
The Efficient TAM Design for Core-Based SOCs Testing

Jiann-Chyi Rau, Po-Han Wu, Chih-Lung Chien, Chien-Hsu Wu
Department of Electrical Engineering, Tamkang University

151, Ying-Chuan Rd. Tamsui,
Taipei Country, Taiwan 25137, R.O.C.

{ jcrau, phwu, clchien, cswu}@ee.tku.edu.tw

Abstract: - This paper presents a framework and an efficient method to determine SOC test schedules. We
increase the test TAM widths by the framework. Our method deals with the traditional scan chains and
reconfigurable multiple scan chains. Experimental results for ITC’02 SOC TEST Benchmarks show that we
obtain better test application time when compared to previously published algorithms. Test access mechanism
(TAM) and test schedule for System-On-chip (SOC) are challenging problems. Test schedule must be effective
to minimize testing time, under the constraint of test resources. This paper presents a core section method based
on generalized 2-D rectangle packing. A core cuts into many pieces and utilizes the design of reconfigurable
core wrappers, and is dynamic to change the width of the TAM executing the core test. Therefore, a core can
utilize different TAM width to complete test.

Key-Words: - SOC Testing, TAM, Testing Scheduling

1 Introduction
The heading of each section should be printed in
small, 14pt, left justified, bold, Times New Roman.
You must use numbers 1, 2, 3, … for the sections'
numbering and not Latin numbering (I, II, III, …)
Although the SOC design also called core-based-
design is still a developing technology, but a lot of
researches has proposed many idea to solve the
problem in the future that will occur, especially how
to test the SOC chip with efficiency method. Base
on this reason, we have made a research to solve it.
Now, I will first introduce the concept about SOC
design below.

1.1 Test challenges in Core-based SOC

designs
The more and more widening design productivity
gap between VLSI system capabilities and design
engineering capability, in a limited time to market
scenario, has prompted many design houses to adopt
a policy of design reuse at the core level [3]. The
Semiconductor Industry Association’s Technology
Roadmap [1] predicts the percentage of reusable
cores in SOC to be rising to 80% in 2006. However,
with the increasing complexity and reduction of
design cycle, the test application time of SOC is
becoming a major bottleneck for time-to-market. It
is more and more important for reusability of design
to reduce the design time, but it is not enough when

the verification and testing for reusable cores take
up the most of design time.

 One of the most effective and popular
techniques is Boundary Scan Test, defined as IEEE
standard 1149.1 (‘JTAG’). The Boundary Scan Test
standard defines the additional hardware for the IC,
in order to solve the board interconnect test problem.
Unfortunately, the boundary scan architecture
allows only one pin for test data input and another
one for data output, and hence can not efficiently
support multiple scan chains of the core on SOC. So
for testing a SOC, JTAG may not suitable.

There still exists an important challenge. For
SOC integrators, the information inside the cores
may be invisible. Most of cores are encrypted
Intellectual Property blocks or hard cores that the
users don’t have enough information about the
internal part of the cores. So it is difficult and
inefficient for core user to develop the test set. Core
vendors have responsibility to develop the core test.
The most common method is Design-For-Testability
(DFT). Core vendors would offer information to
SOC integrators to design test processes.

The information is such as the I/O pins, internal
scan chains, test patterns, power constraints, clock
timing and etc. In order to increase the
interoperability of the internal test with the core, the
internal test to accompany its corresponding core
need to be described in accepted standard format.
Such a standard format is currently being developed
by IEEE P1500 [4][5] and referred to as
standardization of a core test description language.

WSEAS TRANSACTIONS on Circuits & Systems
Jiann-Chyi Rau,Po-Han Wu,
Chih-Lung Chien,Chien-Hsu Wu

ISSN: 1109-2734 955 Issue 11, Volume 7, Nov. 2008

1.2 TAM architecture
The basic TAM architecture is shown in Figure 1. It
can be divided into three structural elements [6]:

Source and Sink: the source generates the test
pattern for the embedded cores and sink compares
the obtained responses with the excepted one to
know if there exists difference. The two elements
can generate two test methods on-chip and off-chip
by its different position. With the method on-chip,
like BIST or built-in ATE, all of that have the
trouble with increasing area, but in opposite way,
the requirement of TAM can be loosen. With the
method off-chip, the total chip pins will decide the
bandwidth under testing. If we increase the TAM
width, it will raise the expensive cost on hardware.

Fig. 1 The test access architecture overview

Test access mechanism (TAM): TAM is the

mechanism of transporting the test data. TAM can
transport the test set to the CUT and transport the
response from CUT to the sink. With TAM design,
there must be a trade-off between test bandwidth
(capacity) and test cost. The larger TAM width can
provides more bandwidth but it also increases the
cost on routing. If the test source designs outside the
SOC and the IC only with few pins, there is
unmeaning to increase the TAM width.

Core test wrapper: wrapper is the interface
between the embedded core and SOC, it connects
between the core terminals and TAM and provides
the switching mechanism to the function I/O and
TAM.

1.2.1. Basic TAM architecture
There are three main kinds of test access
architectures [7]: (a)Multiplexing Architecture;
(b)Daisy-chain Architecture; (c)Distribution
Architecture.

1.2.2. Test Bus architecture
Varma and Ahatia [9] proposed the Test Bus
Architecture which combines the Multiplexing and
Distribution Architectures. A single test bus actives

the same as the operation of Multiplexing
Architecture. Modules which connected to the same
test bus can be only tested sequentially. The Test
Bus Architecture allows that multiple test buses
exist on one SOC and operate independently just
like the Distribution Architecture. So modules
connected to a same test bus will be in the common
detrimental conditions to make the core-external
testing difficult as in the Multiplexing Architecture.

1.2.3. TestRail architecture
The TestRail Architecture presented by Marinissen
et al. [10] is a combination of the Daisychain and
Distribution Architectures. A single TestRail is in
essence the same as what is described by the
Daisychain Architecture. Modules connected to the
same TestRail can be tested simultaneously, as well
as sequentially. The TestRail Architecture allows
for multiple TestRails on same SOC, which operate
independently, as in the Distribution Architecture.
The advantage of the TestRail Architecture over the
Test Bus Architecture is that it allows access to
multiple or all wrappers simultaneously, which
facilitates module-external testing.

TestRail Architecture supports multiple types of
test schedules. It allows the modules on the common
TAM operating in both serial testing mode and
parallel testing mode. In parallel testing mode, the
modules on TAM will be tested simultaneously.

1.3 Wrapper architecture
Good wrapper design will make the internal scan
chains of core as balance as possible to reduce the
core testing time. A standardized, but scalable test
wrapper is an integral part of the IEEE P1500
working group proposal [11]. Apart from these
mandatory modes, a core test wrapper might have
several optional modes, e.g., a detach mode to
disconnect the core from its system chip
environment and the test access mechanism, or a
bypass mode for the Universal BIST Scheduler [12]
and the TestRail [13] test access mechanism.

Wrappers may need to perform test width
adaptation when the TAM width is not equal to the
number of core terminals. This will often be
required in practice, since large cores typically have
hundreds of core terminals, while the total TAM
width is limited by the number of SOC pins.

1.4 Reconfigurable Core Wrappers Design
For easy testing, the providers usually use necessary
Design-For-Testability (DFT) skills to the SOC
chips. The integrators were allowed to insert a

WSEAS TRANSACTIONS on Circuits & Systems
Jiann-Chyi Rau,Po-Han Wu,
Chih-Lung Chien,Chien-Hsu Wu

ISSN: 1109-2734 956 Issue 11, Volume 7, Nov. 2008

wrapper cell to each input and output by these DFT
skills. All the internal scan chains, input ports and
output ports would be assigned into new scan chains.
Test vectors will be recombined with the new scan
chains. Reconfigurable Multiple Scan Chains is one
kind of architecture to reassign the scan chains.

Fig. 2 An example of Reconfigurable Multiple Scan

2 Problem Formulation
2.1 Core test time
A scan test for a core consists of three phases: (1)
scan in of the test patterns to the scan registers and
ready for normal execution, (2) normal execution,
and (3) capture and scan out of the responses by
scan registers. We define for each core i the number
of test pattern pi. Let si be the length of the longest
wrapper scan-in chain to fill all flip flops for a core i,
and so is the time of the longest wrapper scan-out to
scan out all flip flops.

We assume that in each pattern exactly one time
slot is used for the normal execution step; this
means that the right input data has to be available at
the core inputs at the moment of the normal
execution step. This can be accomplished by adding
scannable flip flops around the core [14]. The test
time ti of core i becomes the sum of the scan-in time,
the time for normal execution, and the scan-out time:

ioiiii psppst ⋅++⋅= (Eq. 1)
In the scan test process it is common practice to

use pipelining; when one pattern is scanned out, the
next pattern is scanned in. This reduces the test time
of a core to:

},min{}),max{1(oiioii sspsst +⋅+= (Eq. 2)
When the term ‘+1’ indicates that pipelining

cannot be used for the scanning out the last pattern.
The test time for a core decreases as both si and so
are reduced. Therefore, the balance wrapper scan
chains are important because the number of cycles
to scan a test pattern to (from) a core is a function of

the length of the longest wrapper scan-in (scan-out)
chain.

2.2 The Popular Rectangle Packing Model
E.J. Marinissen presented a Rectangle Packing
Model [15] as fixed width test buses. The total TAM
width was partitioned among a number of fixed-
width test buses and each core was assigned to one
of these TAMs.

In Fig .5, each test of cores could be modeled as
a rectangle by a fixed TAM width and the testing
time. This is defined as a wrapper/TAM design
problem in [16]. For different TAM widths, the
same test could be modeled in different rectangles
by width and the testing time. The rectangles in Fig.
3 are using the Design_wrapper algorithm [16] to
model the Core 6 in SOC p93791. So based on the
model, a test schedule problem would be treated as a
2D Bin-packing problem.

Fig. 3 Example rectangles for Core 6 in SOC p93791

Fig. 4 TAM design using generalized rectangle

packing

Fig. 5 The test schedule of fig.4

WSEAS TRANSACTIONS on Circuits & Systems
Jiann-Chyi Rau,Po-Han Wu,
Chih-Lung Chien,Chien-Hsu Wu

ISSN: 1109-2734 957 Issue 11, Volume 7, Nov. 2008

2.3 The General Test Schedule
Test schedule is the schedule for testing a SOC.
Basically, a test schedule for a SOC should maintain
all processes on testing. It includes the order of the
cores for testing, the width for each core, and most
important is that the test schedule would show the
total test time. The test schedule is based on what
TAM architecture the testing process used.

The total test time is one of the main factors to
evaluate the testing cost. For designing a test
schedule, there are three categories: (1) Serial Test
Schedules, (2) Parallel Test Schedules, (3) Mixed
test schedules.

2.4 Using dynamic TAM width to test a core
The past test scheduling that the partition of TAM
width is fixed. The test scheduling will have a lot of
idle time. An example is showed in Fig. 6 there are
three idle time times existing in test scheduling. The
more idle time will enable a result of the test
scheduling worse.

Fig. 6 SOC test scheduling

Fig. 7 Virtual TAM architecture

2.5 Virtual TAM
Sehgal [25] proposed an ideal to increase the test
TAM width by using virtual TAM. We usually
assume that the automatic test equipment (ATE)
operates at the same frequency as the SOC core’s
internal scan chains frequency. In fact, the ATE
operating frequency is higher than SOC core’s
internal scan chains frequency. Sehgal uses the

characteristic of such frequency to increase the test
width. Fig. 7 is the virtual TAM architecture.
Quasem & Gupta (2004) proposed a framework of
Reconfigurable Multiple Scan Chains. The frame
can reduce the test application time, but it requires a
lot of control signals. We proposed an algorithm to
combine those methods and virtual enable signals.
The attempt to minimize the test application time
was a success.

We propose two methods for solving the problem of
test scheduling. The first method is called stairway
scheduling witch cut each core to become many piece
among SOC. The second is using virtual TAM to
control signal.

3 Proposed stairway scheduling
3.1 Concept of stairway scheduling
We propose a new test scheduling method. This
method considers that testing of the core is cut many
pieces and use different width of TAM to test. Then,
the test scheduling of the core will become a form of
stairway. We call stairway scheduling. Such, we can
reduce the test application time of the core. In this
paper we assume that all cores in the SOC can test
at the same time, and we want to insert the core
testing in the idle time. Then, the core must change
the TAM width that to satisfy of TAM width of the
current idle time. Such the core testing can use
different TAM width to complete.

Fig. 8 SOC test of stairway scheduling

3.2 Proposed algorithm
We partition into two parts. One part describes basic
core testing to complete the scheduling. This part
not dynamically changes the TAM width to test the
core. The design follow is shown in Fig. 9. Then,
the width of TAM must have enough numbers to
schedule the core at the current time. Until not exist
any core enough to satisfy the TAM width at the
current time. Then, we assign remnant TAM width
to the largest core of scheduling. At this time,
doesn’t have any width of TAM enough to schedule
any core. The total TAM width is zero at current
time.

WSEAS TRANSACTIONS on Circuits & Systems
Jiann-Chyi Rau,Po-Han Wu,
Chih-Lung Chien,Chien-Hsu Wu

ISSN: 1109-2734 958 Issue 11, Volume 7, Nov. 2008

Another part describes dynamic testing of a
core. That is called stairway scheduling. In this
part, we can utilize the TAM width at the
current time to test the core. Therefore, the core
is completed testing through different testing
resource (TAM). The scheduling is shown in
Fig. 8 before.

In Fig. 10 we show the design follow of the
stairway scheduling. The total TAM width is zero at
current time. We move the current time to the next
time and free the TAM width to test the core. This
action is hold until to finish the testing of the core.
Then, the TAM width equals the total width, we
execute basic core testing (In Fig. 9)

Fig. 9 The design follows of basic test scheduling

(no stairway scheduling)

Fig. 10 The design follows of basic test scheduling

(stairway scheduling)

Fig. 11 Proposed procedures for test scheduling

In Fig. 11, we detail the algorithm that we have

developed to solve the problem of test scheduling.
In our algorithm utilize the method [14] to find the
initial rectangle of a core then to schedule the
testing. We elaborate on each step of the algorithm
in the following paragraphs.

3.3 Our algorithm explain
We use two data structures, which the one is
core_initial and the core_sedule to store the
TAM width, the pattern numbers, and testing
time values, respectively. The structure for the
core of SOC is presented in Fig. 12. This data
structure update with the begin times and finish
times for each core.

WSEAS TRANSACTIONS on Circuits & Systems
Jiann-Chyi Rau,Po-Han Wu,
Chih-Lung Chien,Chien-Hsu Wu

ISSN: 1109-2734 959 Issue 11, Volume 7, Nov. 2008

In Line 1, we use the method [14] to compute the
collection of the initial rectangles. The Line 3 set
initial values of w_avail, this_w, this_time, and
next_time (In this paper, Wmax is chosen to be 64).
In Line 5 is a general action to schedule the core.
The w_avail is not equal the Wmax and the TAM
width of the initial rectangle satisfy this w_avail
such we schedule this core. In Line 7, we use the
method [14] to assign the remained TAM width to
the longest core at the current time (this_time). An
example is shown in Fig. 13. Therefore, the TAM
width (w_avail) equals the total (Wmax) width at
the current time (this_time).

 Structure core_initail

1. num (i) /* the number of a core */
2. end_time (i) /* the initial time of a core */
3. width (i) /* the initial width of a core */
4. remain_p (i); /* the remain pattern numbers of a core */
5. Schedule (i)/* boolean indicates test for Core i has completed */

 Structure core_sedule

1. num (i) /* the number of a core */
2. this_time (i) /* the scheduling begin time of a core */
3. end_time (i) /* the scheduling finish time of a core */
4. Schedule (i) /* boolean indicates test for Core i has completed */
Fig. 12 Data structures of the core

In Line8, we set the this_time to the next_time

and release the TAM width at the current time
(this_time). In Line 9, the testing time Tic (widthc
(i)) of the core compute under current TAM width.
In Line 10, Line 11, and Line 12, we will calculate
whether the testing time Tip (widthip (i)) not across
next_tme and compute the remnant pattern numbers.
In Line 13, when the Width of the TAM equals the
total TAM width (Wmax), we will set next_tme
infinite. We schedule the core testing, when all
patterns are finished to shift. In Line 15, the testing
time Tip (widthip (i)) not across next_tme, we
schedule this core testing.

Fig. 13 Assign the remnant TAM width to the longest

core

An ideal result of the stairway scheduling will
not have occurred the idle time. But Tip (widthip (i))
is not completely to match the next time. A little
idle time will exist in the scheduling of the core
testing. An example is shown in Fig. 14 there are
two idle times in the Core 1 testing. But idle times
are small. An experimental result proves the times
of idle will not affect the total time of testing.

Fig. 14 the idle time of the stairway scheduling

4 Virtual Enable Signal
4.1 Concept of Virtual Enable
As mentioned in last section, the disadvantage of the
virtual TAM method will limit the results. We
consider that virtual TAM is a good method.
Therefore the method which is the most beneficial is
adopted. A method to enable signal and making the
test TAM width increate was used. It shows the
architecture of virtual enable signal in Fig. 15.

Fig. 15 Virtual control signals

In the figure, the Enable signal hold in low at

start. Until the left Flip-flops holding the correct
value, the Enable signal transfer from low to high.
When Enable signal is high, the left Flip-flop’s
values shift to the right Flip-flops. Each module will
need a control signal to change from normal mode
to shift mode or form shift mode to normal node at
mixed-architecture. Virtual TAM was used to
reduce the pin’s consumption and increase the test
TAM width. The other benefit is that the bandwidth
decreasing with control signal affects less to total
test application time. The test time formula was
modified in order to increase the amount of test
TAM width.

WSEAS TRANSACTIONS on Circuits & Systems
Jiann-Chyi Rau,Po-Han Wu,
Chih-Lung Chien,Chien-Hsu Wu

ISSN: 1109-2734 960 Issue 11, Volume 7, Nov. 2008

