scheduling) 
 

 
Fig. 10 The design follows of basic test scheduling 

(stairway scheduling) 

 

 
Fig. 11 Proposed procedures for test scheduling 

 
In Fig. 11, we detail the algorithm that we have 

developed to solve the problem of test scheduling. 
In our algorithm utilize the method [14] to find the 
initial rectangle of a core then to schedule the 
testing. We elaborate on each step of the algorithm 
in the following paragraphs. 
 
 
3.3 Our algorithm explain 
We use two data structures, which the one is 
core_initial and the core_sedule to store the 
TAM width, the pattern numbers, and testing 
time values, respectively. The structure for the 
core of SOC is presented in Fig. 12. This data 
structure update with the begin times and finish 
times for each core. 
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In Line 1, we use the method [14] to compute the 
collection of the initial rectangles. The Line 3 set 
initial values of w_avail, this_w, this_time, and 
next_time (In this paper, Wmax is chosen to be 64). 
In Line 5 is a general action to schedule the core. 
The w_avail is not equal the Wmax and the TAM 
width of the initial rectangle satisfy this w_avail 
such we schedule this core. In Line 7, we use the 
method [14] to assign the remained TAM width to 
the longest core at the current time (this_time). An 
example is shown in Fig. 13. Therefore, the TAM 
width (w_avail) equals the total (Wmax) width at 
the current time (this_time). 
 

 Structure core_initail 

1. num (i) /* the number of a core */ 
2. end_time (i) /* the initial time of a core */ 
3. width (i) /* the initial width of a core */ 
4. remain_p (i); /* the remain pattern numbers of a core */ 
5. Schedule (i)/* boolean indicates test for Core i has completed */ 

 Structure core_sedule 

1. num (i) /* the number of a core */ 
2. this_time (i) /* the scheduling begin time of a core */ 
3. end_time (i) /* the scheduling finish time of a core */ 
4. Schedule (i) /* boolean indicates test for Core i has completed */  
Fig. 12 Data structures of the core 

 
In Line8, we set the this_time to the next_time 

and release the TAM width at the current time 
(this_time). In Line 9, the testing time Tic (widthc 
(i)) of the core compute under current TAM width. 
In Line 10, Line 11, and Line 12, we will calculate 
whether the testing time Tip (widthip (i)) not across 
next_tme and compute the remnant pattern numbers. 
In Line 13, when the Width of the TAM equals the 
total TAM width (Wmax), we will set next_tme 
infinite. We schedule the core testing, when all 
patterns are finished to shift. In Line 15, the testing 
time Tip (widthip (i)) not across next_tme, we 
schedule this core testing. 

 

 
Fig. 13 Assign the remnant TAM width to the longest 

core 
 

An ideal result of the stairway scheduling will 
not have occurred the idle time. But Tip (widthip (i)) 
is not completely to match the next time. A little 
idle time will exist in the scheduling of the core 
testing. An example is shown in Fig. 14 there are 
two idle times in the Core 1 testing. But idle times 
are small. An experimental result proves the times 
of idle will not affect the total time of testing. 

 
Fig. 14 the idle time of the stairway scheduling 

 
 

4 Virtual Enable Signal 
4.1 Concept of Virtual Enable 
As mentioned in last section, the disadvantage of the 
virtual TAM method will limit the results. We 
consider that virtual TAM is a good method. 
Therefore the method which is the most beneficial is 
adopted. A method to enable signal and making the 
test TAM width increate was used. It shows the 
architecture of virtual enable signal in Fig. 15. 

 
Fig. 15 Virtual control signals 

 
In the figure, the Enable signal hold in low at 

start. Until the left Flip-flops holding the correct 
value, the Enable signal transfer from low to high. 
When Enable signal is high, the left Flip-flop’s 
values shift to the right Flip-flops. Each module will 
need a control signal to change from normal mode 
to shift mode or form shift mode to normal node at 
mixed-architecture. Virtual TAM was used to 
reduce the pin’s consumption and increase the test 
TAM width. The other benefit is that the bandwidth 
decreasing with control signal affects less to total 
test application time. The test time formula was 
modified in order to increase the amount of test 
TAM width. 
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4.2 Proposed algorithm of virtual control 
The following section includes the algorithm that 
was used. The algorithm proposed refers to the TR 
architect algorithm [17]. We modify some steps of 
TR architect algorithm to match virtual enable 
signal and reconfigurable multiple scan chains. The 
algorithm is divided into 4 steps. They are 
STARTSOLUTION, BOTTMUP, TOPDOWN, and 
RESHUFFLE. In the algorithm, there are two 
differences with TR architect algorithm. Two ports 
are shown as following: 

ScanChains[L] - ScanChains[S]  ,if ScanChainNum 0
ScanChainNum

Rate = 

                              0                                      ,others

⎧ ≠⎪⎪
⎨
⎪
⎪⎩  

(Eq. 3) 
The STARTSOLUTION step was modified. 

When the total test module numbers was grater than 
total test TAM widths, we use a priority to find the 
fit module. An equation was used to calculate the 
value, and show at Eq. 3. The ScanChainNum is 
means the number of the internal scan chains. The 
ScanChains[L] is means the largest number of Flip-
flops of internal scan chains. The ScanChains[S] is 
means the smallest number of Flip-flops of internal 
scan chains. If the ScanChainNum equals to 0, the 
Rate is set to 0. The Rate with each module was 
calculated at the first of the STARTSOLUTION. 
When choosing the rate, the value which is closest 
was chosen. The closer to the two rates are the 
numbers of Flip-flops of their internal scan chains 
are more like, and let the Reconfigurable Multiple 
Scan Chain construct more balance. 

 
01        assign the registers of the TAM;
02        compute the test time use lower bond equation;
03        save the test time in S-time;       
04        sort the modules of the TAM with test patterns;
05        compute the test time with the RMSC; 
06        save the test time in P-time;
07        if ( S-time < P-time){
08                    return the S-time;
09        }else{
10                    return the the P-time;
11        }  Fig. 
16 Algorithm of Compute_Time 

 
The second step was modifying the time function. 

The new algorithm is shown in the Fig. 16. The 
registers are assigned (the input/output ports, 
internal scan chains) to the test scan chains of the 
TAM at first (line 1), and the method will be 
introduced in as following. The time calculated is 
then compared by lower bond [27] with the time 
calculated by the Reconfigurable Multiple Scan 
Chains (RMSC) [28] (line 2 ~ line 6). The best of 
the two test times are selected (line 7 ~ line 11). 

There is the same number of control signals with the 
number of module of TAM. We will explain it in 
chapter 5. 

In Fig. 17. In the step 1, the internal scan chains 
need to be balanced. (Firstly), the internal scan 
chains of module are sorted in descending order. If 
the sum the last two internal scan chains is smaller 
than the first internal scan chain, the two internal 
scan chains are added and sort the internal scan 
chains again (line 5 ~ line 6). In the step 2, the bidirs, 
input ports, output ports and internal scan chains is 
assigned to the TAM. The registers are assigned in 
this order of internal scan chains, bidirs, and 
input/output ports. In order to balance these scan 
chains, after the internal scan chains assigned, we 
assign these registers to the smallest value of the 
scan chain every time. 

 

n-1

01        for each module {
02            /*step1: balance internal scan chain*/
03            sorting the internal scan chain of module
04                in decreasing order;
05            while((SC +S n 1

n-1 n-1 n

C ) < SC ) {
06                       SC =SC +SC ;
07                       n=n-1;
08                       sorting the internal scan chains
09                           again in decreasing order;
10             }
11             /*step2 : assign scan chains*/
12             assign these internal scan chains to TAM
13                 in the order above;
14             assign the Bidirs to TAM;
15             if(the output ports > the input ports) {
16                       assign the output ports to TAM;
17                       assign the input ports to TAM;
18             }
19             else {
20                       assign the input ports to TAM;
21                       assign the output ports to TAM;
22             }
23        }  
Fig. 17 Algorithm of registers assignment 

 
 

5 Experimental Results 
We used four SOC of the ITC’02 SOC test 
benchmarks [29]. The first letter d means that the 
SOC comes from Duke University and p means 
industrial Philips Company. SOC p22810 contains 6 
memory cores and 22 scan-testable logic cores. SOC 
p34392 contains 15 memory cores and 4 scan-
testable logic cores. 
 
 
5.1 Stairway scheduling results 
In the proposed stairway scheduling, we compare 
our results with three previously published 
approaches: 
(1) Test Bus Architecture optimization method base 
on ILP and exhaustive enumeration in [31]. 
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(2) Rectangle packing co-optimization in [14]. 
(3) Wrapper/TAM co-optimization in [30]. 

We use the TAM width 16, 24, 36, 48, 56, 64, to 
test every benchmark. Experimental results show 
our method get the better results than others 
method. 

 
Table 1 Test application time for Stairway scheduling 

results 

 
 
 

5.2 Virtual control results 
To evaluate the proposed method, it was simulated 
in the ITC’02 SOC test benchmarks. In Table 2, we 
compare the test between proposed method (without 
virtual enable signal) and TR-Architect. W 
represents TAM widths and Δ T represents (Tj-
Ti)/Ti. We can find that our method have better 
efficiency at large TAM widths. Besides these three 
test scheduling approaches in above, we compare 
the test time reduction algorithm for TestRail 
Architecture in [27]. 

The number after the SOC names represents the 
number of cores each SOC included, and t 
represents the TAM widths which increases after 
using virtual enable signal. We can see that as more 
cores embedded in SOC, the better performance for 
our method. 

 

Table 2 Test application time for Virtual control 
results 

 
 

Table 3 Simulation Results for benchmarks 

 

Proposed SOC W ILP GRP Cluster TR 
t Time 

16 42568 44545 44330 44307 19 36330 
24 28292 31569 30021 28576 27 26150 
32 21566 23306 23488 21518 35 20430 
40 17901 18837 19034 17617 43 15980 
48 16975 16984 16194 14608 51 14610 
56 13207 14974 13479 12462 59 11740 

d695 
(10) 

64 12941 11984 11033 11033 67 10630 
16 462210 489192 - 458068 28 262052
24 361571 330016 - 299718 36 205156
32 312659 245718 259975 222471 44 174496
40 278359 199558 206205 190995 52 145432
48 278359 173705 173705 160221 60 138124
56 268472 157159 146390 145417 68 126000

p22810
(29) 

64 260638 142342 133587 133405 76 112280
16 998733 1053491 - 1010821 24 674215
24 720858 759427 876529 680411 32 544579
32 591027 544579 585309 551778 40 544579
40 544579 544579 544579 544616 48 544579
48 544579 544579 544579 544616 56 544579
56 544579 544579 544579 544616 64 544579

p34392
(20) 

64 544579 544579 544579 544616 72 544579
16 1771720 1932331 - 1791638 30 953536
24 1187990 1310841 - 1185434 38 768736
32 887751 988039 - 912233 46 633984
40 698883 794027 816972 718005 54 542048
48 599373 669196 677707 601450 62 466464
56 514688 568436 542445 528925 70 418176

p93791
(33) 

64 460328 517958 467680 455738 78 371040

SOC W TR-Achitect 
Ti 

Proposed 
Tj 

ΔT 

16 44307 41889 -5.45 
24 28576 28614 0.13 
32 21518 21518 0 
40 17617 17745 0.72 
48 14608 14450 -1.08 
56 12462 12426 -0.28 

d695 

64 11033 11029 -0.03 
16 458068  458306 0.05 
24 299718 304064 1.45 
32 222471 228116 2.53 
40 190995 190995 0 
48 160221 160125 -0.05 
56 145417 135566 -6.77 

p22810

64 133405 121621 -8.83 
16 1010821  1010811 -0.001 
24 680411 674170 -0.91 
32 551778 544579 -1.30 
40 544616 544579 -0.006 
48 544616 544579 -0.006 
56 544616 544579 -0.006 

p34392

64 544616 544579 -0.006 
16 1791638 1778910 -0.71 
24 1185434 1193399 0.67 
32 912233 918197 0.65 
40 718005 732404 2.00 
48 601450 604857 0.56 
56 528925 520998 -1.49 

p93791

64 455738 452976 -0.60 

SOC W LB ILP 
[21] 

Rect. 
pack. 
[18] 

Par_eval 
[20] Our 

16 41231 42568 44545 42644 43023 
24 27487 28292 31569 30032 28878 
32 20615 21566 23306 22268 22234 
40 16492 17901 18837 18448 17848 
48 13743 16975 16984 15300 15864 
56 11780 13207 14974 12941 13722 

d695 

64 10307 12941 11033 12941 12279 
16 412538 462210 489192 468011 499625
24 275025 361571 330016 313607 373043
32 206269 312569 312662 246332 242292
40 165015 278359 278360 232049 212241
48 137512 278359 268474 232049 178297
56 117868 268472 266800 153990 138824

p22810 

64 103134 260638 260638 153990 129609
16 936881 998733 1053791 1033210 1051402
24 624587 720858 759427 882182 715732
32 544579 591027 544579 663193 544579
40 544579 544579 544579 544579 544579
48 544579 544579 544579 544579 544579
56 544579 544579 544579 544579 544579

p34392 

64 544579 544579 544579 544579 544579
16 1709095 1771720 1932331 1786200 1763635
24 1138063 1187990 1310841 1209420 1268411
32 853547 887751 988039 894342 871332
40 682838 698583 794027 741965 696894
48 569031 599383 669196 599373 603498
56 487741 514688 568436 514688 514141

p93791 

64 426773 460328 517958 473997 464305
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6 Conclusion 
In this paper, we propose a new idea to test a system 
on chip (SOC). An idea of section a core to test, 
reform the SOC testing schedule. We called 
stairway scheduling. We cut each core to become 
many piece among SOC. Therefore, the core can 
split to complete a testing and follow the current 
time moving to utilize the test resource (TAM) 
under this current time.  

We presented the test time by four SOC of 
ITC’02 SOC Test Benchmarks. By the comparison 
of [31], [14], and [30], the experimental results 
show our method get the better results than others 
method. 

In this paper, we focus on the part of SOC test 
scheduling. Other part of hardware, we just propose 
a sketchy conception. As future work, we will 
research about the part of the hardware and try to fill 
the idle time to improve the total testing time. And 
in addition we may take more constraints, like 
power consumption, into consideration in our 
method. 

Lastly, any testing schedule will require adding 
the hardware extra cost. Therefore, a good engineer 
must consider how to find a balance at test 
application time and hardware. 

On the other side, we proposed a new method to 
use virtual TAM to do the control signal and enable 
signal. And we proposed an algorithm to solve core-
based SOC schedule problem. The algorithm and 
the control enable signal is performance well for the 
ITC’02 benchmarks. 
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