
Transition Faults Detection in Bit Parallel Multipliers over GF(2m)

Hafizur Rahaman
Bengal Engineering & Science University, Shibpur

Howrah-711103, India
rahaman_h@it.becs.ac.in

Jimson Mathew
Computer Science Department, University of Bristol

BS81UB, UK,
jimson@cs.bris.ac.uk

Ashutosh K. Singh

CS Dept., School of Engineering,
Curtin University of Technology, Malaysia

ashutosh.s@curtin.edu.my

Dhiraj K. Pradhan, IEEE/ACM Fellow
Computer Science Department, University of Bristol

BS81UB, UK,
pradhan@cs.bris.ac.uk

Biplab K. Sikdar

Bengal Engineering & Science University, Shibpur
Howrah-711103, India
biplab@cs.becs.ac.in

Abstract: - In this article, a C-testable design for detecting transition faults in the polynomial basis (PB) bit
parallel (BP) multiplier circuits over GF(2m) is discussed. For 100 percent transition fault coverage, the
proposed technique requires only 10 vectors, irrespective of multiplier size, at the cost of 6 percent extra
hardware. The proposed constant test vectors which are sufficient to detect both the transition and stuck-at
faults in the multiplier circuits can be derived directly without any requirement of an ATPG tool. As the
GF(2m) multipliers have found critical applications in public key cryptography and need secure internal testing,
a Built-in Self-Test (BIST) circuit may be used for generating test patterns internally. This will obviate the need
of having three extra pins for the control inputs and also provides public-key security in cryptography. Area and
delay of the testable circuit are analyzed using Synopsys® tools with 0.18μ CMOS technology library from
UMC.

Key-Words: - Transition fault, Galois field, multiplier, cryptography, error control code, VLSI testing.

1 Introduction

Failures that cause logic circuits to malfunction at
the desired clock rate and violate timing
specifications are modeled as delay faults. Gate
delay [9-10] and path delay fault model [11-12]
have generally been used to model delay defects.
Path delay fault model is more comprehensive in
modeling delay defects, but often difficult to use in

practice due to large number of paths in large
circuits. Gate delay fault model is more practical for
large circuits. The most commonly used gate delay
fault model is transition fault model [9] which is
considered as a logical model for a defect that
delays a rising or falling transition at inputs and
outputs of logic gates. There are two kinds of
transition faults: slow-to-rise and slow-to-fall. Slow-
to-rise (fall) transition fault temporarily behaves like

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS
Hafizur Rahaman, Jimson Mathew, Ashutosh K.
Singh, Dhiraj K. Pradhan, Biplab K. Sikdar

ISSN: 1109-2734 1049 Issue 12, Volume 7, December 2008

a stuck-at-0 (1) fault. Testing of such faults requires
two-pattern tests, each consisting of an initialization
and a test vector. Several works have been reported
on generating tests for transition faults [9-15]. Here,
we present a C-testable technique for detecting
transition faults in PB multipliers over GF(2m).
Arithmetic operations in finite or Galois fields of
form GF(2m) have gained wide spread uses in
public-key cryptography, error detecting and
correcting code [2], VLSI testing [1], digital signal
processing [17]. There are two basic arithmetic
operations over finite fields: addition and
multiplication. While addition over GF(2m) can be
implemented with just m 2-input EXOR gates,
multiplication is much more complex. Note that
other operations like exponentiation, division, and
inversion over GF(2m) can be performed by repeated
multiplications [1-5]. Various techniques exist for
optimal design of multipliers over GF(2m) with
respect to complexities, delay, and power. Most
techniques focused on VLSI implementation and
synthesis of these multipliers because VLSI
implementations of these circuits are very
complicated due to complex routing, non-modular
architecture and low testability. The C-testable
systolic array design for Galois-Field inversion was
proposed in [16], which requires 32 vectors to detect
the faults in the circuit and extra hardware overhead
to achieve C-testability. A testable implementation
of BP multiplier over GF(2m) which requires a
function independent test set of length (2m+4) or
detecting stuck-at faults in multipliers over GF(2m)
was reported in [8]. To date, testability issue of GF
multiplier has not fully been explored. In view of
this fact, we present a C-testable design of PB
multipliers over GF(2m). This design requires only
10 constant vectors to detect transitions faults as
well as all the single stuck-at faults. This test length
is lower than that generated by Synopsys ATPG
tools (TetramaxTM). Finally, we analyse the area,
delay, and power using 0.18μ CMOS library from
UMC.

2. Preliminaries

Let GF(N) denote a set of N elements, where N is a
power of a prime number, with two special elements
0 and 1 representing the additive and multiplicative
identities respectively, and two operators addition
‘+’ and multiplication ‘.’. GF(N) defines a finite
field, if it forms a commutative ring with identity
over these two operators in which every element has
a multiplicative inverse. Finite fields can be

generated with primitive polynomials of the
form im

i i
m xcxxp ∑ −

=
+=

1

0
)(, where ci∈ GF(2) [5].

It is conventional to represent the elements of
GF(2m) as a power of the primitive element α where
α is the root of P(x), i.e. p(α)=0. The set
{1,α,…,αm-1} is referred to as the polynomial basis.
Each element A∈ GF(2m) can be expressed with
respect to the PB as a polynomial of degree (m-1)
over GF(2), i.e. ∑ −

== 1
0)(m

i
i

i xaxA where ai∈ GF(2).
Given A, B∈ GF(2m), the PB multiplication over
GF(2m) can be defined as C(x)=A(x).B(x) mod P(x).
Details can be found in [2,6].

Mastrovito has proposed an algorithm along with its
hardware architecture for PB multiplication [5]
popularly known as the Mastrovito
algorithm/multiplier. A formulation for Polynomial
basis multiplication and generalized bit-parallel
hardware architecture for special reduction
polynomials, namely: trinomials, equally spaced
polynomials (ESPs), and two classes of
pentanomials has been presented in [4]. This
formulation is described below. Consider a
multiplier with A and B inputs where A =[a0, a1, a2,
…,am-1] and B =[b0,b1,b2,…,bm-1]. The ai, and bi are
the coordinates of A and B respectively where 0≤ i ≤
m-1. The multiplication outputs are given in the
equation (1).

c= d + QTe (1)

d = L × b (2)

e = U × b (3)

where b= BT = [b0, b1, b2,…,bm-1]T, and

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS
Hafizur Rahaman, Jimson Mathew, Ashutosh K.
Singh, Dhiraj K. Pradhan, Biplab K. Sikdar

ISSN: 1109-2734 1050 Issue 12, Volume 7, December 2008

We have derived Q matrix for the multiplier over
GF(24) from the first principles in example 1. The
architecture for this implementation is shown in Fig.
1. This structure is divided into two parts: the Inner
Product (IP)-network and Q-network. Q-network
part is also EXOR tree. The IP-network, which has
m blocks, generates d and e. For {0≤ i ≤ m-2}, each
block constitutes two inner product cells, namely,
IP(i+1) and IP(m-i-1). However the last block
constitutes only one such cell IP(m). The Q-network
takes d and e as inputs and generates c. It constitutes
m binary trees of EXOR gates (BTXo, BTX1, ...,
BTXm-1). The inputs d and e feed to the BTX trees.
For the multiplier structure shown in Fig. 1, the IP-
network has a total of m2 AND gates and (m-1)2
EXOR gates. The maximum number of EXOR gates
required for the Q-network depends on the Q-
matrix. The multiplier structure is the multiple
outputs Positive Polarity Reed-Muller (PPRM)-like
form.

Definition 1: A Boolean AND-EXOR function F(x1,
x2,…,xn) is in the PPRM if only positive polarity is
allowed for each input variable, i.e. each variable
appears in its uncomplemented form throughout. For
example F1 = x1x2 ⊕ x2x3 is a PPRM. Several testable
techniques for AND-EXOR circuits have appeared
in [7].
Example 1: A multiplier structure over GF(16)
defined by the primitive polynomial P(x) = x4 + x3
+ 1 is shown in Fig. 2.

The two inputs of the multiplier are A = (a0, a1, a2,
a3) and B = (b0, b1, b2, b3). The polynomial
representation of GF(24) elements is as follows.
A(x) = a0+a1 x+a2 x2 + a3x3, B(x) = b0+b1 x+b2 x2 +
b3 x3, where A, B ∈ GF(24).

The product C(x) = A(x) × B(x).

Now, C(x) = (a0+a1 x+a2 x2 + a3x3) × (b0+b1 x+b2 x2

+b3x3)= a0b0 + (a0b1 + a0b1)x+(a0b2 + a1b1+ a2b0)x2

+ (a0b3 + a1b2+ a2b1 + a3b0)x3 + (a1b3 + a2b2+
a3b1)x4 +(a2b3 + a3b2)x5 + a3b3x6.

Let us denote the lower order m coefficients as d0,
d1, … ,dm-1 and the higher order {m-1} coefficients as
e0, e1,… ,em-2. Then C(x) can be expressed in
equation (4).

C(x) = d0+d1x+d2x2 +d3x3+e0x4+ e1x5+ e2x6 (4)
Here, we define product over the primitive
polynomial P(x) = x4 + x3+1 as A(x) B(x) mod P(x).
Hence, we have,
x4 = x3+1, x5 = x(x3+1) = x4 + x= x3 + x+1, x6 =
x(x5) = x(x3 + x+1) = x4 +x2 + x =x3+1+ x2+ x =
x3+x2+ x+1.
Substituting the power of x4,x5,x6 and simplifying we
get,
A(x) B(x) mod P(x) = C
 = (e0+e1+e2 +d0)+ (e1+e2 +d1)
x+(e2 +d2)x2+(e0+e1+e2 +d3) x3

The above modulo reductions can be represented in
the matrix form as given below.

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

3

2

1

0

2

1

0

3

2

1

0

1
1
1
1

1
0
1
1

1
0
0
1

d
d
d
d

e
e
e

c
c
c
c

deQc T += , where
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
=

2

1

0

e
e
e

e
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=

3

2

1

0

d
d
d
d

d

We can also derive d, e from the equations (1), (2).

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS
Hafizur Rahaman, Jimson Mathew, Ashutosh K.
Singh, Dhiraj K. Pradhan, Biplab K. Sikdar

ISSN: 1109-2734 1051 Issue 12, Volume 7, December 2008

3 Proposed Technique

A test for a transition fault is a pair of input patterns,
one known as initialisation vector to set up the
initial state for the transition and another known as
propagation or test vector to cause the appropriate
transition and observe its effect at a primary output.
The test vector is identical to a pattern that detects
the corresponding stuck-at fault. The transition fault
coverage is a measure of effectiveness of the delay
test in detecting large delay variations. A test pair
<v1, v2> is required to detect the transition fault f on
a signal line. The initial vector v1 must set the target
node to an initial value 0 [1] for slow-to-rise [slow-
to-fall] fault. The test vector v2 has to launch the
corresponding transition at the target node and also
propagate the fault effect to the primary output.
Thus, v2 is a test for s-a-0 [s-a-1] fault if the
transition fault is the slow-to-rise [slow-to-fall]
fault. To achieve C-testability for detection of
transition faults in Bit parallel GF multipliers,
the multipliers architecture as shown in Fig.1
has been augmented. The AND part of IP-
network are modified with 3 control lines k0, k1
and k2. All two inputs AND gates have been
replaced by three inputs AND gates. The
proposed design is shown in Fig.3.

Definition 2: A circuit is C-testable if it can be
tested with a constant number of vectors
independent of the circuit’s complexity.

For the detection of the transition faults at any input
node of EXOR gate, two transitions 0 1 and 1 0
are essential. An EXOR-tree of single output can be
tested for all single transition faults by five (2m+3)-
bit function-independent tests applied to the inputs
of a single-input AND-EXOR circuit. Three control
inputs k0, k1, k2 are used to achieve this. This scheme
will allow us to apply each of the two transitions

(0→1, 1→0) to the inputs of each 2-input EXOR
gate in the tree. This is based on the following
observation. In Fig. 5a, the two sequence q: 01100
and r: 01010 arriving at the two inputs to the last
EXOR gate generate the output sequence s: 00110.
Similarly, q: 01100 and s: 00110 arriving at the two
inputs of an EXOR gate will generate the output
sequence r: 01010. Again, input sequences r: 01010
and s: 00110 will generate q: 01100 as output. There
exist the following relations among the vectors (q, r,
s): q ⊕ r = s, q ⊕ s = r, r ⊕ s = q. Applying
sequence q: 01100, two transitions i.e. 0→1 and
1→0 will be achieved at any input node of EXOR
gate. For the sequence r: 01010, the transitions 0→1
and 1→0 are achieved at any input node of EXOR
gate. Again for sequence s: 00110, two transitions
0→1 and 1→0 at the input node are generated.
Applying these sequences q, r, s, two transitions:
0→1 and 1→0 are achieved at every input node of
the EXOR gate in the EXOR tree.

Fig. 4. Test vectors and responses in an EXOR-tree

Example 2: In the EXOR tree shown in Fig. 4, we
assign sequence vectors q, r, s, q, r, s, q, r,… (by
repeating the pattern (q, r, s) to the inputs of the
EXOR tree from left-to right until all of them are
assigned. The outputs of the first level are
propagated down to the root i.e. final output of the
tree. Thus, each EXOR gate in the tree receives the
desired input combination from the above five
combinations. The five constant test vectors that are
to be applied to the inputs of the tree of Fig. 4 are
shown as a matrix Ttree. This matrix has five

Fig. 3. C-Testable GF Multiplier

AND-part

 EXOR
 tree

 k A B

 cm-1
 cm-2

 c1
 c0

Q-network

 EXOR
 tree

IP-network

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS
Hafizur Rahaman, Jimson Mathew, Ashutosh K.
Singh, Dhiraj K. Pradhan, Biplab K. Sikdar

ISSN: 1109-2734 1052 Issue 12, Volume 7, December 2008

(constant) rows and y columns, where y is the
number of leaf nodes of the tree, and is equal to the
number of AND outputs (m2) in the multiplier
circuit. The columns of the matrix, if seen from left-
to-right, will correspond to the sequence vectors: q,
r, s, q, r, s, q, r, and so on. The number of distinct
columns in the matrix is only three (constant),
regardless of the size of the tree.

Since the EXOR-tree is embedded in the overall
design of the single output AND-EXOR circuits, the
inputs of the tree are not directly accessible. In the
IP network as shown in Fig.3, each AND output
feeds an EXOR input. Hence, by applying the
following five vectors v1, v2, v3, v4, v5 to the primary
inputs of Fig. 3, all the three sequences q, r, s can be
produced at the outputs of the AND-part.

 {k0 k1 k2 a0 a1 … am-1 b0 b1… bm-1}

 v1 = {0 0 0 0 0 … 0 0 0 … 0 }

 v2 = {1 1 0 1 1 … 1 1 1 … 1 }

 v3 = {1 0 1 1 1 … 1 1 1 … 1 }

 v4 = {0 1 1 1 1 … 1 1 1 … 1 }

 v5 = {0 0 0 1 1 … 1 1 1 … 1 }

F

0k
1k
2k

a
b

Fig. 5. EXOR-tree with a control level

 A control level with three-control inputs k0, k1
and k2 as shown in Fig. 5. By setting these control
inputs to 1, the original function can be obtained. In
this design, the AND outputs are partitioned into 3
groups based on sequence vectors q, r, s. The output
lines of the AND gates connected with k0, k1 and k2
control lines receive the sequence vector q: 01100,
r: 01010, and s: 00110 respectively. No additional

hardware is essential for this testable design. Only
all the two inputs AND gates in IP-network have
been replaced by three inputs AND gates.

The technique we have discussed above is
applicable to single output AND-EXOR circuits. In
this section we extend this idea to multiple output
AND-EXOR circuits. To achieve 100% testability in
multiplier circuits, the inputs of the EXOR gates of
the IP- and networks will be properly mapped. We
assume that the IP-network would generate the
following sequence from left-to-right: q, r, s, q ,…,
q, r, s, q… and so on at the outputs ej, where 0 ≤ j ≤
m-2. To propagate these ej outputs of the IP-
network at the outputs of the Q-network, the di
outputs, where 0 ≤ i ≤ m, will be properly mapped
with the sequences q, r, and s. The following
algorithms outline this process.

Step-1: Assignment of sequences q, r, and s to
ej, where 0 ≤ j ≤ m-2.

Algorithm_ seq_assignment _e
 for (j= 2; j<= m; j++)
 {
 e(m-j) = q;
 e(m-(j+1)) = r;
 e(m-(j+2)) = s;
 }

Example 3: For the multiplier circuit over
GF(24) of Fig.2, the ej (0 ≤ j ≤2) are assigned as
e2 = q, e1 = r, e0 = s.

Step-2: Assignment of the sequences q, r, and s
to di, (0 ≤ i ≤ m-1).

Condition 1: After assigning the sequences at the ei
nodes in step-1, the sequences at di nodes (0 ≤ i ≤ m-
1) are to be assigned in such a way that no two input
nodes of each EXOR gate receive same sequence
vector in the Q-networks.

Example 4: Consider tree representation of BTX3
block of Q-network as shown in Fig. 6a. In step-1,
the nodes e2, e1, e0 are already assigned with q, r,
and s respectively. In Fig 6a, e2 and e1 will generate
s sequence at y2 node. To propagate the signal value
considering condition 1, at c3 node, q (or r) is to be
assigned at y1 node. As e0 is already assigned with s,
then r (or q) is to be assigned with d3 to generate q
(or r) at y1 node. In this way, the sequences are to be
assigned to the di nodes, where 0 ≤ i ≤ m-1.

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS
Hafizur Rahaman, Jimson Mathew, Ashutosh K.
Singh, Dhiraj K. Pradhan, Biplab K. Sikdar

ISSN: 1109-2734 1053 Issue 12, Volume 7, December 2008

Fig.6a, Tree representation of BTX3 block

Fig.6b, Tree representation of IPd3

Step-3: Assignment of the sequences q, r, and s to
the internal nodes of the IP-network

Condition 2: After assigning the sequences at di’s
and ej’s, assign the input nodes of EXOR gates in
IP-network with proper sequence vectors so that no
two inputs of an EXOR gate receive same sequence
vector.

In example 4, r (or q) is assigned to d3 node to
generate q (or r) sequence at y1 as e0. Similarly,
considering all the other BTX blocks, s(or r), r(or
q), and q(or r) are to be assigned to d2, d1, d0
respectively. After assigning ej (0≤ j ≤ 2) and di (0≤
i ≤ 3) nodes, every EXOR gate in IP-network is
mapped. If the test sequence v1, v2, v3, v4, v5 is
applied, then the output lines of the AND gates
connected with control lines k0, k1 and k2 control
lines receive the sequence vector q: 01100, r:01010,
and s:00110 respectively.

Example 5: Consider IPd3 block of IP-network of Fig. 2,
as shown in the Fig.6b. The d3 node is already
assigned with either q or r. If the sequence q is
assigned to d3, then r (or s) and s (or r) will be to be
assigned to g5 and g6 nodes respectively. If r is
assigned to d3, then q (or s) and s (or q) will be to be
assigned to g5 and g6 nodes respectively. Suppose,
we consider d3=q, and g5= s, g6 = r. Again, to
generate s at g5, q and r are to be assigned to g1, g2
nodes respectively. Similarly, to generate r sequence
at g6 node, s and q are to be assigned to g3, g4 nodes
respectively. Now we have g1 = q, g2 = r, g3 = s, g4 =
q. To generate q sequence at g1 node, one input of
the x1 AND gate is to be connected to k0. Similarly,
to generate r, s, q sequences at g2, g3, g4 nodes
respectively, one input of the x2, x3, x4 AND gates is
to be connected to k1, k2, k0 control inputs
respectively. In this way, the input nodes of the IPd
blocks are assigned with the proper sequence
vectors by selecting the proper connection of control
inputs k0, k1, and k2.

Example 6: The internal mapping of the
interconnections in the IP- and Q-networks of
Example 2 is shown in Fig.7, which is also the
testable design of the multiplier designed from the
primitive polynomial P(x) = x4+ x3+1.

Transition Fault in EXOR part: The values of q, r, s
at a particular instant are shown in the table below.

Table 1: q, r, s sequence diagram

Instant t1 t2 t3 t4 t5
q 0 1 1 0 0
r 0 1 0 1 0
s 0 0 1 1 0

Case-1: When q and r sequence are applied at the

 e0 d3 e2 e1
 s ? q r

 y1 y2
 r/q s

 q/r
 c3

 a0 b3 k0 a1 b2 k1 a2 b1 k0 a3 b0 k2

 x1 x2 x3 x4

 g1 g2 g3 g4

 g5 g6

 q/r

 d3

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS
Hafizur Rahaman, Jimson Mathew, Ashutosh K.
Singh, Dhiraj K. Pradhan, Biplab K. Sikdar

ISSN: 1109-2734 1054 Issue 12, Volume 7, December 2008

inputs of an EXOR gate (Table 1).

Slow-to-rise transition i.e. transition from t1-to-t2

at q input node will produce 1 instead of 0 at the
output of EXOR gate because the input of r input
node changes its state, but due to slow-to-rise
transition at q node, the input value retains its
previous state at q node and shows 1. Slow-to-rise
transition i.e. transition from t1-to–t2 at r input node
will produce 1 instead of 0 at the output of EXOR
gate because the input of q input node changes its
state, but due to slow-to-rise transition at r node, the
input value retains its previous state at r node and
shows 1. Slow-to-fall transition i.e. transition from
t3-to–t4 at q input node will produce 0 instead of 1 at
the output of EXOR gate. Slow-to-fall transition i.e.
transition from t2-to–t3 at r node will produce 0
instead of 1 at the output of EXOR gate i.e., the
output retains its previous value 0.

Case-2: When r and s sequence are applied at the

inputs of an EXOR gate (Table 1).

Slow-to-rise transition i.e. transition from t1-to–t2

at r input node will produce 0 instead of 1 at the
output of EXOR gate i.e. the output retains its
previous value 0. Slow-to-rise transition i.e.
transition from t2-to–t3 at s input node will produce
0 instead of 1 at the output of gate because the input
value at r node changes its state, but due to slow–to-
rise transition at s, the input at s node retains value
of t2 and output shows 0. Slow-to-fall transition i.e.
transition from t2-to–t3 at r node will produce 0
instead of 1 at the output of gate because input of s
node changes its state, but due to slow-to-fall
transition at r node, the input value retains its
previous state at r node and shows 0. Slow-to-fall
transition i.e. transition from t4-to–t5 at s node will
produce 1 instead of 0 at the output of EXOR gate
because the input of r node changes its state, but due
to slow–to-fall transition at s, the input of s node
does not change and output shows 1.

Case-3: When q and s sequence are applied at the

inputs of an EXOR gate (Table 1).

Slow-to-rise transition i.e., transition from t1-to–t2

at q input node will produce 0 instead of 1 at the
output of gate i.e. the output retains previous value
0. Again, slow-to-rise transition i.e. transition from
t2-to–t3 at s input node will show 1 instead of 0 at
the output of the gate i.e. output retains previous
output 1. Slow-to-fall transition i.e. transition from
t3-to–t4 at q node will show 0 instead of 1 at the
output i.e. output retains its previous value 0.

Similarly, slow-to-fall transition i.e., transition from
t4-to–t5 at s node will show 1 instead of 0 at the
output i.e. the output retains it previous value 1.

Lemma 1: The vector sequence (v1, v2, v3, v4, v5)

will detect the transition faults in the EXOR part of
the multiplier circuits.

Proof: Follows from the above discussions. �
Testability in the AND gate: The following tests will
detect transition faults in a three- input AND gate
with inputs a, b, k.

Table 2: input state diagram for AND gate
Instant t1 t2 t3 t4 t5 t6 t7

a 1 0 1 1 1 1 1
b 1 1 1 0 1 1 1
k 1 1 1 1 1 0 1

If the vector pair (a, b, k) = (111, 011) is applied,
first vector 111 initialises AND output at logic value
1. When a slow–to-fall transition i.e. transition from
t1–to-t2 occurs at ‘a’ input node, test vector 011 will
show 1 at the output instead of 0, i.e. output retains
previous value. Again, if the vector pair (011, 111)
is applied, first vector 011 initialises the AND
output at 0. When a slow–to-rise transition i.e.
transition from t2–to-t3 occurs at ‘a’ input node, test
vector 111 will show 0 instead of 1 at output i.e. the
output retains 0. Similarly, vector sequences (111,
101,111) and (111, 110, 111) will detect transition
fault at ‘b, and ‘k’ input nodes respectively.

Lemma 2: The vector sequences v2, v3, v4, v5,v8,
v6, v8, v7, v8 will detect the transition faults in the
AND part of the multiplier circuits where,

Proof: The vector pair (v2, v3) generates (011, 111)
at the three inputs of AND gates connected with
control input k2, and (111, 011) at three inputs of
AND gates connected with k1 respectively. Again,
the vector pair (v3, v4) generates (011, 111) at the
three inputs of the AND gates connected with
control input k1, and (111, 011) at three inputs of
AND gates connected with k0 respectively. The
vector pair (v4, v5) generates (111, 011) at the three
inputs of the AND gates connected with control
input k2. The vector pair (v5, v8) generates (011,
111) at the three inputs of the AND gates connected
with control input k0. The sequence (v8, v6, v8) will

 {k0 k1 k2 a1 a2 … am-1 b1 b2… bm-1
v6 = {1 1 1 0… 0 … 0 1 1 … 1}
v7 = {1 1 1 1… 1 … 1 0 0 … 0}
v8 = {1 1 1 1… 1… 1 1 1 … 1}

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS
Hafizur Rahaman, Jimson Mathew, Ashutosh K.
Singh, Dhiraj K. Pradhan, Biplab K. Sikdar

ISSN: 1109-2734 1055 Issue 12, Volume 7, December 2008

produce (111,101,111) sequence at three inputs of
all the AND gates. The sequence (v8, v7, v8) will
produce the sequence (111,110,111) at three inputs
of all the AND gates in the multiplier circuits.
Hence, proof. �

Theorem 2: Any transition fault in the proposed
Multiplier network is testable by the constant test
set T of length 10, where T = (v1, v2, v3, v4, v5, v8, v6,
v8, v7, v8).
Proof: Follows from Lemma 1, and 2. �

3.1 Gate Complexities

The gate complexities different types of
polynomials are given in the Table 3. In this table,
the value of s is 1 for All One Polynomial (AOP)
and m/2 for trinomial defined by xm+xk+1 where
k=m/2. For k ≠m/2, s = 1 for trinomial.

4. Experimental Results

We performed area, delay, power and test set size
analysis on various GF(2m) multipliers based on
different polynomial basis. The area, power and
delay analysis are based on 0.18μ CMOS
technology library from UMC. The table 4 shows
that the area of some GF multiplier circuits has been
increased by approximately only 6 percent to ensure
100 percent testability. Since the overall multiplier
complexity depends on primitive polynomial, there
is a slight variation in percentage overhead [Table
4]. The comparative analysis of area, delay and
power is shown in Fig. 8. On an average there is 6
percent increase in area and power. The delay
overhead is negligible, when the overall delay of the
multiplier is considered. The designs were
synthesized using the Synopsys tools. Synopsys’s
Power Compiler® was used to estimate the power
consumption.

Our test set is constant of length only 10, which

eliminates the need for test generation programs.
Table 4 compares our test scheme with ATPG-based
test generation. Synopsys® tools are used to
generate ATPG based test pattern. In ATPG-based
scheme, all the GF multiplier circuits require more
test patterns than that required in the proposed easily
generated test generation scheme for achieving
100% fault coverage. For example, in ATPG based
scheme, GF(216) multiplier circuit requires 32-bit
more than 97 test patterns, whereas in our scheme it

requires only 32-bit 10 test patterns. As our scheme
requires only 10 constant test patterns, it ensures
reductions in test application time and the associated
power consumptions.

BIST scheme may be incorporated to generate the
required 10 vectors internally. The BIST will
provide two benefits: firstly it will eliminate the
need for the three control inputs necessary for fully
testing the multipliers, and secondly it will provide
an added level of security. It can be designed with
minimum hardware to generate 10 test vectors. Note
that for all fields, the logic will remain same
because the pattern remains the same. Only word
length varies depending upon m.

5. Conclusion

This paper presents a C-testable design of PB bit-
parallel multipliers over GF(2m) for achieving 100%
faults coverage. For an m-bit multiplier circuit, a
constant test set of length 10 for detecting both the
transition and stuck-at faults is derived. The testable
design requires 6% (avg.) extra hardware and 3
control inputs. BIST circuit can be used to generate
test pattern internally. This eliminates the need for
the three control inputs and also provides an added
level of public-key security. The test set being very
short in length, reduces test application time and test
power.

References

1. Y. Wu and M.I. Adham, “Scan-Based BIST

Fault Diagnosis,” IEEE TCAD, vol. 18, no. 2,
pp. 203-211, 1999.

2. I.S. Reed and X. Chen, Error-Control Coding
for Data Networks. Kluwer Academic, 1999.

3. J.H. Guo and C.L. Wang, “Systolic Array
Implementation of Euclid’s Algorithm for
Inversion and Division in GF(2m),” IEEE Trans.
Computers, vol. 47, no. 10, pp. 1161-1167,
1998.

4. A. Reyhani-Masoleh, and M. A. Hasan, "Low
Complexity Bit Parallel Architectures for
Polynomial Basis Multiplication over GF(2m)",
IEEE Trans. Computers, vol.53, no.8, pp.945-
959, 2004.

5. E.D. Mastrovito, “VLSI Architectures for
Computation in Galois Fields,” PhD thesis,
Linkoping Univ., Linkoping, Sweden, 1991.

6. D. K. Pradhan, “A Theory of Galois Switching
Functions”, IEEE Trans. Computers, vol. 27,
no. 3, pp.239-248, Mar. 1978.

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS
Hafizur Rahaman, Jimson Mathew, Ashutosh K.
Singh, Dhiraj K. Pradhan, Biplab K. Sikdar

ISSN: 1109-2734 1056 Issue 12, Volume 7, December 2008

7. H. Rahaman, D. K. Das, and B. B.
Bhattacharya, “Testable design of GRM
network with EXOR-tree for detecting stuck-at
and bridging faults,” ASPDAC 2004, pp. 224-
229.

8. H. Rahaman, J. Mathew, A. M. Jabir and D. K.
Pradhan, “Easily Testable Implementation for
Bit Parallel Multipliers in GF (2m)”, HLDVT
2006.

9. J. A. Waicukauski, E. Lindbloom, B. K. Rosen
and V. S. Iyengar, “Transition Fault
Simulation”, IEEE Design & Test of
Computers, Vol. 4, No. 2, April 1987.

10. A. K. Pramanick and S. M. Reddy, “On the
Detection of Delay Faults”, ITC88, pp. 845-856.

11. G. L. Smith, “Model for Delay Faults Based
Upon Paths”, ITC85, pp. 342-349.

12. C. J. Lin and S. M. Reddy, “On Delay Fault
Testing in Logic Circuits”, IEEE TCAD, pp.
694-703, Sept. 1985.

13. I. Pomeranz and S. M. Reddy, “Static
Compaction for Two-Pattern Test Sets”, Proc.
ATS, pp. 222-228, 1995.

14. X. Liu, M. S. Hsiao, S. Chakravarty and P. J.
Thadikaran, “Novel ATPG Algorithms for
Transition Faults”, ETW, pp. 47-52, May 2002.

15. K. T. Cheng. Transition Fault Simulation for
Sequential Circuits. In Proc. International Test
Conference, pp.723-731, October 1992.

16. C. Haung and C. WU, “High-Speed C-Testable
Systolic Array Design for Galois-Field
Inversion,” ED&TC 97, pp.342-346.

17. BLAHUT, R. E. 1985. Fast Algorithms for
Digital Signal Processing. Addison- Wesley.

Table 3: Gate complexities for different Polynomial Basis

Original Implementation Testable Implementation Polynomials

type # of 2 inputs
AND gate

of 2 inputs EXOR
gate

of 3 inputs AND gate # of 2 inputs EXOR gate

ESP m2 m2-s m2 m2 – s

Trinomial m2 m2 – 1 m2 m2 – 1

Pentanomial m2 m2 + m m2 m2 + m

Fig. 8a: Area: Original vs C-Testable Version

GF(4) GF(8) GF(16) GF(32) GF(64) GF(128) GF(256) GF(512) GF(1024)
0

1000

2000

3000

4000

5000

6000
Area Analysis

Galois Field Size

A
re

a
 (u

m
2)

Original Design

Proposed C-Testable Design

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS
Hafizur Rahaman, Jimson Mathew, Ashutosh K.
Singh, Dhiraj K. Pradhan, Biplab K. Sikdar

ISSN: 1109-2734 1057 Issue 12, Volume 7, December 2008

Fig. 8b: power : Original vs C-Testable Version

Fig. 8c: Delay Analysis: Original vs C-Testable Version

GF(4) GF(8) GF(16) GF(32) GF(64) GF(128) GF(256) GF(512) GF(1024)
0

1

2

x 10
-4 Power Analysis

Galois Field Size

P
ow

er
 (u

w
)

Original Design

Proposed C-Testable Design

GF(4) GF(8) GF(16) GF(32) GF(64) GF(128) GF(256) GF(512) GF(1024)
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

-9 Delay Analysis

Galois Field Size

D
el

ay
 (n

s)

Original Design

Proposed C-Testable Design

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS
Hafizur Rahaman, Jimson Mathew, Ashutosh K.
Singh, Dhiraj K. Pradhan, Biplab K. Sikdar

ISSN: 1109-2734 1058 Issue 12, Volume 7, December 2008

Table 4: Details of area and number of tests required to achieve 100% coverage

Area in μm2 # of tests for 100% faults coverage GF
multiplier

Irreducible

Polynomial Original
circuit

Testable
circuit

% extra area for
testability

Original ckt using ATPG Testable circuit

GF(22) x 2 + x + 1 400.02 425.8 6.4 9 10

GF(23) x3 + x + 1 728.9 758.06 5.3 15 10

GF(24) x4 + x + 1 1200.1 1238.1 5.18 22 10

GF(25) x5 + x3 + x2 + x + 1 1748.3 1864.4 6.64 24 10

GF(26) x6 + x + 1 2180.5 2296.6 5.32 38 10

GF(27) x7 + x + 1 2819.2 2932.1 5.31 39 10

GF(28) x8 + x4 + x3 + x2 + 1 3896.6 4103.0 6.7 50 10

GF(29) x9 + x4 + 1 4431.9 4693.3 5.9 72 10

GF(210) x10 + x3 + 1 5251.3 5573.8 6.52 97 10

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS
Hafizur Rahaman, Jimson Mathew, Ashutosh K.
Singh, Dhiraj K. Pradhan, Biplab K. Sikdar

ISSN: 1109-2734 1059 Issue 12, Volume 7, December 2008

