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Abstract: - A new algorithm for automated standard cell placement of asynchronous Micropipeline designs has 
been developed. The resulting placement solutions are targeted to meet all bundled-data timing constraints 
while providing efficient chip areas. The placement algorithm utilizes the simulated evolution iterative 
heuristic. The cost function is a weighted sum of an area factor and a timing factor. Results of five experimental 
circuits show that full routability with reasonably efficient areas are possible. 
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1.   Introduction 
The past decade has witnessed a renaissance of 
interest in asynchronous design techniques and 
systems. Several asynchronous processors have 
been reported by researchers in both the academia 
and the industry [1] - [6]. Several asynchronous 
design methodology have been proposed [7]. One 
such methodology that has been well-received by 
the design community due to its modularity and 
simplicity is the micropipeline asynchronous design 
approach first proposed by Sutherland [8]. 

Operation of micropipeline systems follows a 
request-acknowledge handshaking protocol (Fig. 1) 
where a computation is initiated by a request signal 
and an output completion signal (acknowledge) 
indicates completion of this computation. For proper 
operation, the received request control signal and 
the data signals must follow the bundled-data 
constraint where the data bits should arrive at the 
receiver end prior to the arrival of the request event 
by some minimum setup time [8]. 
 

SENDER RECEIVER

Data

Acknowledge

Request

 

Fig. 1. Bundled-Data Handshaking Protocol 

 
 
Several chips, including full microprocessors  [2] 

and microcontrollers  [3], have been designed using 
the micropipeline methodology. Asynchronous 
design methodologies, however, suffer from a 
considerable shortage of supporting design 
automation tools including, technology mapping, 
automatic placement and automatic routing tools.  
In this paper, the problem of automatic placement of 
asynchronous micropipeline standard-cells is 
addressed. To our knowledge, this problem has 
never been addressed in the literature.  

For proper standard-cell design of micropipeline 
circuits, it is not enough to provide a solution that 
minimizes area or delay. More importantly, the cells 
have to be appropriately placed such that a routing 
solution where meeting the bundled-data constraints 
of all communicating cells is possible with 
no/minimum addition of delay elements. 

Given a netlist of micropipeline cells with 
predefined input and output pins, we have 
implemented a placement algorithm which is 
capable of meeting the bundled-data timing 
constraints  [9]. We have adopted the standard-cell 
design style due to its relative simplicity and the 
wealth of knowledge available in this area. The 
design, layout and electrical characteristics of a 
variety of micropipeline cells were generated using 
0.5μ CMOS technology.  

Cells corresponding to a particular design are 
arranged in rows; with horizontal routing channels 
between rows reserved for cell interconnect. The 
standard cells are designed such that power and 
ground buses run horizontally through the top and 
bottom of the cells. The cells are butted against one 
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another such that these buses form continuous tracks 
in each row. The input and output pins of a cell are 
made available at the top and bottom edges of the 
cell. The cells are connected by running 
interconnect wires (nets) through routing channels. 
Connections from one row of cells to another are 
done either through vertical wiring channels at row 
ends or by using feed-through cells, which are 
standard height cells having few vertical 
interconnect wires running through them  [15].  

Given the netlist of a micropipeline design, the 
corresponding set of standard cells should be 
properly placed on the chip in a way that allows 
automatic routing of the interconnections while 
satisfying one or more possibly conflicting goals 
such as minimizing layout area, maximizing circuit 
performance, minimizing timing delays on critical 
nets, etc.  [15]. An additional more basic requirement 
for micropipelines, is to meet the bundled-data 
constraints of various nets  [9]. Unless the cells are 
properly placed to ensure meeting this constraint in 
an efficient manner, delay elements may have to be 
added which would unnecessarily increase chip area 
as well as the total wire length resulting in lower 
performance. Therefore, the cost function of the 
placement algorithm should primarily target this 
timing requirement. For this purpose, an adequate 
delay model is essential to check for timing 
constraint violations. Other optimization criteria, 
e.g. the chip area, the critical path delay, etc. may 
also be factored into the cost function as desired.  

This work reports an evolution-based  [16],  [17] 
placement algorithm that is developed to address the 
case of micropipeline standard-cell designs. For this 
purpose, a 0.5μ standard cell library of 
micropipeline modules has been developed and its 
geometrical, electrical and timing parameters have 
been fully characterized. In section 2 the adopted 
timing model is described. Section 3 presents the 
used wirelength model. Section 4 defines the 
placement cost function while section 5 gives the 
details of the simulated evolution placement 
algorithm. This is followed by discussion of the 
obtained results in section 6. 
 
 
2.   Timing Model 
Micropipeline data path modules (Fig. 2) are 
designed such that the output acknowledge event is 
asserted only after valid output data are made 
available at the cell output pin(s) (Data_Out). Thus, 
the cell output data are valid before the acknowledge 
output event is asserted by a minimum period that 
will be referred to as the acknowledge margin time 

(Tack). This timing parameter (Tack) is guaranteed by 
the cell design and is unaffected by the cell 
placement or routing, e.g. the self-timed adder 
reported in  [14]. Likewise, for proper functionality, 
a micropipeline cell has a setup timing constraint 
specifying the minimum period for which the data 
inputs must be valid prior to the arrival of the input 
request event. This data to request setup time will be 
referred to as the request setup time (Treq).  
 

Micropipeline
Data Path 

Cell

Data_In Data_Out

Req Ack
 

Fig. 2. Micropipeline Data Path Cell 

Thus, in addition to the geometrical, electrical 
and propagation delay parameters, the developed 
micropipeline standard-cell library defines such 
important timing constraints between cell terminals 
(pins).  

Typically, as shown in Fig. 3, the output data bus 
(Data_out(S)) and the associated acknowledge 
control signal (Ack(S)) of one cell (sender module) 
are used as input data (Data_in(R)) and its 
associated request signal (Req(R)) of another cell 
(receiver module). In other words, the Data_in(R) 
and Req(R) signals at the receiver module are only 
delayed versions of the Data_out(S) and 
acknowledge (Ack(S)) signals of the sender module 
due to routing. Even though, the sender cell design 
guarantees to have the data_out valid prior to the 
associated control signal by a minimum time of Tack, 
improper placement and/or routing may lead to 
violation of the input setup time (Treq) at the receiver 
end due to the difference in the interconnect delays 
of the data and control nets.  

Sender

Data_Out
(S)

Ack
(s)

Receiver

Routing
Delay

Data_In
(R)

Req
(R)

Routing
Delay

 

Fig. 3. Data Transfer between Sender & Receiver 

The output of a micropipeline standard cell 
placement program is a list of the physical x-y 
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coordinates of each cell instance. The generated 
solution is reported together with slack time 
estimates for various data nets. The slack time (Tslk) 
of some input data pin represents the amount of 
additional delay that may still be added to this data 
net without violating the bundled-data constraint. In 
other words, it is a measure for the delay margin 
available for meeting the bundled-data timing 
constraint. Thus, the slack time of the data input at 
the receiver cell is given by: 

Tslk = Tack (S) - Treq (R) + Tdly(req) - Tdly(data),  (1) 

where,  
Tack (S): is the acknowledge margin time for the 
sender cell, 
Treq (R): is the request setup time for the receiver 
cell, 
Tdly(req): is the request signal net delay from the 
sender to the receiver cell. 
Tdly(data): is the data net delay from the sender to 
the  receiver cell, 
 

A negative value of the slack time indicates a 
critical condition where the associated request signal 
needs to be delayed. The generated slack 
information, and cell coordinates are fed to a 
detailed router for a complete chip layout. 

For proper cell characterization, a proper delay 
model has to be adopted. The adopted model 
accounts for the following general delay properties: 

1. The cell switching delay has two components: 
a. the intrinsic or base delay (BD) of the cell, 

and 
b. the load factor (LF) delay which depends on 

the driving capability of the cell and the load 
capacitances (input capacitances of load 
cells as well as the interconnect 
capacitance). 

2. For cells with multiple input and output pins, 
the switching delay of a cell depends on which 
pins are active.  

The model is less accurate than circuit 
simulation, but the error introduced is about the 
same for all cells and nets. This is important, since 
relative accuracy in timing analysis is sufficient. 
Even though differentiating delays between rising 
and falling signals would make the model less 
pessimistic, in the current work we have assumed 
equal delay parameters for both the rise and fall 
times leaving such differentiation for future fine 
tuning. 

Thus, the parameters BD and LF will be assumed 
to have the same values for different transitions. 

According to this model, the switching delay of a 
cell is computed as: 

Delay = BD + LF * AcLoad               (2) 

where, 
BD : the Base Delay of the cell, i.e., its internal 

intrinsic delay in the absence of any load 
capacitance, 

LF  : the  cell load factor indicating the amount of 
delay per unit of load capacitance, and 

AcLoad : the overall external load capacitance. 
 

Thus, the delay from a valid input signal x to an 
output terminal y of some cell consists of two main 
components; a base delay and a loading delay. The 
base delay of any cell is placement-independent and 
should be directly available in the well-
characterized cell library. Since for any net, only 
one source pin may be active at a time, the 
capacitances of all other pins on the net (usually 
input pins) represent one component of the loading 
delay which is also placement-independent. The 
second loading delay component, however, is due to 
the interconnect (wiring) capacitance of the net 
which is placement-dependent. Therefore, the delay 
from any input pin x to an output pin y has two 
components, one which is placement-independent 
Tpi while the other is placement dependent Tpd. 
Thus, the total delay TD can be written as: 

TD = Tpi + Tpd    (3) 

where, 
Tpi : the placement-independent Delay  

(Tpi = BD + LF * (Cin + Cout)                   (4) 

Cin  : ∑ input capacitances of all input pins of the 
net                                                                          (5)  

Cout : ∑ output capacitances of all output pins of the 
net including the active (driving) pin      (6) 

Tpd : Placement-dependent delay (interconnect/ 
wiring delay) = LF * Cw                             (7) 

Cw : the wiring capacitance = Cwa + Cwff 

Cwa : area wiring capacitance (depends on the wire 
area, i.e. its length and width) 
Cwff : fringing-field wiring capacitance (which is 

considered as independent of the wire width, 
i.e. it only is a function of the wirelength) 

 
Routing is done assuming two metal layers; 

Metal1 layer for horizontal tracks and Metal2 for 
vertical runs. Accordingly, our estimate for the total 
wire-length distinguishes the total horizontal wire 
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length component Lh from the total vertical wire 
length component Lv.  

In the above timing model, the metal wire 
resistance is assumed to be negligible, which imply 
that an event signal emanating from some source 
node on a net will reach all sink nodes on the net at 
the same time. Furthermore, the contact resistance 
of vias that connect metal layers running 
horizontally and vertically, has been considered as 
negligible. It should also be noted that, since the 
adopted delay model is linear, the total delay of a 
given path is the sum of component and 
interconnect delay times along this path. 
 
 
3.   Wirelength Model 
The performance of the placement algorithm 
depends on the way it estimates the wirelength of its 
nets. In this work, we adopt the semi-perimeter 
method  [19] for estimating the net wirelength 
assuming Manhattan routing, i.e. routing tracks that 
are either horizontal or vertical. The wirelength of 
the net is estimated to be one half the perimeter of 
the bounding rectangle.   

This method works fairly well for nets having 
two or three pins; however, for nets with more than 
three pins, the wirelength evaluated by this method 
is usually an underestimation of the actual value. To 
improve the accuracy of this estimation, the 
wirelength estimates of nets with more than three 
pins are inflated by a factor of 20% which gives 
closer wirelength estimate on the average. This 
helps in connecting nets with pins on different rows. 
Fig. 4 shows an example for a 5-pin net. 
 

Bounding

Rectangle

Lv

Lh
 

Fig. 4 Bounding Rectangle for a 5-Pin Net 
{wirelength = 1.2(Lv + Lh)} 

 
 
 
4.   Placement Cost Function 

The cost function of the placement algorithm 
primarily targets routability for proper functionality 
of micropipeline systems. 

This necessarily implies that the cost function 
should reflect the required bundled-data timing 
constraints. This necessitates that all Treq timing 
constraints for all cell instances are met. This 
requires calculations of arrival times of various data 
and control signals at cell boundaries and comparing 
these to the specified cell request margin times. We 
compute a time margin function for all bundled-data 
constraints Tij of all cell instances. This function 
yields a normalized estimate of the time margin 
beyond the specified setup time for the jth. bundled-
data constraint of the ith cell instance (margin by 
which data signals arrive prior to their associated 
control (Request) signal at cell instance i beyond the 
required Treq setup time for this instance. The 
pseudo code of the procedure which computes Tij is 
given in Fig. 5. The procedure also computes the 
total number of constraints n, the total number of 
constraint violations of the ith cell instance ( )(i

violn ), 
and the total number of constraint violations for all 
cell instances Nviolations ( ≤ n ). The individually 
computed time margins are used to compute an 
average timing margin quantity Tmargin which is 
averaged over the total number of constraints n.  
Placement solutions with negative Tmargin are 
infeasible solutions since they correspond to 
solutions with gross timing violations.  
In addition to timing constraints, the cost function 
also includes a component that accounts for the cost 
of the resulting chip area. The area cost factor only 
covers the placement-dependent chip area 
normalized to a placement-independent analytical-
estimate of this area computed according to the 
procedure described by Kurdahi  [20]. 

Thus, the area cost factor includes the routing 
channel areaa as well as the area occupied by the 
feed-through cells.  

The cost function is expressed as a weighted sum 
of the above two factors. The weight factors C1 and 
C2   are selected such that that C1 + C2 = 1. The used 
cost function is given by: 

⎟⎟
⎟
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a Width of a routing channel is estimated using the vertical 
constraint graph of that channel 19. The length of the longest 
path in that graph represents a lower bound on the number of 
tracks required for that channel. 
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Fig. 5. Pseudo code for calculating the timing margins for individual cell instances (ΔT(i)) and the average 

timing margin (Tmargin) 

 

where, 

Nviolations : Total number of timing constraint 
violations for all cell instances. 

n    :         The total number of timing constraints of 
all cell instances. 

Total Area : Placement-dependent chip area (area of 
feed-through cells + area of routing 
channels*). 

Estimated Area : Precomputed placement-indepen-
dent analytical estimate for the area of 
feed-through cells, and routing 
channels computed according to the 
procedure outlined proposed by 
Kurdahi  [20].  

 

C1, C2   = Timing and area weight factors chosen 
such that that C1 + C2 = 1. Thus if C2= 0 
optimization is performed only for timing while if  
C1 =0   only area optimization is targeted. 
 
The cost function is scaled up by the factor 

⎟
⎠
⎞

⎜
⎝
⎛ +

n
Nviolations1  since timing violations require 

additional delay cells which translate into higher 
cost both in timing and in total chip area. 
 
 
5.   Simulated Evolution Placement 
This work uses the simulated evolution (SE) 
algorithm which is a general iterative heuristic 
method for combinatorial optimization problems 

Procedure Time_Margin 
n = 0;   /* Total number of circuit timing constraints to be satisfied */ 
Nviolations = 0;  /* Total number of violated timing constraints */ 
TM = 0;    
TMAX = 0 ; 
FOR  Each Cell_Instance  i  DO 
   ΔT(i)= 0;          /* total time margin of ith cell instance*/ 
   ;0)( =i

violn  /* Number of timing violations at the boundary of the ith cell */ 

   FOR  each timing constraint  j of  cell_instance  i  DO 

    Treq (i , j) = Setupi (Dj(i) , Cj(i))  /* jth  setup time of cell_instance i */ 
       Δij =  TCj(i)  - TDj(i) /* TDj(i)  , TCj(i)  = Actual arrival times of the jth 

data (Dj) and control (Cj) signals at the boundaries of 
cell_instance i */ 

IF ( Δij < Treq (i , j)  ) THEN   ;1)()( += i
viol

i
viol nn  

),( jiTT reqijij −Δ=  
      IF (Tij > TMAX) Then TMAX = Tij 
      ΔT(i)= ΔT(i) + Tij ; 
      n = n + 1 ; 

   END FOR j 
   TM = TM + ΔT(i) ; 
   Nviolations = Nviolations  + )(i

violn  

END FOR i  
Tmargin = TM / n; 
IF (TMAX = 0 ) Then TMAX = 1.01* Tmargin ; 
END Procedure 
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 [16]- [18]. The SE method is stochastic in nature 
providing hill climbing means to allow for escaping 
local minima of the objective function on the path to 
a global optimum. 

The algorithm is based on an analogy to the 
natural selection process in biological environments. 
The cells of a given design are treated as population 
 [15]. The biological solution to the adaptation 
process in the evolution from one generation to the 
next is done by eliminating ill-suited solutions and 
keeping near-optimal ones. Every constituent of 
each generation must constantly prove its fitness 
under the current conditions in order to remain 
unaltered. The purpose of this process is to 
gradually create stable structures which are finally 
adapted to the given constraints.  

The algorithm basically consists of a main loop 
which comprises three sequentially executed main 
steps namely; Evaluation, Selection and Allocation. 
The evaluation phase determines a normalized 
goodness of cell instances, i.e. the individual 
contribution of each cell instance to the overall cost 
of a given placement solution. For the evaluation 
phase, the time margin ΔT(i) of the ith cell instance 
(see Fig. 5) has been used to determine the goodness 
of this cell instance as follows: 
 

( ))i(Tsign

)i(

)i(
viol

th

n
n

1

)i(T cetanins cellitheofGoodness Δ
Δ

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+

=

      (9) 
where 

n(i)   : The number of timing constraints of the ith cell 
instance 
n i

viol
)(

  : The number of timing constraint violations 
for the ith cell instance 

sign (ΔT(i)) =  +1          if ΔT(i)  is positive 
                 (10) 

  =  -1          if ΔT(i) is negative 
                 (11) 
 

Some micropipeline cells have no bundled-data 
timing constraints, e.g. cells with only control input 
and output signals like the Merge-element and the 
C-element8. We refer to such cells as control cells. 
The goodness of control cells is determined by 
summing the timing margins of the output control 
signal at the boundaries of all cell instances using 
this signal as an input request. Thus, if the ith cell 
instance is such a control cell, its goodness is 
computed using the above formula (Eq (9)) but with 

ΔT(i), n(i), and n
i

viol
)(

 computed/defined differently as 
follows: 

))j,i(T()i(T reqij

signalrequestinputas
usedicellcontroltheof

outputthewith)j(cells

−= ∑
∀

ΔΔ              (12) 

n(i) : The number of cases where the output 
signal of the control cell instance (i) is  
used  as an input request for other cell 
instances. 

n i
viol

)(
  : The number of timing constraint 

violations associated with the output of 
the  control cell instance (i) where this 
output is used as an input request for other 

cell instances (n i
viol

)(
 ≤ n(i)). 

 
In the selection phase, some cell instances are 

probabilistically selected for re-placement based on 
their goodness values. Thus, the cell's goodness 
determines its probability of survival in its old 
location. Cell instances with high goodness values 
are less likely to be selected compared to others with 
low goodness values. Finally, the allocation 
procedure removes selected lower fitness cells from 
their locations in the current placement solution and 
attempts to find better locations for them. For each 
cell individually, a search is performed to find an 
improved location in the vicinity of its old position. 
A number of trial placements are evaluated and then 
a choice is made based on the total cost reduction. 
When all cells have been replaced, the current 
iteration is complete and a new solution is formed. 
 

The initial placement is obtained using the 
Constructive Linear Ordering (CLO) heuristic  [21].  
 
 
6.   Results and Discussion 
Table 1 lists the sample five micropipeline circuits 
that were used to test the above described placement 
algorithm.  The resulting placements were passed to 
a detailed router and timing analysis was performed 
to verify the validity of bundled-data timing 
constraints.  

Fig. 6 and Fig. 7 show the trend of the cost 
function versus the number of iterations for different 
values of C2 for two of the test circuits (Ckt2 and 
Ckt5).  At higher values of C2, the area cost 
component gets more stressed in the cost function at 
the expense of the timing component.  Too high 
values of C2, however, generally yield solutions that 
do not meet the timing constraints. 
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Table 1. Test Circuits 

Circuit No. of 
Cells 

No. of 
Nets 

Ckt1. 16-bit Self-Timed Adder 
 [14] 

673 998 

Ckt2. 4x4 Array Multiplier 1108 1714 
Ckt3. 8-bit scaling accumulator 
 [22] 

1237 2078 

Ckt4. 8-bit CORDIC core 2568 4219  
Ckt5. MIPS R3000 write-back 
unit  [22] 

3842 6147 
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Figure 6. Cost Trend of Circuit Ckt2 for three 

values of (C2) 

 

Trend of Cost Function  (Circuit Ckt5)

0

1

2

3

4

5

6

7

8

0 3000 6000 9000 12000 15000 18000

Iterations

C
os

t C2= 0.1
C2 = 0.2
C2 = 0.4

 
Figure 7. Cost Trend of Circuit Ckt2 for three 

values of (C5) 

Feasible solutions are those which satisfy all 
timing constraints, i.e. solutions for which 
Nviolations = 0.  Since delay estimation is based on 
simplified delay and wirelength models, solutions 

with small values of Tmargin, e.g. Tmargin = 0 may end 
up with timing violations in practice. Thus, higher 
quality solutions are those with smaller areas and 
higher Tmargin values. 

 

Table 2. Quality of Solution; Area ( in μicron2) 

 Area (μicron2) 

Circuit C2 = 0.1 C2 = 0.2 C2 = 0.3 C2 = 0.4 

Ckt1 154464 148910 150692 145036 

Ckt2 419784 414548 409535 394163 

Ckt3 529012 523822 516097 496724 

Ckt4 2248998 2235701 2194092 2111735

Ckt5 5233926 5520975 5106149 4914484

Average 1717237 1768791 1675313 1612428 

 

Table 3. Quality of Solution; Tmargin (in pico-
seconds) 

 Time (pico-seconds) 

Circuit C2 = 0.1 C2 = 0.2 C2 = 0.3 C2 = 0.4 

Ckt1 30 22 13 7 

Ckt2 29 19 14  2◊ 

Ckt3 18 14 9 -2◊ 

Ckt4 15 8 5  3◊ 

Ckt5 11 7  3◊  5◊ 

◊ Infeasible solution with Nviolations ≠ 0 

Table 2 and Table 3 compare the quality of 
solution (circuit area and the Tmargin parameter) for 
values of the area weight factor C2 = 0.1, 0.2, 0.3 
and 0.4. For almost all circuits, the best solution has 
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been obtained at C2 = 0.3. The exception to that 
were circuits Ckt5, which has an infeasible solution 
at C2 = 0.3, and Ckt1 which has its best solution at 
C2 = 0.4. At C2 = 0.4 only the smallest size circuit 
(Ckt1) has a feasible solution while solutions for 
other larger circuits are infeasible with Nviolations ≠ 0. 
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Fig. 8. Effect of the Timing Constraint Weight 
Factor (C1) on the resulting number of timing 

violations. 

Fig. 8 plots the value of the number of timing 
violations as a percentage of the total number of 

timing constraints ⎟
⎠
⎞

⎜
⎝
⎛

n
Nviolations  averaged over 

solutions of the five test circuits versus the timing 
weight factor of the cost function (C1).  The figure 
clearly indicates that feasible solutions are not 
possible  for  values of   C1 < 0.6   (C2 > 0.4). 

Fig. 9 plots the resulting average area for all five 
circuits normalized to the maximum average area 
obtained at C2 = 0 versus the area weight factor of 
the cost function (C2).  When the cost function is 
optimized only for timing constraint requirements 
(i.e., C2 = 0), the timing constraints are fully met but 
at the expense of inefficient layouts with largely 
unequal rows of cells.  With the area factor taken 
into consideration (i.e., for C2 = 0); more area-
efficient layouts were produced (Fig. 9). 

It is readily seen that feasible solutions are 
possible for values of C2  in the range 0.1 - 0.4. 
Higher values of C2 have mostly yielded infeasible 
solutions with increasing number of timing 
constraint violations (Fig. 8). 

For small size circuits, however, higher values of 
C2 may yield solutions of more efficient areas. 

It should be pointed out, however, that some 
timing violations may be fixed by inserting extra 
delay elements into paths of the relevant control 
signals. For some infeasible solutions with low 
number of timing constraint violations, this may be 
utilized to fix reported timing violations thus turning 
these solutions into feasible ones. Inserting such 
extra delay elements may, however, increase the 
layout area as well as disturb the placement solution.  
One possible solution is to have the cell library 
include different types of feed-through cells with 
and without associated delay elements. Thus, 
different delay values may be inserted conveniently 
in signal paths without significantly disturbing 
obtained placement solutions.  This issue deserves 
to be the subject of further future investigations. 
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Fig. 9. Effect of the Area Weight Factor (C2) on the 
resulting area. 

 
 
7.   Conclusions 
This work addresses the problem of automated 
standard cell placement of asynchronous 
micropipeline designs. With proper choice of area 
and timing weight factors in the cost function, the 
resulting solutions can be made to meet all of the 
required bundled-data timing constraints with 
reasonably efficient chip areas. The approach 
deserves more investigation to determine how the 
current algorithm should be modified / augmented to 
turn infeasible solutions with small number of 
timing violations into feasible ones through proper 
addition of control signal delays with no/minimal 
disturbance to the obtained placement solution.  
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