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Abstract: - In this article, a C-testable design for detecting transition faults in the polynomial basis (PB) bit 
parallel (BP) multiplier circuits over GF(2m) is discussed. For 100 percent transition fault coverage, the 
proposed technique requires only 10 vectors, irrespective of multiplier size, at the cost of 6 percent extra 
hardware. The proposed constant test vectors which are sufficient to detect both the transition and stuck-at 
faults in the multiplier circuits can be derived directly without any requirement of an ATPG tool.  As the 
GF(2m) multipliers have found critical applications in public key cryptography and need secure internal testing, 
a Built-in Self-Test (BIST) circuit may be used for generating test patterns internally. This will obviate the need 
of having three extra pins for the control inputs and also provides public-key security in cryptography. Area and 
delay of the testable circuit are analyzed using Synopsys® tools with 0.18μ CMOS technology library from 
UMC.   
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1 Introduction 
 
Failures that cause logic circuits to malfunction at 
the desired clock rate and violate timing 
specifications are modeled as delay faults. Gate 
delay [9-10] and path delay fault model [11-12] 
have generally been used to model delay defects. 
Path delay fault model is more comprehensive in 
modeling delay defects, but often difficult to use in 

practice due to large number of paths in large 
circuits. Gate delay fault model is more practical for 
large circuits. The most commonly used gate delay 
fault model is transition fault model [9] which is 
considered as a logical model for a defect that 
delays a rising or falling transition at inputs and 
outputs of logic gates. There are two kinds of 
transition faults: slow-to-rise and slow-to-fall. Slow-
to-rise (fall) transition fault temporarily behaves like 
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a stuck-at-0 (1) fault. Testing of such faults requires 
two-pattern tests, each consisting of an initialization 
and a test vector. Several works have been reported 
on generating tests for transition faults [9-15]. Here, 
we present a C-testable technique for detecting 
transition faults in PB multipliers over GF(2m). 
Arithmetic operations in finite or Galois fields of 
form GF(2m) have gained wide spread uses in 
public-key cryptography, error detecting and 
correcting code [2], VLSI testing [1], digital signal 
processing [17]. There are two basic arithmetic 
operations over finite fields: addition and 
multiplication. While addition over GF(2m) can be 
implemented with just m 2-input  EXOR gates, 
multiplication is much more complex. Note that 
other operations like exponentiation, division, and 
inversion over GF(2m) can be performed by repeated 
multiplications [1-5]. Various techniques exist for 
optimal design of multipliers over GF(2m) with 
respect to complexities, delay, and power. Most 
techniques focused on VLSI implementation and 
synthesis of these multipliers because VLSI 
implementations of these circuits are very 
complicated due to complex routing, non-modular 
architecture and low testability. The C-testable 
systolic array design for Galois-Field inversion was 
proposed in [16], which requires 32 vectors to detect 
the faults in the circuit and extra hardware overhead 
to achieve C-testability. A testable implementation 
of BP multiplier over GF(2m) which requires a 
function independent test set of length (2m+4) or 
detecting stuck-at faults in multipliers over GF(2m) 
was reported in [8].  To date, testability issue of GF 
multiplier has not fully been explored. In view of 
this fact, we present a C-testable design of PB 
multipliers over GF(2m). This design requires only 
10 constant vectors to detect transitions faults as 
well as all the single stuck-at faults. This test length 
is lower than that generated by Synopsys ATPG 
tools (TetramaxTM). Finally, we analyse the area, 
delay, and power using 0.18μ CMOS library from 
UMC. 
 

2. Preliminaries 
 
Let GF(N) denote a set of N elements, where N is a 
power of a prime number, with two special elements 
0 and 1 representing the additive and multiplicative 
identities respectively, and two operators addition 
‘+’ and multiplication ‘.’. GF(N) defines a finite 
field, if it forms a commutative ring with identity 
over these two operators in which every element has 
a multiplicative inverse. Finite fields can be 

generated with primitive polynomials of the 
form im

i i
m xcxxp ∑ −

=
+=

1

0
)( , where ci∈ GF(2) [5]. 

It is conventional to represent the elements of 
GF(2m) as a power of the primitive element α where 
α is the root of P(x), i.e. p(α)=0. The set 
{1,α,…,αm-1} is referred to as the polynomial basis. 
Each element A∈ GF(2m)  can be expressed  with 
respect to the PB as a polynomial of degree (m-1) 
over GF(2), i.e. ∑ −

== 1
0)( m

i
i

i xaxA  where ai∈ GF(2). 
Given A, B∈ GF(2m), the PB multiplication over 
GF(2m) can be defined as  C(x)=A(x).B(x) mod P(x). 
Details can be found in [2,6]. 
 
Mastrovito has proposed an algorithm along with its 
hardware architecture for PB multiplication [5] 
popularly known as the Mastrovito 
algorithm/multiplier. A formulation for Polynomial 
basis multiplication and generalized bit-parallel 
hardware architecture for special reduction 
polynomials, namely:  trinomials, equally spaced 
polynomials (ESPs), and two classes of 
pentanomials has been presented in [4]. This 
formulation is described below.  Consider a 
multiplier with A and B inputs where A =[a0, a1, a2, 
…,am-1] and B =[b0,b1,b2,…,bm-1]. The ai, and bi are 
the coordinates of A and B respectively where 0≤ i ≤ 
m-1. The multiplication outputs are given in the 
equation (1). 

c= d + QTe         (1) 

d = L × b           (2) 

e = U × b          (3)  

where b= BT = [b0, b1, b2,…,bm-1]T, and  
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We have derived Q matrix for the multiplier over 
GF(24) from the first principles in example 1. The 
architecture for this implementation is shown in Fig. 
1. This structure is divided into two parts: the Inner 
Product (IP)-network and Q-network. Q-network 
part is also EXOR tree.  The IP-network, which has 
m blocks, generates d and e. For {0≤ i ≤ m-2}, each 
block constitutes two inner product cells, namely, 
IP(i+1) and IP(m-i-1). However the last block 
constitutes only one such cell IP(m). The Q-network 
takes d and e as inputs and generates c. It constitutes 
m binary trees of EXOR gates (BTXo, BTX1, ..., 
BTXm-1). The inputs d and e feed to the BTX trees. 
For the multiplier structure shown in Fig. 1, the IP-
network has a total of m2 AND gates and (m-1)2 
EXOR gates. The maximum number of EXOR gates 
required for the Q-network depends on the Q-
matrix. The multiplier structure is the multiple 
outputs Positive Polarity Reed-Muller (PPRM)-like 
form.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Definition 1: A Boolean AND-EXOR function F(x1, 
x2,…,xn) is in the PPRM if only positive polarity is 
allowed for each input variable, i.e. each variable 
appears in its uncomplemented form throughout. For 
example F1 = x1x2 ⊕ x2x3 is a PPRM. Several testable 
techniques for AND-EXOR circuits have appeared 
in [7]. 
Example 1: A multiplier structure over GF(16) 
defined by the primitive  polynomial P(x) = x4 + x3 
+ 1 is shown in Fig. 2.  
 
The two inputs of the multiplier are A = (a0, a1, a2, 
a3) and B = (b0, b1, b2, b3). The polynomial 
representation of GF(24) elements is as follows.  
A(x) = a0+a1 x+a2 x2 + a3x3, B(x) = b0+b1 x+b2 x2 + 
b3 x3, where A, B ∈ GF(24).  
 
The product C(x) = A(x) × B(x). 

 
Now, C(x) = (a0+a1 x+a2 x2 + a3x3) × (b0+b1 x+b2 x2 

+b3x3)= a0b0 + (a0b1 + a0b1)x+(a0b2 + a1b1+ a2b0)x2 

+ (a0b3 + a1b2+ a2b1  + a3b0)x3 + (a1b3 + a2b2+ 
a3b1)x4 +(a2b3 + a3b2)x5 + a3b3x6. 

 

 

 

 

 

 

 
 
 
Let us denote the lower order m coefficients as d0, 
d1, … ,dm-1 and the higher order {m-1} coefficients as 
e0, e1,… ,em-2. Then C(x) can be expressed in 
equation (4).  
 
C(x) = d0+d1x+d2x2  +d3x3+e0x4+ e1x5+ e2x6      (4) 
Here, we define product over the primitive 
polynomial P(x) = x4 + x3+1 as A(x) B(x) mod P(x).  
Hence, we have,  
x4  = x3+1, x5  = x(x3+1) = x4  + x= x3 + x+1, x6  = 
x(x5 ) = x(x3 + x+1) = x4 +x2 + x =x3+1+ x2+ x =  
x3+x2+ x+1. 
Substituting the power of x4,x5,x6 and simplifying we 
get,  
A(x) B(x) mod P(x) = C 
                                 = (e0+e1+e2 +d0)+ (e1+e2 +d1 ) 
x+(e2 +d2 )x2+(e0+e1+e2 +d3 ) x3 
 
The above modulo reductions can be represented in 
the matrix form as given below. 

⎥
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We can also derive d, e from the equations (1), (2). 
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3 Proposed Technique 
 
A test for a transition fault is a pair of input patterns, 
one known as initialisation vector to set up the 
initial state for the transition and another known as 
propagation or test vector to cause the appropriate 
transition and observe its effect at a primary output. 
The test vector is identical to a pattern that detects 
the corresponding stuck-at fault. The transition fault 
coverage is a measure of effectiveness of the delay 
test in detecting large delay variations. A test pair 
<v1, v2> is required to detect the transition fault f on 
a signal line. The initial vector v1 must set the target 
node to an initial value 0 [1] for slow-to-rise [slow-
to-fall] fault. The test vector v2 has to launch the 
corresponding transition at the target node and also 
propagate the fault effect to the primary output. 
Thus, v2 is a test for s-a-0 [s-a-1] fault if the 
transition fault is the slow-to-rise [slow-to-fall] 
fault. To achieve C-testability for detection of 
transition faults in Bit parallel GF multipliers, 
the multipliers architecture as shown in Fig.1 
has been augmented. The AND part of IP-
network are modified with 3 control lines k0, k1 
and k2. All two inputs AND gates have been 
replaced by three inputs AND gates. The 
proposed design is shown in Fig.3. 
 

 

 

 

 

 

 
 
Definition 2: A circuit is C-testable if it can be 
tested with a constant number of vectors 
independent of the circuit’s complexity.  
 
For the detection of the transition faults at any input 
node of EXOR gate, two transitions 0 1 and 1 0 
are essential. An EXOR-tree of single output can be 
tested for all single transition faults by five (2m+3)-
bit function-independent tests applied to the inputs 
of a single-input AND-EXOR circuit. Three control 
inputs k0, k1, k2 are used to achieve this. This scheme 
will allow us to apply each of the two transitions 

(0→1, 1→0) to the inputs of each 2-input EXOR 
gate in the tree. This is based on the following 
observation. In Fig. 5a, the two sequence q: 01100 
and r: 01010 arriving at the two inputs to the last 
EXOR gate generate the output sequence s: 00110. 
Similarly, q: 01100 and s: 00110 arriving at the two 
inputs of an EXOR gate will generate the output 
sequence r: 01010. Again, input sequences r: 01010 
and s: 00110 will generate q: 01100 as output. There 
exist the following relations among the vectors (q, r, 
s):  q ⊕ r = s, q ⊕ s = r, r ⊕ s = q. Applying 
sequence q: 01100, two transitions i.e. 0→1 and 
1→0 will be achieved at any input node of EXOR 
gate. For the sequence r: 01010, the transitions 0→1 
and 1→0 are achieved at any input node of EXOR 
gate.  Again for sequence s: 00110, two transitions 
0→1 and 1→0 at the input node are generated. 
Applying these sequences q, r, s, two transitions: 
0→1 and 1→0 are achieved at every input node of 
the EXOR gate in the EXOR tree. 
 

 
 

 

 

 

 

 

 

 

 

 

Fig. 4. Test vectors and responses in an EXOR-tree 

 
Example 2:  In the EXOR tree shown in Fig. 4, we 
assign sequence vectors q, r, s, q, r, s, q, r,… (by 
repeating the pattern (q, r, s) to the inputs of the 
EXOR tree from left-to right until all of them are 
assigned. The outputs of the first level are 
propagated down to the root i.e. final output of the 
tree. Thus, each EXOR gate in the tree receives the 
desired input combination from the above five 
combinations. The five constant test vectors that are 
to be applied to the inputs of the tree of Fig. 4 are 
shown as a matrix Ttree. This matrix has five 

Fig. 3. C-Testable GF Multiplier 

AND-part 

    EXOR  
    tree 

    k   A  B 

  cm-1   
  cm-2 
 
 
   c1     
   c0 

Q-network 

    EXOR  
    tree 

IP-network 
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(constant) rows and y columns, where y is the 
number of leaf nodes of the tree, and is equal to the 
number of AND outputs (m2) in the multiplier 
circuit. The columns of the matrix, if seen from left-
to-right, will correspond to the sequence vectors: q, 
r, s, q, r, s, q, r, and so on. The number of distinct 
columns in the matrix is only three (constant), 
regardless of the size of the tree. 
 
Since the EXOR-tree is embedded in the overall 
design of the single output AND-EXOR circuits, the 
inputs of the tree are not directly accessible. In the 
IP network as shown in Fig.3, each AND output 
feeds an EXOR input. Hence, by applying the 
following five vectors v1, v2, v3, v4, v5 to the primary 
inputs of Fig. 3, all the three sequences q, r, s can be 
produced at the outputs of the AND-part.  

          {k0  k1   k2   a0   a1 … am-1    b0      b1…  bm-1}  

     v1 =   {0    0    0   0   0  … 0     0     0  … 0   }  

     v2 =   {1    1    0   1   1  … 1     1     1  … 1   }  

     v3 =   {1    0    1   1   1  … 1     1     1  … 1   } 

     v4 =   {0    1    1   1   1  … 1     1     1  … 1   } 

      v5 =  {0     0    0   1    1  … 1      1      1  … 1   } 

F

0k
1k
2k

a
b

 

Fig. 5. EXOR-tree with a control level 

                      
           A control level with three-control inputs k0, k1 
and k2 as shown in Fig. 5. By setting these control 
inputs to 1, the original function can be obtained. In 
this design, the AND outputs are partitioned into 3 
groups based on sequence vectors q, r, s. The output 
lines of the AND gates connected with k0, k1 and k2 
control lines receive the sequence vector q: 01100, 
r: 01010, and s: 00110 respectively. No additional 

hardware is essential for this testable design. Only 
all the two inputs AND gates in IP-network have 
been replaced by three inputs AND gates.  
 
The technique we have discussed above is 
applicable to single output AND-EXOR circuits. In 
this section we extend this idea to multiple output 
AND-EXOR circuits. To achieve 100% testability in 
multiplier circuits, the inputs of the EXOR gates of 
the IP- and networks will be properly mapped. We 
assume that the IP-network would generate the 
following sequence from left-to-right: q, r, s, q ,…, 
q, r, s, q… and so on at the outputs ej, where 0 ≤ j ≤ 
m-2.  To propagate these ej outputs of the IP-
network at the outputs of the Q-network, the di 
outputs, where 0 ≤ i ≤ m, will be properly mapped 
with the sequences q, r, and s. The following 
algorithms outline this process. 
 
Step-1: Assignment of  sequences q, r, and s to 
ej, where 0 ≤ j ≤ m-2. 
 
Algorithm_ seq_assignment _e 
        for (j= 2; j<= m; j++) 
              { 
                 e(m-j)        = q;  
                 e(m-(j+1)) = r; 
                 e(m-(j+2))  = s; 
               } 
 
Example 3: For the multiplier circuit over 
GF(24) of Fig.2, the ej (0 ≤ j ≤2) are assigned as 
e2 = q,  e1 = r, e0 = s.  
 
Step-2: Assignment of the sequences q, r, and s 
to di, ( 0 ≤ i ≤ m-1). 
 
Condition 1: After assigning the sequences at the ei 
nodes in step-1, the sequences at di nodes (0 ≤ i ≤ m-
1) are to be assigned in such a way that no two input 
nodes of each EXOR gate receive same sequence 
vector in the Q-networks. 
 
Example 4: Consider tree representation of BTX3 
block of Q-network as shown in Fig. 6a. In step-1, 
the nodes e2, e1, e0 are already assigned with q, r, 
and s respectively. In Fig 6a, e2 and e1 will generate 
s sequence at y2 node. To propagate the signal value 
considering condition 1, at c3 node, q (or r) is to be 
assigned at y1 node. As e0 is already assigned with s, 
then r (or q) is to be assigned with d3 to generate q 
(or r) at y1 node. In this way, the sequences are to be 
assigned to the di nodes, where 0 ≤ i ≤ m-1. 
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Fig.6a, Tree representation of  BTX3 block 

 

 

 

 

 

 

 

 

 

Fig.6b, Tree representation of  IPd3 

 
Step-3: Assignment of the sequences q, r, and s to 
the internal nodes of the IP-network 
 
Condition 2: After assigning the sequences at di’s 
and ej’s, assign the input nodes of EXOR gates in 
IP-network with proper sequence vectors so that no 
two inputs of an EXOR gate receive same sequence 
vector. 
 
In example 4, r (or q) is assigned to d3 node to 
generate q (or r) sequence at y1 as e0. Similarly, 
considering all the other BTX blocks, s(or r), r(or 
q), and q(or r) are to be assigned to d2, d1, d0 
respectively. After assigning ej (0≤ j ≤ 2) and di (0≤ 
i ≤ 3) nodes, every EXOR gate in IP-network is 
mapped. If the test sequence v1, v2, v3, v4, v5 is 
applied, then the output lines of the AND gates 
connected with control lines k0, k1 and k2 control 
lines receive the sequence vector q: 01100, r:01010, 
and s:00110 respectively. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Example 5: Consider IPd3 block of IP-network of Fig. 2, 
as shown in the Fig.6b. The d3 node is already 
assigned with either q or r. If the sequence q is 
assigned to d3, then r (or s) and s (or r) will be to be 
assigned to g5 and g6 nodes respectively. If r is 
assigned to d3, then q (or s) and s (or q) will be to be 
assigned to g5 and g6 nodes respectively. Suppose, 
we consider d3=q, and g5= s, g6 = r. Again, to 
generate s at g5, q and r are to be assigned to g1, g2 
nodes respectively. Similarly, to generate r sequence 
at g6 node, s and q are to be assigned to g3, g4 nodes 
respectively. Now we have g1 = q, g2 = r, g3 = s, g4 = 
q. To generate q sequence at g1 node, one input of 
the x1 AND gate is to be connected to k0. Similarly, 
to generate r, s, q sequences at g2, g3, g4 nodes 
respectively, one input of the x2, x3, x4 AND gates is 
to be connected to k1, k2, k0 control inputs 
respectively. In this way, the input nodes of the IPd 
blocks are assigned with the proper sequence 
vectors by selecting the proper connection of control 
inputs k0, k1, and k2. 

 

Example 6: The internal mapping of the 
interconnections in the IP- and Q-networks of 
Example 2 is shown in Fig.7, which is also the 
testable design of the multiplier designed from the 
primitive polynomial P(x) = x4+ x3+1. 

 
Transition Fault in EXOR part: The values of q, r, s 
at a particular instant are shown in the table below. 

 
Table 1: q, r, s sequence diagram 

Instant       t1   t2 t3 t4  t5 
q 0 1 1 0 0 
r 0 1 0 1 0 
s 0 0 1 1 0 

 

Case-1:  When q and r sequence are applied at the 

   e0               d3               e2               e1  
   s               ?                  q              r 
     
 
 
             y1                            y2 
             r/q                      s               

       
                                   
                         q/r             
                              c3 

     a0   b3        k0   a1   b2       k1    a2     b1      k0     a3    b0       k2    
 
        x1                 x2                     x3                  x4 
                
 
                 g1            g2                           g3             g4  

        

                                g5                           g6  

                        
                                          
                                          q/r                 
                                          
                                                d3 
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inputs of an EXOR gate (Table 1).   
 
Slow-to-rise transition i.e. transition from t1-to-t2 

at q input node will produce 1 instead of 0 at the 
output of EXOR gate because the input of r input 
node changes its state, but due to slow-to-rise 
transition at q node, the input value retains its 
previous state at q node and shows 1. Slow-to-rise 
transition i.e. transition from t1-to–t2 at r input node 
will produce 1 instead of 0 at the output of EXOR 
gate because the input of q input node changes its 
state, but due to slow-to-rise transition at r node, the 
input value retains its previous state at r node and 
shows 1. Slow-to-fall transition i.e. transition from 
t3-to–t4 at q input node will produce 0 instead of 1 at 
the output of EXOR gate. Slow-to-fall transition i.e. 
transition from t2-to–t3 at r node will produce 0 
instead of 1 at the output of EXOR gate i.e., the 
output retains its previous value 0.    

 
Case-2: When r and s sequence are applied at the 

inputs of an EXOR gate (Table 1).  
 
Slow-to-rise transition i.e. transition from t1-to–t2 

at r input node will produce 0 instead of 1 at the 
output of EXOR gate i.e. the output retains its 
previous value 0. Slow-to-rise transition i.e. 
transition from t2-to–t3 at s input node will produce 
0 instead of 1 at the output of gate because the input 
value at r node changes its state, but due to slow–to-
rise transition at s, the input at s node retains value 
of  t2 and output shows 0. Slow-to-fall transition i.e. 
transition from t2-to–t3 at r node will produce 0 
instead of 1 at the output of gate because input of s 
node changes its state, but due to slow-to-fall 
transition at r node, the input value retains its 
previous state at r node and shows 0. Slow-to-fall 
transition i.e. transition from t4-to–t5 at s node will 
produce 1 instead of 0 at the output of EXOR gate 
because the input of r node changes its state, but due 
to slow–to-fall transition at s, the input of s node 
does not change and output shows 1.   

 
Case-3:  When q and s sequence are applied at the 

inputs of an EXOR gate (Table 1).  
 
Slow-to-rise transition i.e., transition from t1-to–t2 

at q input node will produce 0 instead of 1 at the 
output of gate i.e. the output retains previous value 
0. Again, slow-to-rise transition i.e. transition from 
t2-to–t3 at s input node will show 1 instead of 0 at 
the output of the gate i.e. output retains previous 
output 1. Slow-to-fall transition i.e. transition from 
t3-to–t4 at q node will show 0 instead of 1 at the 
output i.e. output retains its previous value 0. 

Similarly, slow-to-fall transition i.e., transition from 
t4-to–t5 at s node will show 1 instead of 0 at the 
output i.e. the output retains it previous value 1. 

 
Lemma 1: The vector sequence (v1, v2, v3, v4, v5) 

will detect the transition faults in the EXOR part of 
the multiplier circuits. 

Proof: Follows from the above discussions. � 
Testability in the AND gate: The following tests will 
detect transition faults in a three- input AND gate 
with inputs a, b, k. 
 

 

Table 2: input state  diagram for AND gate 
Instant      t1   t2 t3 t4  t5 t6 t7 

a 1 0 1 1 1 1 1 
b 1 1 1 0 1 1 1 
k 1 1 1 1 1 0 1 

 

If the vector pair (a, b, k) = (111, 011) is applied, 
first vector 111 initialises AND output at logic value 
1. When a slow–to-fall transition i.e. transition from 
t1–to-t2 occurs at ‘a’ input node, test vector 011 will 
show 1 at the output instead of 0, i.e. output retains 
previous value. Again, if the vector pair (011, 111) 
is applied, first vector 011 initialises the AND 
output at 0. When a slow–to-rise transition i.e. 
transition from t2–to-t3 occurs at ‘a’ input node, test 
vector 111 will show 0 instead of 1 at output i.e. the 
output retains 0. Similarly, vector sequences (111, 
101,111) and (111, 110, 111) will detect transition 
fault at ‘b, and ‘k’ input nodes respectively. 

 

Lemma 2: The vector sequences v2, v3, v4, v5,v8, 
v6, v8, v7, v8 will detect the transition faults in the 
AND part of the multiplier circuits where, 

 
 
 
 
 
 

Proof: The vector pair (v2, v3) generates (011, 111) 
at the three inputs of AND gates connected with 
control input k2, and (111, 011) at three inputs of 
AND gates connected with k1 respectively. Again, 
the vector pair (v3, v4) generates (011, 111) at the 
three inputs of the AND gates connected with 
control input k1, and (111, 011) at three inputs of 
AND gates connected with k0 respectively. The 
vector pair (v4, v5) generates (111, 011) at the three 
inputs of the AND gates connected with control 
input k2. The vector pair (v5, v8) generates (011, 
111) at the three inputs of the AND gates connected 
with control input k0. The sequence (v8, v6, v8) will 

        {k0  k1  k2    a1    a2 … am-1  b1   b2… bm-1 
v6 = {1  1   1    0… 0  … 0       1    1 … 1} 
v7 = {1  1   1    1… 1 …  1       0    0 … 0} 
v8 = {1  1   1    1… 1…   1       1    1 … 1} 
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produce (111,101,111) sequence at three inputs of 
all the AND gates. The sequence (v8, v7, v8) will 
produce the sequence (111,110,111) at three inputs 
of all the AND gates in the multiplier circuits. 
Hence, proof.       � 
 
Theorem 2: Any transition fault in the proposed 
Multiplier network is testable by the constant test 
set T of length 10, where T = (v1, v2, v3, v4, v5, v8, v6, 
v8, v7, v8). 
Proof: Follows from Lemma 1, and 2.    � 
 
3.1 Gate Complexities 
 
The gate complexities different types of 
polynomials are given in the Table 3. In this table, 
the value of s is 1 for All One Polynomial (AOP) 
and m/2 for trinomial defined by xm+xk+1 where 
k=m/2. For k ≠m/2, s = 1 for trinomial.  
 

4. Experimental Results 

We performed area, delay, power and test set size 
analysis on various GF(2m) multipliers based on 
different polynomial basis. The area, power and 
delay analysis are based on 0.18μ CMOS 
technology library from UMC. The table 4 shows 
that the area of some GF multiplier circuits has been 
increased by approximately only 6 percent to ensure 
100 percent testability. Since the overall multiplier 
complexity depends on primitive polynomial, there 
is a slight variation in percentage overhead [Table 
4]. The comparative analysis of area, delay and 
power is shown in Fig. 8.  On an average there is 6 
percent increase in area and power. The delay 
overhead is negligible, when the overall delay of the 
multiplier is considered. The designs were 
synthesized using the Synopsys tools. Synopsys’s 
Power Compiler® was used to estimate the power 
consumption.   

 
Our test set is constant of length only 10, which 

eliminates the need for test generation programs. 
Table 4 compares our test scheme with ATPG-based 
test generation. Synopsys® tools are used to 
generate ATPG based test pattern. In ATPG-based 
scheme, all the GF multiplier circuits require more 
test patterns than that required in the proposed easily 
generated test generation scheme for achieving 
100% fault coverage. For example, in ATPG based 
scheme, GF(216) multiplier circuit requires 32-bit 
more than 97 test patterns, whereas in our scheme it 

requires only 32-bit 10 test patterns. As our scheme 
requires only 10 constant test patterns, it ensures 
reductions in test application time and the associated 
power consumptions. 

  
BIST scheme may be incorporated to generate the 
required 10 vectors internally. The BIST will 
provide two benefits: firstly it will eliminate the 
need for the three control inputs necessary for fully 
testing the multipliers, and secondly it will provide 
an added level of security. It can be designed with 
minimum hardware to generate 10 test vectors. Note 
that for all fields, the logic will remain same 
because the pattern remains the same. Only word 
length varies depending upon m.  
 
5. Conclusion 
 
This paper presents a C-testable design of PB bit-
parallel multipliers over GF(2m) for achieving 100% 
faults coverage. For an m-bit multiplier circuit, a 
constant test set of length 10 for detecting both the 
transition and stuck-at faults is derived. The testable 
design requires 6% (avg.) extra hardware and 3 
control inputs. BIST circuit can be used to generate 
test pattern internally. This eliminates the need for 
the three control inputs and also provides an added 
level of public-key security. The test set being very 
short in length, reduces test application time and test 
power. 
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Table 3: Gate complexities for different Polynomial Basis 

Original Implementation Testable Implementation Polynomials  

type # of 2 inputs 
AND gate 

# of 2 inputs EXOR 
gate 

# of 3 inputs AND gate # of 2 inputs EXOR gate 

ESP m2 m2-s m2 m2 – s  

Trinomial m2 m2 – 1 m2 m2 – 1 

Pentanomial m2 m2 + m  m2 m2 + m 
 

 
Fig. 8a: Area: Original vs  C-Testable Version 
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Fig. 8b: power : Original vs  C-Testable Version 

 
 
 
 
 
 

 
Fig. 8c: Delay Analysis: Original vs  C-Testable Version 
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Table 4: Details of area and number of tests required to achieve 100% coverage 

Area in μm2 # of  tests for 100% faults coverage  GF 
multiplier 

Irreducible 

Polynomial Original 
circuit 

Testable 
circuit 

% extra area for 
testability 

Original ckt using ATPG Testable circuit 

GF(22) x 2 + x + 1 400.02 425.8 6.4 9 10 

GF(23) x3 + x + 1 728.9 758.06 5.3 15 10 

GF(24) x4 + x + 1 1200.1 1238.1 5.18 22 10 

GF(25) x5 + x3 + x2 + x + 1 1748.3 1864.4 6.64 24 10 

GF(26) x6 + x + 1 2180.5 2296.6 5.32 38 10 

GF(27) x7 + x + 1 2819.2 2932.1 5.31 39 10 

GF(28) x8 + x4 + x3 + x2 + 1 3896.6 4103.0 6.7 50 10 

GF(29) x9 + x4 + 1 4431.9 4693.3 5.9 72 10 

GF(210) x10 + x3 + 1 5251.3 5573.8 6.52 97 10 
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