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Abstract:-  The bioelectric potentials associated with muscle activity constitute the electromyogram (EMG). 

EMG signal is used in biomedical applications to detect abnormal muscle electrical activity that occur in many 

diseases and conditions like muscular dystrophy, inflammation of muscles, pinched nerves, peripheral nerve 

damages, amyotrophic lateral sclerosis, disc herniation, myasthenia gravis and others. In this paper, it is 

depicted that an RBF neural network as compared with other types of neural networks can be effectively used 

for EMG signal noise removal, which is a typical nonlinear multivariable regression problem. The performance 
parameters i.e. MSE and correlation coefficient are found to be in the expected range of values. 
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1 Introduction 
The bioelectric potentials associated with muscle 

activity constitute the Electromyogram, which is 

abbreviated as EMG. These potentials may be 

measured at the surface of the body near a muscle of 

interest or directly from the muscle by penetrating 

the skin with needle electrodes. Since most EMG 
measurements are intended to obtain an indication 

of the amount of activity of a given muscle, or group 

of muscles, rather than of an individual muscle fiber, 

the pattern is usually a summation of the individual 

action potentials from the fibers constituting the 

muscle or muscles being measured. EMG electrodes 

pick up potentials from all muscles within the range 

of the electrodes, hence potentials from nearby large 

muscles may interfere with attempts to measure the 

EMG from smaller muscles, even though the 

electrodes are placed directly over the small 

muscles. Where this problem arises, needle 

electrodes are inserted directly into the muscle are 

required.[1],[2] 

The action potential of a given muscle (or nerve 

fiber) has a fixed magnitude, regardless of the 

intensity of the stimulus that generates the response. 
Thus, in a muscle, the intensity with which the 

muscle acts, does not increase the net height of the 

action potential pulse, but increases the rate with 

which each muscle fiber fires and the number of 

fibers that are activated at any given time. The 

amplitude of the measured EMG waveform is the 

instantaneous sum of all the action potentials 
generated at any given time. Because these action 

potentials occur in both positive and negative 

polarities at a given pair of electrodes, they 

sometimes add and sometimes cancel. Thus, the 

EMG waveform appears very much like a random-

noise waveform, with the energy of the signal as a 

function of the amount of muscle activity and 

electrode placement. Typical EMG waveform is as 

shown in Figure 1.
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Fig 1: Typical electromygram waveform. (Waveform obtained from Simulation at Sr. No.3 in Table 2) 
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Needle electrodes for EMG consist merely of 

fine insulated wires, and are placed so that their tips, 

which are bare, in contact with the nerve, muscle, or 

other tissue from which the measurement is made. 

The remainder of the wire is covered with some 

form of insulation to prevent shorting. Wire 

electrodes of copper or platinum are often used for 

EMG pickup from specific muscles. The wires are 

either surgically implanted or introduced by means 

of a hypodermic needle that is later withdrawn, 
leaving the wire electrode in place. With this type of 

electrode, the metal-electrolyte interface takes place 

between the uninsulated tip of the wire and the 

electrolytes of the body, although the wire is dipped 

into an electrolyte paste before insertion in some 

cases. The hypodermic needle is sometimes a part of 

the electrode configuration and is not withdrawn. 
Instead, the wires forming the electrodes are carried 

inside the needle, which creates the hole necessary 

for insertion, protects the wires, and acts as a 

grounded shield. A single wire inside the needle 

serves as a unipolar electrode, which measure the 

potentials at the point of contact with respect to 

some indifferent reference. If two wires are placed 

inside the needle, the measurement is called bipolar 

and provides very localized measurement between 

the two wire tips. 

Surface, needle, and fine-wire electrodes are all 

used for different types of EMG measurement. 

Surface electrodes are generally used where gross 

indications are suitable, but where localized 

measurement of specific muscles is required, needle 

or wire electrodes that penetrate the skin and contact 

the muscle to be measured are needed. As in 

neuronal firing measurements, both the unipolar and 

bipolar measurements of EMG are used.[3],[4] 

 

 

2 EMG Measurement 
Although action potentials from individual muscle 

fibers can be recorded under special conditions, it is 

the electrical activity of the entire muscle that is of 

primary interest. In this case, the signal is a 

summation of all the action potentials within the 

range of the electrodes, each weighted by its 
distance from the electrodes. Since the overall 

strength of muscular contraction depends on the 

number of fibers energized and the time of 

contraction, there is a correlation between the 

overall amount of EMG activity for the whole 

muscle and the strength of muscular contraction. In 

fact, under certain conditions of isometric 
contraction, the voltage-time integral of the EMG 

signal has a linear relationship to the isometric 

voluntary tension in a muscle. There are also 

characteristic EMG patterns associated with special 

conditions, such as fatigue and tremor.[7] 

The EMG potentials from a muscle or group of 

muscles produce a noisy waveform that vary in 

amplitude with the amount of muscular activity. 

Peak amplitudes vary from 25 µV to about 5 mV, 

depending on the location of the measuring 

electrodes with respect to the muscle and the activity 

of the muscle. A frequency response from about 5 
Hz to well over 5000 Hz is required for faithful 

reproduction.[5],[6],[12] The amplifier for EMG 

measurements, like that for ECG and EEG, must 

have high gain, high input impedance and a 

differential input with good common-mode 

rejection. However, the EMG amplifier must 

accommodate the higher frequency band. In many 
commercial electromyographs, the upper-frequency 

response can be varied by use of switchable lowpass 

filters. Unlike ECG or  EEG  equipment, the typical 

electromyograph has an oscilloscope readout instead 

of a graphic pen recorder. The reason is the higher 

frequency response required. Sometimes a storage 

cathode-ray tube is provided for retention of data, or 

an oscilloscope camera is used to obtain a 

permanent visual record of data from the 

oscilloscope screen. 

The EMG signal can be quantified in several 

ways. The simplest method is measurement of the 

amplitude alone. In this case, the maximum 

amplitude achieved for a given type of muscle 

activity is recorded. Unfortunately the amplitude is 

only a rough indication of the amount of muscle 

activity and is dependent on the location of the 

measuring electrodes with respect to the muscle. 

Another method of quantifying EMG is a count of 

the number of spikes or, in some cases, zero 
crossings, that occur over a given time interval. A 

modification of this method is a count of the number 

of times a given amplitude threshold is exceeded. 

Although these counts vary with the amount of 

muscle activity, they do not provide an accurate 

means of quantification, for the measured waveform 

is a summation of a large number of action 
potentials that cannot be distinguished individually. 

The most meaningful method of quantifying the 

EMG utilizes the time integral of the EMG 

waveform.[18] With this technique, the integrated 

value of the EMG over a given time interval, such as 

0.1 second, is measured and recorded or plotted. As 

indicated above, this time integral has a linear 

relationship to the tension of a muscle under certain 

conditions of isometric contraction, as well as a 

relationship to the activity of a muscle under 

isotonic contraction. As with the amplitude 
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measurement, the integrated EMG is greatly 

affected by electrode placement, but with a given 

electrode location, these values provide a good 

indication of muscle activity.[9] 

 In another technique that is sometimes used in 

research, the EMG signal is rectified and filtered to 

produce a voltage that follows the envelope or 

contour of the EMG. This envelop, which is related 

to the activity of the muscle, has a much lower 

frequency content and can be recorded on a pen 
recorder, frequently in conjunction with some 

measurement of the movement of a limb or the force 

of the muscle activity.  
 

2.1 Sources of Errors  
Errors can occur in a multitude of ways. These 

errors need to be considered, although may not be 

always present simultaneously: 

• Errors due to tolerance of electronic 

components. 

• Mechanical errors in meter movements. 

• Component errors due to drift or 

temperature variation. 

• Errors due to poor frequency response. 

• In certain types of instruments, errors due to 

change in atmospheric pressure or 

temperature. 

• Reading errors due to parallax, inadequate 

illumination, or excessively wide ink traces 

on a pen recording. 

 

2.2 Noise  
All semiconductor junctions generate noise, which 

limits the detection of small signals. Op Amps have 

transistor input junctions, which generate both 

noise-voltage sources and noise-current sources. 

These are depicted in Figure 2. 

 

 

 

 

 For low source impedance, only the noise voltage 

vn is important; it is large compared with the inR 

drop caused by the current noise in. The noise is 

random, but the amplitude varies with frequency. 

For example, at low frequencies the noise power 

density varies as 1/f (flicker noise), so a large 

amount of noise is present at low frequencies. At the 

infrequencies, the noise is lower and can be 

specified in rms units of V.Hz
-1/2

. In addition, some 

silicon planar-diffused bipolar integrated-circuit op 
amps exhibit bursts of noise[2]. The noise currents 

flow through the external equivalent resistances so 

that the total rms noise voltage is  

 

 

vt = {[v n
2
 + (inR1)

2
 + (inR2)

2
 + 4kTR1 + 

4kTR2]BW}
1/2

 
   

where R1  and R2 = equivalent source resistances   

 vn  = mean value of the rms noise voltage, in 

V.Hz-1/2, across the frequency range of interest. 

 in   = mean value of the rms noise current, in 

A Hz
-1/2

, across the frequency range of interest. 

  k =  Boltzmann’s constant. 

             T = temperature, K  

             BW = noise bandwidth, Hz. 

 

3 Performance Measures 
 

3.1 MSE (Mean Square Error) 
The formula for the mean square error is  

             p  n 
MSE = ∑ ∑ (dij - yij)

2 / NP 

            j= 0 i=0 

where P = number of output processing elements, 

N= number of exemplars in the data set, yij = 

network output for exemplar i at processing element 

j, dij = desired output for exemplar  i  at processing 

element j.[10] 

 

 

3.2 r (Correlation Coefficient) 
The size of the mean square error (MSE) can be 

used to determine how well the network output fits 

the desired output, but it doesn’t necessarily reflect 

whether the two sets of data move in the same 

direction. For instance, by simply scaling the 

network output, the MSE can be changed without 

changing the directionality of the data. The 

correlation coefficient (r ) solves this problem. By 

definition, the correlation coefficient between a 

network output x and a desired output d is:  
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The numerator is the covariance of the two variables 

and the denominator is the product of the 

corresponding standard deviation. The correlation 

coefficient is confined to the range [-1,1]. When r = 

1, there is a perfect positive linear correlation 

between x and d, that is, they co-vary, which means 

that they vary by the same amount.   

 

 

4 Neural Network Approach 
There are numerous real life situations where the 

exactness of the measurements is required. In 

Biomedical applications, due to complicated 

situations, the measurements are often error prone 

and hence, are noisy. Neural networks can be used 

to obtain reasonably good accuracy in removal of 

noise or elegantly filtering out the desired signals. 

At a high level, the filtering problem is a special 

class of function approximation problem in which 

the function values are represented using time series. 

A time series is a sequence of values measured over 

time in the discrete or continuous time units. Neural 

Networks can also be used for solving the nonlinear 

multivariable regression problem.  

Signal filtering from present observations is a 
basic signal processing operation by use of filters. 

Conventional parametric approaches to this problem 

involve mathematical modeling of the signal 

characteristics, which is then used to accomplish the 

filtering. In a general case, this is relatively a 

complex task containing many steps for instance 

model hypothesis, identification and estimation of 

model parameters and their verification. However, 

using a Neural Network, the modeling phase can be 

bypassed and nonlinear and nonparametric signal 

filtering can be performed. As the thresholds of all 

neurons are set to zeros, unknown variables for one 

step ahead filtering are only the connection weights 

between the output neurons and the jth neuron in the 

second layer, which can be trained by available 

sample set. [8] 

In the last decade, NN, have given rise to high 

expectations for model free statistical estimation 

from a finite number of sample. The goal of 

predictive learning is to estimate or learn an 

unknown functional mapping between the input 

variables and the output variables, from the training 

set of known input output samples. The mapping is 

typically implemented as a computational procedure 

in software. Once the mapping is obtained from the 

training data, it can be used for predicting the output 

value, given only the values of the input 

variables.[11] 

Literature survey revealed that the Neural 

Networks can be effectively used for nonlinear 

regression problem.[13],[14],[15] Also, there is a 
wide scope for designing an exact Neural Network 

with the performance indices approaching to their 

ideal values, i.e. MSE = 0, and correlation 

coefficient = 1. In the previous research work [16], 

the effects of EMG signal sampling frequency and 

the pass band frequency on neuromuscular signal 

recognition have been studied. The classification of 
the EMG signal is done using two intelligent 

computational methods: RBF and Fuzzy subtractive 

clustering network. Also, in the work referred in 

[17], the EMG signal were recorded during 

isometric contraction for calculating the 

characteristic features of EMG signals like the 

median frequencies and temporal and spectral 

moments. 

 A typical nonlinear regression problem of 

removing noise from an EMG signal has been 

considered in this paper using a Radial Basis 

Function Neural Network. Radial Basis Function 

(RBF) networks are nonlinear hybrid networks 

typically containing a single hidden layer of 

processing elements (PEs). This layer uses Gaussian 

transfer functions, rather than the standard sigmoidal 

functions employed by MLPs. The centers and 

widths of the Gaussians are set by unsupervised 

learning rules, and supervised learning is applied to 

the output layer. These networks tend to learn much 
faster than MLPs. The Training data is used to train 

the RBF neural network for removing the noise in 

the EMG signal. This contains 1500 data samples in 

two variables.  

 

 

5 Simulation 
The results are obtained on Neuro Solutions 
platform and accordingly, simulations are carried 

out on noisy EMG input and desired EMG signal. 

The noisy EMG input was inputted to an RBF 

Neural Network with number of hidden layers 

varying from 3 to 5. RBF Neural Network with 

input, hidden and output layer with varying 

parameters like processing elements, transfer 
function, learning rule, step size and momentum 
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were tested in supervised learning mode with 

maximum epoch value, 1000.  

 After training the RBF Neural Network on a 

noisy input and desired output data values with 1500 

samples and under different test condition, the 

expected results were obtained with minimum MSE 

values around the estimated values as shown below. 

The EMG signal under consideration, having a total 

1500 samples was divided into various tags i.e. 60% 

sample for training, 15% for cross validation and 

25% for testing. The numbers of hidden layers were 

varied from 2 to 5 for experimentation. The other 

parameters like cluster center, competitive rule, 

metric method, processing element per hidden layer, 

transfer function, learning rule were also varied. The 

results for optimum parameters are given in the 

following tables.  

 

 

6 Simulation Results  
Table 1:  (For Hidden layers = 3, Cluster Center = 5, Competitive rule = Consciencefull, Metric Euclidean, 

                Transfer function = Tanh Axan, Learning rule = Momentum and in supervised learning mode) 

 

Minimum MSE Criterion Sr. 

No. 

Type of ANN Hidden Layer 

Variation  

H1H2H3 

Correlation 

Coefficient  Training Cross 

validation 

Testing 

01 RBF network 05,05,05 0.631570498 0.009987406 0.025815334 0.003361018 

02 RBF network 05,05,05 0.627446384 0.009985864 0.025917992 0.003333662 

03 RBF network 05,05,07 0.634935685 0.009961887 0.025991453 0.003341636 

04 RBF network 05,05,07 0.629228299 0.009990185 0.025742 0.003343127 

05 RBF network 05,05,08 0.631092725 0.009978593 0.025897124 0.00330958 

06 RBF network 05,05,08 0.633598594 0.009989789 0.025921768 0.003395086 

 

Table 2: (For Hidden layers = 4, Cluster Center = 5, Competitive rule = Consciencefull, Metric= Euclidean, 

               Transfer function = Tanh Axon, Learning rule = Momentum and in supervised learning mode) 

  

Minimum MSE Criterion Sr. 

No. 

Type of ANN Hidden Layer 

Variation 

H1H2H3H4  

Correlation 

Coefficient  
Training Cross 

validation 

Testing 

01 RBF network 15,20,10,05 0.613085209 0.009986136 0.032334619 0.003398408 

02 RBF network 15,20,10,05 0.615536256 0.009913111 0.032262425 0.003401639 

03 RBF network 05,05,10,05 0.626473069 0.009995618 0.033206785 0.003238444 

04 RBF network 05,05,10,05 0.624123099 0.009994416 0.032949311 0.003251107 

05 RBF network 02,05,10,05 0.624981107 0.009973827 0.032576782 0.003404298 

06 RBF network 02,05,10,05 0.0622015847 0.009996404 0.033318484 0.003297185 

 

Table 3:  (For Hidden layers = 5, Cluster Center = 5, Competitive rule = Consciencefull, Metric= Euclidean,  

                Transfer function = Tanh Axan, Learning rule = Momentum and in supervised learning mode) 

 

Minimum MSE Criterion Sr. 

No. 

Type of 

ANN 

Hidden layer 

Variation 

H1H2H3H4H5  

Correlation 

Coefficient  Training Cross 

validation 

  Testing 

01 RBF network 4,5,6,5,4 0.633913126 0.010163736 0.027555747 0.003257741 

02 RBF network 4,5,6,5,4 0.634937464 0.00999774 0.026372377 0.00330488 

03 RBF network 5,6,7,6,5 0.626702431 0.010075801 0.02649354 0.003324189 

04 RBF network 5,6,7,6,5 0.633145836 0.0101425 0.027102996 0.003259303 

05 RBF network 4,5,5,5,3 0.615242831 0.010863202 0.031167117 0.003347065 

06 RBF network 4,5,5,5,3 0.595180751 0.012657307 0.038079664 0.003411631 
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Fig 3: Figure 3 depicts the variation of average of min MSE for 5 runs versus the number of PEs in first hidden 

layer (Simulation at Sr. No.3 in Table 1) 
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Fig 4: Figure 4 depicts the variation of average training MSE versus the number of epochs (Simulation at Sr. 

No.3 in Table 1) 
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Simulations were carried out for neural networks like Multi-Layer Perceptron NN (MLP), Generalized Feed 

Forward NN, Modular NN, Jordan/Elman NN and Recurrent NN with other parameters similar to RBF neural 

network and following results were obtained with maximum r (Correlation Coefficient) value, as indicated 

below in Table 4 with the optimal hidden layer configuration of RBF NN, i.e. 05,05,07.  

 

Table 4: 

 

Minimum MSE Criterion Sr.  

No. 

Type of 

 ANN 

Hidden 

Layer 

Variation  

H1H2H3 

Correlation  

Coefficient  

r 
Training Cross  

validation 

Testing 

01 MLP 05,05,07 0.627751035 0.010085787 0.024683456 0.003365081 

02 Gen FF 05,05,07 0.636240018 0.009501057 0.018979003 0.004679485 

03 Mod NN 05,05,07 0.636114324 0.011539849 0.026384025 0.002992898 

04 Jor/elman NN 05,05,07 0.627025792 0.009949056 0.025520535 0.003213602 

05 Recurrent N/W 05,05,07 0.616395357 0.009974084 0.024154242 0.003366557 
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7 Conclusion 
EMG signal is an important biomedical signal that 

depicts muscle activity, thus revealing useful 

information about nerve system. Removal of noise 

using an RBF Neural Network and other Neural 

Networks, as indicated in table 4 have been studied 
in this paper. It is demonstrated that RBF NN 

elegantly reduces the noise from the EMG signal as 

compared to other neural networks. The difference 

between the noisy EMG signal and the desired EMG 

signal is computed as a performance measure (MSE) 

and is found to be in the expected range approaching 

to 0.01. The minimum MSE criterion is found 

satisfactory (0.0099-0.01) in trained RBF Neural 

Network and found to perform better during testing 

phase (0.003). Also, the correlation coefficient (r) is 

found to be in the desired range so that the network 

output and the desired output co-varies, i.e. varying 

by the same amount. 
 This work could be the basis for the 

development of neural networks with optimal 

performance and their realization in hardware for 

VLSI implementation. 
 

 

References  
1) Cromwell L., Weibell F. J., Pfeiffer E.A. 

“Biomedical Instrumentation and Measurements”, 

PHI,N.D., 2000. 

2)  John G. Webster (Ed.), “Medical Instrumentation 

: Application and Design”, 3
rd

 ed.,  

John Wiley and Sons, Inc. 2001 

3) Khandpur R.S. “Handbook of Biomedical 

Instrumentation” , Tata McGraw-Hill, N.D., 2001. 

4) Tompkins, W. J. (ed.) “Biomedical Digital Signal 

Processing” PHI, ND, 1999. 

5)  Bronzino, J.D. (ed), “The Biomedical 

Engineering Handbook”, Boca Raton, FL: CRC 

Press, 1995 

6)  Brush, L.C. et al.,” The guide to Biomedical 

Standards “,20th ed. Bera, CA: Quest publishing 

Co., 1995. 

7)  Cohen, B.J.,” Medical Terminology: An 

Illustrated Guide”, 2
nd

 ed. Philadelphia: Lippincott, 

1995.  

8)  Haykin, S “Adaptive Filter theory”, Englewood 

Cliffs, NJ: Prentice Hall, 1986. 

9) Geddes, L.A., and L.E. Baker, “Principles of 

Applied Biomedical Instrumentation”, 3
rd

 ed. New 

York: Wiley, 1989. 

10) Strum R. D., Kirk D.E., “Contemporary Linear 

Systems Using Matlab”, Thomson Learning, 2000. 

11) Mankar V. R., Ghatol A. A.,”Comparative 

Filtering Performance of Neural Networks”, Proce. 

of Intl. conf. on Computational Intelligence and 

Multimedia,  Applications, 2007, pp262-266. 

12) Childers, D.G., J.G. Webster (ed.), “Evoked 

potentials”, Encyclopedia of Medical Devices and 

Instrumentation. New York: Wiley, 1988, pp. 1245-

1254. 

13)  Richard D. de Veaux, Jennifer Schumi, Jason 

Schweinsberg. Lyle H. Ungar, “Prediction Intervals 
for Nerual Networks via Nonlinear Regression”, 

Technometrics, Vol. 40, No. 4, pp. 273-282, Nov. 

1998. 

14)  Xue, Q.Z., Hu, Y. H. and Tompkins, W.J. 

1992.” Neural-Network-based Adaptive Matched 

Filtering for QRS Detection”, IEEE Trans. on  

Biomed Engg., BMN-39(4): 317-29. 

15) Wu S.I. and Zheng H.,”Stock Index Forecasting 

using Recurrent Neural Networks” Proc. of  the 

IASTED Conference on Artificial Intelligence and 

Applications, Innsbruck, Austria, 2006. 

16) Abdelhafid Zeghbib, Frank Palis, et. Al., 

“Sampling Frequency and Pass Band Frequency 

Effects on Neuromuscular Signals (EMG) 

Recognition”, Proc. of  the 6
th
 WSEAS Intl. 

Conference on Signal Processing, Robotics and 

Automation, Corfu Island, Greece, Feb 2007, pp 

107-114.  

17) Umut Gundogdu, Alaattin Sayin, et.al., 

“Investigation of Muscle Fatigue using Temporal 
and Spectral Moments”, Proc. of the 5

th
 WSEAS Intl. 

Conference on Signal Processing, Istanbul, Turkey 

May 2006, pp10-14. 

18) Andrzej Izworski, Piotr Bamia, “Interpretation 

of the Biomedical Signals using RBF- type Neural 

Networks”, WSEAS trans  on Circuits and systems, 

Issue 9, Vol.3, Nov 2004, pp 1799-1803.  

  

 

  

WSEAS TRANSACTIONS on CIRCUITS AND SYSTEMS V.R. Mankar and Dr. A.A. Ghatol

ISSN: 1109-2734 265 Issue 4, Volume 7, April 2008


