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Abstract: - For enhancement the insulation quality of medium voltage and high voltage power cables, on-site 
partial discharge (PD) diagnosis tests such as detection, location and identification are used to find defects or 
faults and assess ageing degree of the cable insulation. Typical test methods such as oscilating voltage waves 
(OVW), very low frequency (VLF) for medium cables and frequency-tuned resonance (FTR) for high voltage 
cables are adopted by far, especially for XLPE cable system. However, on-site interferences and noises make 
this PD detection very difficult. It requires a better method to extract PD pulses from severe noise circumstance. 
Wavelet transform technique used to suppress noises from PD signal (PDs) requires reasonable mother wavelet, 
amount of scales and thresholds to produce its best effect. This paper proposed a new wavelet-based denoising 
technique for on-site PD measurement of power cables. It aimed at applying discrete wavelet transform (DWT) 
with better denoising effect to on-site PD measurement. Firstly, it described and analyzed the testing methods 
for on-site PD measurement. Secondly, resonable amount of scales selection algorithm and threshold determine 
algorithm have been studied with this denoising technique. Finally, simulation studies associated with this 
method are presented. Moreover, previous wavelet denoising techniques are also studied here to compare to the 
new technique. Results indicate that this technique can not only attain better denoising effect but also improve 
the sensitivity of PD detection. 
 
Key-Words: - Partial discharge, discrete wavelet transform, power cables, oscilating voltage wave, very low 
frequency, frequency-tuned resonance. 
 
1 Introduction 
Medium voltage (MV) and high voltage (HV) 
power cables have been used in electrical power 
system more and more gradually. Faults and defects 
may be introduced to power cable and its 
accessories during transportation and installation. 
After installation, the insulation of cables and 
accessories may include small voids and cavaties, 
cantaminants and protrusions at different interfaces. 
Moreover, transportation and installation can bring 
mechanical cuts to the cable and its accessories. 
These faults or defects may be harmless at the 
beginning of the cable sevice but they will make the 
insulation breakdown and result in unexpected 
failures of whole cable system after long-term use 
[1, 2]. The influence of failures of cable system on 
reliability of the electrical power system is adding 
increasingly. Replacement or maintenamce for 
defective cables relies on scientific testing means, 
analysis on datas and assessment. Consequently, 
after laying tests and on-site tests during service of 
power cables are important and compulsory. 

After laying tests of new cables and diagnosis 
tests of old cables generally include withstand 
voltage test and partial discharge (PD) detection. 

The former one is destructive and the latter is 
nondestructive. Insulation defects in the cable or in 
the accessories may not cause failure during a 
withstand voltage test of a few minitues but they are 
harmful for the long-term service. The PD detection 
can reveal these defects and assess their serious 
degree. So far there are three main testing methods 
for on-site PD detection.They are oscillating voltage 
waves(OVW) and very low frequency(VLF) for MV 
cables, and frequency-tuned resonance(FTR) for HV 
cables. 

PD detection involves the capture and storage of 
PD datas, processing of PD signals, diagnosis and 
assessment of insulation. PD monitoring is approved 
the most effective technique for the cable insulation 
assessment. PD signals occur in the form of 
individual or serious of electrical pulses. They are 
small and are likely to submerge in noises. So, 
electromagnetic interference is a major problem in 
PD measurement. Rejection noise from PD signals 
is a precondition to analyze the characteristics of PD 
signals. 

PD pulse is always nonperiodic and fast transient. 
It is nonbalanced. So, traditional signal processing 
methods such as Fourier transform technique are 
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limited for PD signal extraction. Wavelet and its 
transform techniques can realize the local analysis 
simultaneously and has been used widely in signal 
processing areas [3, 4, 5, 6, 7]. 

The difficult parts of wavelet-based denoising for 
PD signal extraction are the wavelet function 
selection, determination of the number of scales and 
reasonable threshold value algorithm. Wavelet 
function must be maximum correlativity to the real 
PDs and should be smooth in interisting frequency 
ranges. The number of scales must be reasonable, or 
else it can result in inefficient noises rejection by 
insufficient scales, and reversely add processing 
time by superfluous scales. Mean value-based 
threshold algorithms can not reject noises at small 
number of scales. All of these need a new DWT 
denoising method to reject noises and to extract PDs 
from interferences. 

This paper proposed a new wavelet transform 
method suitable for on-site PD measurements. This 
method can dynamically construct threshold values 
according to the current noising characteristics. 
Moreover, the most appropriate amount of scales is 
calculated and analyzed. It is mainly associated with 
sampling rate. The present denoising method can 
reject noises with little number of scales even at 
large sample rate. The most important is that present 
method uses maximum values of noise to construct 
thresholds, which can reject noises completely. 
 
 
2  On-site PD Measurement and Noise 

and Wavelet Technique 
 
 
2.1 On-site PD Measurement 
On-site PD measurement generally uses the applied 
testing voltage to simulate the voltage stress, which 
occur during the service of the cables. Now, there 
are three main methods have been presented in 
engineering application. They are OVW, VLF and 
FTR testing system. OVW method and VLF method 
are suitable for MV cable test, and ISR method for 
HV cable test. The voltage waveforms of them are 
shown in figure 1a), 1b) and 1c) respectively. The 
waveform of VLF may be sine wave, triangle wave, 
semi-triangle wave, rectangle wave or cosine square 
wave. Among these waveforms, the triangle wave is 
easy to realize from charge and discharge of RC. 
The OVW voltage used for PD measurement has the 
oscillating frequency typically from several tens Hz 
to several hundreds Hz [8], and the typical 
frequency of VLF voltage is 0.1Hz. The FTR 

voltage used for PD measurement of HV cables has 
the frequency typically from 30Hz to 300Hz [9].  

Typically, the rise time of the discharge pulse is 
only a few ns and it’s during has the order of 10ns 
[10]. The shape of discharge pulse is determined by 
the shape and size of the defect and the applied 
detecting circuit. Normally, the detecting circuit is 
either a RC impedance circuit or a RLC impedance 
circuit. For three main testing methods, i.e. OVW, 
VLF and FTR, the real circuit construction adopted 
are possibly different, but the dectecting methods 
are the same.  

 
Fig.1 Voltage waveform of power supply. a) VW 
voltage waveform; b) VLF voltage waveform; c) 

FTR voltage waveform. 
 

The output voltage pulse can be represented as a 
damped exponential pulse (DEP) in the RC 
impedance circuit and a damped oscillating pulse 
(DOP) in the RLC impedance circuit. Under the 
condition of numerical simulation, their 
mathematical models can be represented as the 
expressions of (1) and (2) respectively. 
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Where A  is the peak value of pulse,  are the 
damping coefficients and  is the oscillating 
frequency of DOP.  
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2.2 On-site Noise Characteristic 
One of the major bottlenecks for PD measurement 
and analysis is external interferences which directly 
affects the sensitivety and reliability of the acquired 
PD datas. In most cases, these external interferences 
may cause improper indication in the PD signal 
analysis, thereby reducing the credibility of PD 
measurement as a diagnostic method for the faults 
and defects of power cables. In practice, the major 
external interference sources under on-site 
conditions are [11]: 
(i)    Discrete spectral interferences (DSI) from radio 

transmissions and communication systems.  
  (ii) Repetitive and stochastic pulse shaped 

interferences from power electronics, 
switching operations, lighting and so on. 

  (iii) Stochastic noises associated with pulse current 
of thyrister and electrical noises and so on. 

DSI is named continuous sinusoidal noise also. It 
is a narrow band interferene. Pulse (repetitive and 
stochastic pulse) interferences and stochastic 
interferences are wide band interferences. 
Interferences of the amplifiers in detecting circuit as 
a white noise can not be neglected [12].  
 
 
2.3  DWT Denoising Technique 
Removal interferences and noises from signal is one 
of the applications of DWT technique. DWT can 
decompose the original polluted signal in different 
frequency resolution according to multi-resolution 
analysis (MRA) method. The MRA of DWT is 
equivalent to filtering a time domain original signal 
by means of a pair of filters, i.e., the decomposition 
high pass filter(DHF) and the decomposition low 
pass filter(DLF). The DHF and DLF are called 
quadrature mirror filters (QMF). When 
decomposition, the original signal passes through 
the DHF and DLF with down-sampling algorithm 
by two to produce the high frequency 
components(also named high frequency coefficients) 
and the low frequency coefficients(also named low 
frequency coefficients), i.e., the details and 
approximations. The low frequency components are 
decomposed further at a degree that frequency 
resolution is satisfying. The structure of MRA is 

shown in figure 2. Where N  is the final 
decomposition scale;  is the low frequency 
coefficient at scale i ; and is the high frequency 
coefficient at scale i . The down-sampling by two 
expresses that every sampling reduced the sampling 
rate by half. That is to say that signal length and 
frequency are halved at every time when the signal 
passes through the QMF.  
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Fig.2  Signal decomposition and reconstruction 
 

Generally, after decomposition, some of the 
coefficients have a main energy relating to the 
signal and others are relating to the interferences 
and noises. From this view of point, if we remove or 
reduce the energies relating to the interferences and 
noises in specific frequency resolution, the signal 
will be completely resconstructed and extracted. In 
practice, it is difficult to separate completely the 
signal energy and noises energy from the DWT 
coefficients. General researches for removal or 
suppression of noises are to set a threshold for the 
coefficient in a scale, i.e., most of the noise energies 
can not pass through the threshold but the signal can. 

DWT denoising methods can be carried out either 
by hard threshold process or by soft threshold 
process.  

The reconstruction of signal is the reverse process 
of the decomposition. It is realized by the reverse 
discrete wavelet transform (IDWT). The low 
frequency coefficient and modified high frequency 
coefficient at every scale pass through the 
reconstruction low pass filter (RLF) and the 
reconstruction high pass filter (RHF) respectively 
with up-sampling by two to assemble the low 
frequency coefficient of the up scale. Eventually, 
the signal is extracted.  

From above discussion, the denoising process of 
signal by DWT technique includes three steps below. 

Step1: signal decomposition. Select a suitable 
wavelet, and determine a decomposing scale . 
And then, decompose the original noised signal  
to the final scale . 

N
)(ts

N
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Step2: threshold selection and quantitative change. 
Choose a threshold for every high frequency 
coefficieng from the scale 1 to the scale N  and 
make a soft threshold or a hard threshold 
quantitative change. 

Step3: signal reconstruction. Use the decomposed 
low frequency coefficient of the scale N  and the 
high frequency coefficients from scale 1 to scale  
which has been quantitative changed to reconstruct 
the signal. 

N

 
 
2.4  Application of DWT in PD Measurement 
Wavelet denoising technique is recently a powerful 
tool for extracting the PDs from interferences and 
noises. Massanori et al. [13] analyzed the PD 
current pulse using Gaussian and Mexican wavelets. 
Ma et al. [14] applied continuous wavelet transform 
for PD pattern recognition. Hang et al. [15] applied 
wavelet transform to extract PD signal from the 
narrow band sinusoidal interferences. Shim et al. 
[16, 17] presented the possibility of applying 
wavelet transform for the PD denoising. Ming et al. 
[18] applied wavelet transform for PD 
characteristics studies. Satish et al. [11] proposed a 
semi-automatic wavelet-based method to extract PD 
signal from the pulsive type of interences. Satish et 
al. [11] utilized the discrete wavelet transformation 
to analyze the PD datas. 

Almost all applications above discussed three 
main subjects on wavelet transformation: noises 
characteristic analysis; selection of mother wavelet 
and determination of threshold. Moreover, most 
applications described above are associated with 
using average statistic characteristics of wavelet 
coefficienties on different scales for thresholding. 
These applications, which decrease the estimation of 
noise energy, are easy to incur over denoising or 
under denoising with unreasonable selection of the 
number of scales. If the statistic estimation of noise 
energy has maximum value, the disadvantage of 
over denoising or under denoising will be avoided 
successfully. This directly brings on the 
development of a new wavelet-based denoising 
technique suitable for on-site PD measurements in 
this paper. 
 
 
3  A Novel DWT Denoising Technique 
for PD Extraction 
A new wavelet-based denoising technique has been 
proposed in this paper. This method firstly described 
the selection algorithm of mother wavelet. On the 
basis of this, it indicated that number of 

decomposition scales is mainly associated with 
sampling rate and sampling time by analyzing the 
energy of PDs with the selected mother wavelet. 
After these, a new threshold algorithm is proposed. 
The present threshold algorithm considers the 
maximum noise energy estimation. 

Under the equal applied voltage, a substitutional 
testing object is used for PD free measurement. The 
measured datas include noises and low frequency ac 
voltage signal (OVW, VLF or FTR). The ac voltage 
signal is removed by routine filtering technique or 
DWT technique. And then noise signal is extracted. 
Because of the equal applied voltage and PD free 
measurement, extracted noises signal is the actual 
noise, which is used in later PD measurement. We 
can decompose this noise signal with selected 
mother wavelet and amount of scales. Comparing 
the detail coefficients in every scale, the coefficient 
which holds maximum absolute value is saved as 
the threshold in later PD denoising. Because these 
maximum coefficients are completely produced by 
noises, increased components of coefficients in later 
PD denoising are totally produced by PD signal. 
Selecting the maximum absolute value of noise 
coefficient as the threshold, now, PD measurement 
can be done in the same applied voltage. PD signal 
corrupted by noises is denoised by DWT with same 
mother wavelet and amount of scales. Eventually, 
PD signal is extracted from noises.  

Simulating studies and experiment tests for this 
new DWT denoising technique are presented in this 
paper. Moreover, in order to compare with the new 
denoising method, previous old “mean threshold” 
method [14] is also studied in this paper. Results 
indicate that the new denoising method can extract 
PD signal well.  

 
 

3.1  Mother Wavelet Selection 
According to DWT denoising method for PD 
measurement discussed above, firstly, we must 
select a mother wavelet. Selection a basis wavelet 
function is one of the crucial steps to this DWT 
technique. The more the PD signal is similar to the 
wavelet function, the higher the coefficients 
associated with the PD signal will be [19, 20]. Some 
of the studies suggested the Daubichies wavelet 
family for PD measurement, such as Daubichies-
2(db2) [10] and Daubichies-30(db30) [21]. These 
selections for wavelet function are based on plenty 
of experiments by comparing the correlation 
coefficient  between PD signal and multifarious 
wavelet functions. Finally, the wavelet function with 
maximum correlation coefficient is adopted. 

γ
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However, in practical application, there are 
usually small differences among the desired 
correlation coefficients. In this case, we can use the 
filter characteristic to find the optimal wavelet. 

Signal decomposition is completed by filters of 
the specific wavelet function to produce low 
frequency coefficients and high frequency 
coefficients. We consider that the size of coefficient 
is associated with filter characteristic, through 
which the signal passed. Especially, if we interpret 
coefficient using the conception of signal energy 
(energy can be described as the square of coefficient 
[22]), it should be smooth in desired frequency band. 
This can avoid errors in threshold calculation. As a 
example of this consideration, the responses in 
frequency domain of the low pass filters and high 
pass filters of the Daubichies wavelet db2, db10, 
db20, db30 and db35 are shown in figure 3. If a 
sampling rate 100MHz is adopted in a measurement, 
the highest frequency of the figure 3 is 50MHz 
which corresponds to the angle frequency π . The 
cut-off frequency is 25MHz.  

 
a) 

 
b) 

Fig.3  Frequency responses of filters of db2, db10, 
db20, db30 and db35. a) low pass filters; b) high 

pass filters. 
 

We can see the differences from their filter 
characteristics. On the left side and right side of the 
cut-off frequency, the filter magnitude of db2 
changes with frequency according to approximate 
direct proportion or inverse ratio. However, the 

filter magnitude of db30 and db35 is sharp at the 
cut-off frequency but almost smooth at other 
frequencies. The higher the order of Daubichies 
wavelet, the bigger the frequency band of filter. 
Thus, high order wavelet is preferable. 

So, we can choose the mother wavelet according 
to three principles below: 

(i) The mother wavelet is orthogonal [20]. 
(ii) Compare the correlative coefficient between 

signal and wavelet function. The bigger the 
correlative coefficient is, the higher the coefficients 
produced by DWT of corresponding wavelet 
function are. 

(iii) Consider the responses in frequency domain 
of filters of wavelet function. The smoother the 
response curve both sides of cut-off frequency is, 
the smaller the differences (i.e., signal components 
vary with filters in different frequency) are. 
 
 

3.2  Decomposition Scale Selection 
It is difficult to determine how many decomposition 
scales should be adopted during DWT. However, it 
is generally accepted that more decomposition 
scales could cause the better effect of denoising, 
especially for signals with low signal-noise-ratio 
(SNR) . The reasonable scales in number are 
different with different signals. Zhou et al. [22] 
suggested the maximum decomposition scale, i.e., 7 
scales for PD signals calculated by energy 
distribution methods. Zhang et al. [20] adopted 10 
scales to extract PD signal from noises. And so on. 

As a matter of fact, we consider that the selection 
of decomposition scales is associated with the 
threshold determination methods. If the coefficients 
are not modified or have a little modification 
(mainly the high frequency coefficients) during the 
process of reconstruction signal, more or less scales 
are not important for DWT. However, if high 
frequency coefficients have much modification 
during reconstruction, the more scales reversely can 
cause serious distortion of PD signal. This is 
because of that the modification of coefficients is 
likely to modify the components of PD signal in 
corresponding frequency band. So, a maximum 
decomposition scale  should be selected carefully.  N

The maximum decomposition scale is mainly 
associated with the sampling rate for original signals. 
The higher the sampling rate is, the more the scales 
are. Under the fixed sampling rate, we can 
determine the maximum number of scales by 
calculating the energies of coefficients in every 
scale. As a example, the DEP type PD pulse signal 
is shown in figure 4 with its frequency spectrum.  
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                     a)                                    b) 

Fig.4  DEP type PD pulse and its spectrum. a) DEP 
pulse; b)  frequency spectrum. 

 
The sampling rate is 100MHz here. Energy of 

coefficients can be calculated by the equation in (3) 
and (4). 

  (3) ( )∑
1=

2=
kl

i
ik CaEA

  (4) ( )∑
1=

2=
kl

i
ik CdED

Where  is the energy sum of approximation 
coefficients at the scale k ,  the energy sum of 
detail  coefficients at the scale k  and  the signal 
length at the scale . 

kEA

kED

kl
k

Energy distributions of detail coefficients of the 
DEP pulse signal vs scales ,which are decomposed 
by wavelet function db10 and db30, are shown in 
figure 5a) and 5b) respectively. Case of db10 is 
presented to compare the effect for different wavelet 
function. 

 
                  a)                                        b) 
Fig.5 Detail coefficient energy distribution. a) 
decomposed by db10; b) decomposed by db30. 

 
When sampling rate is 100MHz, energies are 

concentrated at scale 6 to scale 15. Detail 
coefficients at scale 1 to scale 5 almost don’t hold 
energies for this DEP signal. Moreover, energies are 
almost zero at more than 15 scales. So, the 
maximum scale N  can be selected as 15 for this 
100MHz sampling rate.  

The scale holding maximum energy is different 
with different wavelet function, e.g., db10 at scale 9 
but db30 at scale 10. Moreover, energy magnitude is 
different with different wavelet function, e.g., the 
maximum magnitude is 2100(for db10) but is 
3000(for db30). But these do not affect the selection 

of maximum scale number. That is to say, mother 
wavelet function is inessential for maximum scale 
selection. 

We also analyzed the influence of pulse duration. 

Energy distributions of DEP pulse, which has 
2
1  

and 
4
1  times of original signal duration, are shown 

in figure 6a) and 6b) respectively. 

 
                      a)                                         b) 
Fig.6  Detail coefficient energy distribution. a) 0.5 

times of signal width; b) 0.25 times of signal width. 
 

We can see from figure 6, parts of energy move 
toward small scales, e.g., energies are concentrated 

at scale 5 to scale 15 for 
2
1  times of signal duration 

and scale 4 to scale 15 for 
4
1  times of signal 

duration. Moreover, the scale holding maximum 
energy moves toward small scale number,e.g., scale 

8 for 
2
1  times of signal duration and scale 7, 8 for 

4
1  times of signal duration. At the same time, 

energy magnitudes reduce when signal duration 
becomes narrow. Even if these, the maximum 
decomposition scale  is still satisfied. 15=N

From above discussion, a result can be obtained: 
the maximum decomposition scale is mainly 
decided by sampling rate when given wavelet 
function is used. However, it is not a feasible 
application for more scales due to the decrease of 
running speed. Thus a new method, with which the 
DWT denoising can perform well even at small 
number of scales, is preferable. The DWT denoising 
technique proposed in this paper is such a method, 
which uses the noise characteristics to achieve the 
threshold algorithm and gets better denoising results 
at small number of scales (usually 5). 
 
 
3.3  Threshold Selection 
It is a difficult thing for DWT denoising to selecting 
a reasonable threshold. Thresholding aims at 
removing the coefficients associated with noises, 
and preserving the coefficients associated with PD 
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signals. Finally, coefficients preserved are 
reconstructed through IDWT to recover PD signals. 
If threshold values are selected more high, 
coefficients associated with PD signals are possibly 
discarded. Reversely, if threshold values are 
selected more low, noises can not be removed fully. 
On the other hand, threshold selection algorithms 
should be automatically completed in practical PD 
measurements. Especially for operators with no 
more experiences, automatical thresholding 
algorithms can bring more conveniences for on-site 
measurement.  

Ma et al. [10, 23] proposed a scale-dependent 
automatic threshold selection algorithm, as shown in 
(5). 

 j
j

j n
m

λ log2
6745.0

=  (5) 

Where  is threshold value of approximation 
coefficients or detail coefficients at scale ,  is 
the median value of corresponding coefficients at 
scale  and  is the signal length at scale . 
Rescaling factor 0.6745 is used to limit the 
coefficients fluctuation during denoising. It is well 
suitable for zero mean white noises suppression. 
Subsequently, some literatures [19, 24] adopted this 
thresholding method to realize wavelet denoising. 
However, this algorithm is not efficient at small 
number of decomposition scales for big sampling 
rate.  

jλ

j jm

j jn j

According to above discussion, a new noise-based 
threshold selection method, which not only has 
automatic characteristic but also suppresses 
interferences at present energized voltage, is 
presented.  

For on-site PD measurement of power cables, 
different energized voltages are applied for different 
measurement methods described previously, i.e., 
OVW, VLF and FTR. We can firstly use a PD-free 
load, which has equivalent capacitance compared 
with the under test cable, to perform the 
measurement at the same voltage required by OVW, 
VLF or FTR. Because of no PD signals, recorded 
signals compose of noises and energized voltage. 
Energized voltage is a low frequency signal in 
frequency domain, which is easy to extract from 
noise signals by generic filter methods. Thus the 
desired noise signals are obtained, and then are 
decomposed by DWT with selected mother wavelet 
and scales described previously. Choose the 
maximum of detail coefficients at every scale as the 
threshold of current scale which will be used for the 
next step about the PD signal reconstruction. The 
block diagram of threshold determination and PD 
signal extraction are briefly shown in figure 7. This 

method assured that the maximum noise coefficients 
(thresholds) are acquired in equivalent testing 
conditions with PD signals extraction.  

NmCa

Nmm CdCd ~1

Fig.7  Threshold determination and PD signal 
extraction. 

 
 
3.4  Simulation Studies of Denoising System 
According to determination methods discussed 
above, simulation studies have been done, where 
mother wavelet db30 and number of scales 5 are 
selected.  Threshold determination algorithm is 
shown in figure 7. Three types of noises (i.e., DSI, 
white noises and random noises) are simulated. 
Sampling rate is 100MHz. Sampling time is 200 sμ . 
Sine wave for energized voltage is simulated. Four 
PD pulses (DEP or DOP) are arranged with different 
magnitude and 40 sμ  interval.  
 
 

3.4.1 PD Signal and Noise Simulation 
Simulated PD signals and noises based on 
mathematic model are shown in figure 8a) and 8b) 
respectively. DEP and DOP have four pulses 
respectively, according to degressive magnitudes. 
The magnitudes of DEP pulses are 8.4, 6.7, 4.2 and 
2.5 units in turn. And the DOP pulses are 8.3, 6.6, 
4.1 and 2.5 units. DSI noise is simulated by 10 
different frequencies from 100kHz to 10MHz. 
White noise is the standard zero mean Gaussian 
white noise. Random noise is simulated by random 
production. The maximun magnitude of each type of 
noise is adjusted to 15 units. 

 
a) 
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b) 

Fig.8 Simulated PD signal and noises. a) .DEP and 
DOP partial discharge signal; b) DSI noise, GS 

white noise and random noise. 
 
 
3.4.2 Denoising from Original Noise 
In this section, we directly extract PD signals from 
noise which is assumed known. That is to say, DWT 
denoising is performed from original noise. The 
mixed noises of the DSI noise and GS white noise 
and random noise have the maximum value of about 
40 units. The magnitudes of DEP pulses and DOP 
pulses are multiplied with 5. SNR is defined in (6) 
[10]. And then SNR of DEP pulses are 0.16db, -
0.84db, -2.9db and -5.1db respectively. SNR of 
DOP pulses have the same values. 

 
)max(
)max(

log*10=
noise
signal

SNR  (6) 

Figure 9 and Figure 10 show the simulation 
results using the new denoising method proposed in 
ths paper and the conventional “mean threshold” 
method in (5). The “mean threshold” method 
presented here acts as a role of comparing with the 
new method.  

From figure 9 and Figure10, we can see that the 
fourth pulse is almost immersed in noises. After 
DWT denoising process using the present wavelet 
denoising method proposed in this paper, the 
smallest fourth pulse is extracted from polluted 
signals. And we can see also that it is not efficient 
for conventional “mean threshold” method. This 
conventional method can possibly remove noise at 
many scales for large sampling rate, but is 
inefficient at small number of scales. The 

magnitudes of DEP pulses after denoise by new 
method has a average 7.62% descent and DOP 
pulses has a average 11.2% ascent. 

 
Fig.9  Simulation of extracting DEP pulses from 
noises. a) polluted PD signals; b) denoising result 

with present method; c) denoising result with 
conventional method; d) original PD signals. 

 
Fig.10  Simulation of extracting DOP pulses from 
noises. a) polluted PD signals; b) denoising result 

with present method; c) denoising result with 
conventional method; d) original PD signals. 

 
 

3.4.3 Denoising from Extracted Noise 
In this section, extracting noises is done firstly from 
recorded PD-free signals. This is to say, noise 
signals are not directly gived, but are obtained from 
removing the low frequency energized voltage 
signal after PD-free measurement. After obtaining 
the noises, we can calculate the thresholds by 
wavelet decomposing the noises as shown in 
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“step1” of figure 7. Methods of removing energized 
voltage signal can be filter method, but we use 
wavelet decomposition method here. 

Simulated original noise signals, polluted 
energized voltage signal and extracted noise signals 
are shown in figure 11a), 11b) and 11c) respectively. 
Extraction noise signals are realized by 
decomposing polluted energized voltage signal to 5 
scales. Reconstructed noise signals, which will be 
the thresholds for later PD signal extraction, are 
shown in figure 11c).  

 
Fig.11  Extracting noise signals from polluted power 
supply signal. a) simulated original noise signals; b) 

polluted power supply signal; c) extracted noise 
signals. 

 
After obtaining the noise signals, PD signals from 

noises circumstance can be extracted. The simulated 
results of extraction DEP PD pulses and DOP PD 
pulses are shown in figure 12 and figure 13 
respectively. For comparison, we also gived the 
denoising results by conventional “mean threshold” 
denoising method. 

 

Fig.12  Simulation of extracting DEP pulses from 
noises. a) polluted PD signals; b) denoising result 

with present method; c) denoising result with 
conventional method; d) original PD signals. 

 
Fig.13  Simulation of extracting DOP pulses from 
noises. a) polluted PD signals; b) denoising result 

with present method; c) denoising result with 
conventional method; d) original PD signals. 

 
For DEP type or DOP type , magnitudes of pulses 

extracted from filtering noise (see Figure 12 and 
Figure 13) have almost no changes to magnitudes of 
pulses extracted from original noise (see Figure 9 
and Figure 10). Simulation results indicate that the 
new DWT denoising technique proposed in this 
paper can remove interferences and noises well.  
 
 
4  Experiment Tests 
A practical signal composed of PDs and noise has 
been recorded from testing site. The noise pre-
recorded is presented in Figure 14a). Denoising 
results, which are performed by present DWT 
denoising method proposed in this paper and by 
conventional method, are shown in Figure 14b) and 
Figure 14c) respectively. Moreover, half of the 
ordinate is left to give a comparing of magnitudes. 
The sampling time is 20ms. Wavelet function db30 
and maximum scale 5 are selected during denoise. 

Three clear PD pulses are extracted from serious 
noise environment when the present denoising 
technique is adopted, which is shown in Firgure 
14c). However, noises can not be rejected 
completely by conventional method, where 
maximum scale 5 is adopted. So, noise-based DWT 
denoising method proposed in this paper is 
preferable to mean value-based denoising method. 
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Fig.14  Experiment results. a) pre-recorded noise; b) 

denoising result by conventional method; c) 
denoising result by present method. 

 
 
5 Discussion and Conclusion 
Electromagnetic interference is a major problem in 
on-site PD measurement of power cables. Rejection 
noise from PD signals is a precondition to analyze 
the characteristics of PD signals. Wavelet-based 
denoising technique helps us detect the PD signal 
from on-site noise circumstances. Especially for low 
level PD signal which possibly submerged in noises, 
routine filtering technique becomes inefficient but 
wavelet-based denoising technique is feasible. A 
new wavelet-based denoising technique is proposed 
in this paper. It mainly aimed to resolve three major 
factors in wavelet denoise, i.e., mother wavelet 
selection, amount of scales selection and threshold 
selection for practical on-site PD measurement of 
cables.  

There are by far three dominating methods for on-
site PD measurement, i.e., OVW, VLF and FTR. 
Voltage waveform, signal capture principle and   
noise characteristic of them are analyzed in this 
paper. Characteristics of PD pulse and noises must 
be investigated before applying wavelet-based 
denoising technique. As on-site noises are 
complicated and unfixed, they can not be considered 

simply a GS model. Random noises must be 
considered also. Previous wavelet-based denoising 
techniques are aimed at removing noises at more 
scales for large sampling rate, and are limited for 
practical running speed. These limitations bring on a 
new wavelet denoising method. 

Mother wavelet selection is associated with PD 
signal. Previous correlation coefficient comparison 
brings us a method to select mother wavelet. 
However, responses in frequency domain of filters 
of wavelet function are considered by authors in this 
paper. It is recommended to consider correlation 
coefficient and response in frequency domain 
synthetically. From the view of energy, authors 
calculated and analyzed the amount of scales. The 
number of scales is associated with sampling rate. 
Thus a noise-based threshold algorithm is presented 
by authors to reject noises at little number of scales, 
especially for large sampling rate. 

A new threshold selection algorithm, which is 
determined by maximum noise characteristics, is 
proposed for on-site PD measurement. Simulation 
studies indicate that this new wavelet-based 
denoising technique can extract PD signal well from 
high level noise circumstance. Moreover, previous 
threshold algorithm is also studied in this paper so 
as to compare with the new algorithm. On-site 
experiment studies with this new wavelet denoising 
technique are performed by authors also. Results 
indicated that the present method is preferable to 
reject noises and extract PDs.  

This novel technique is helpful for future research 
of pulse shape analysis accompanied by some 
optimization techniques such as Neural Networks or 
Genetic Algorithm. 
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