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Abstract: In this paper we consider a modified model of an Alpazur oscillator with a periodically switching op-
eration. Complex oscillatory phenomena are observed due to both switching operation and the appearance of an
additional nonlinear component in circuit model. Indeed, subharmonic oscillations and chaotic behavior are illus-
trated. In addition, time series, phase trajectories and power spectrum was examined in the analysis of the system
dynamics. The transition to chaotic states through doubling period bifurcation cascade and the direct transition
from fundamental harmonic or odd subharmonic orbits and transition from a special bifurcation paths to chaotic
states are discussed in the state space. The role of higher harmonic spectral lines in period-1 responses under
parameter variation have seemingly similarities with the results obtained in previous works for non switched dy-
namical system. Chaotic states resulting from different transition modes are also presented in this paper. For the
numerical simulations, techniques for deriving time and composite Poincaré method are applied.

Key–Words:Switching operation,Transition modes, higher harmonic predominance, doubling period cascade.

1 Introduction
The electrical circuits including switching actions are
discussed as a recent interesting subject of search in
much of previous works [1],[10],[12],[13],[16],[21].
Much of such circuits are encountered in Power Elec-
tronics field which is a discipline spawned by real
life applications in industrial, commercial, residential
and aerospace environments [2],[3],[14],[19]. Several
chaotic behaviors in nonlinear dynamic systems were
investigated and classified in many former studies. In
a ferroresonant circuit, seemingly random oscillations
were observed in steady state, the impact of source
voltage and initial conditions on the so called chaotic
ferroresonance was highlighted in [17]. There are
two types of chaotic systems, autonomous and non
autonomous [18]. In the last case the systems are
submitted to an external time varying source. A
well known example studied in [6] dealt with the
Duffing type equation describing an electrical circuit,
the amplitude and the frequency of the sinusoidal
signal both contribute to the chaotic dynamics of such
circuit. The Duffing-Van der Pol oscillator of [4]
shows a broad spectrum of dynamic behaviors, both
chaotic as well as periodic.

Studies of routes to chaos exhibit several config-
urations of bifurcation paths leading to chaotic
orbits.The period doubling succession plays an
important role in the occurrence of chaotic attractors,
it generally constitutes a veritable route to chaos.
Other bifurcation paths leading to chaotic states are
available in literature. Among theses cases one can
itemize the transition from period 3 orbits to chaos
wherein the oscillator’s responses enter abruptly
chaotic regions under a parameter variation. In
certain cases, pursuing to vary the same parameter,
the system dynamics exit chaotic regions and turn
again to period 3 orbit. In fundamental harmonic
regime taken as the standard situation, the system
responses are synchronous with period one orbit.
Nevertheless, the nature, the period and the stability
of the responses can undergo an unexpected change
under a parameter variation. Theses sudden changes
are called bifurcation phenomena. In non linear au-
tonomous systems some bifurcation scenarios involve
transition to chaotic states via stable equilibrium,
limit cycles and quasi-periodic orbits [20]. Tradi-
tional bifurcation appear when one of the eigenvalues
reaches critical values (eigenvalues of the Jacobian
Matrix) leading to a change of stability or order or
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nature. Some analysis tools issued from bifurcation
theory will be applied to a two dimensional switching
dynamical circuit.

Circuits with one or more switches, also called on-off
circuits, are generally described by dynamical differ-
ential equations switched in a certain manner typically
synchronous or asynchronous modes. In synchronous
mode , the switching is done by a periodic external
independent state excitation [5],[8]. Whereas in asyn-
chronous mode, toggling is controlled by a depending
state excitation [9],[10]. Thus a switching circuit can
be described as a piecewise switched circuit which
assumes different topologies at different times. It is
worth noting that in recent few years , it has been
gradually recognized that the switched dynamical
systems exhibit many interesting phenomena such
as periodic, quasi-periodic, subharmonic and chaotic
behaviors, border collision bifurcation and so forth
[15]. As an illustrated example, we investigated
the behavior of a modified Alpazur oscillator which
includes two nonlinearities: the nonlinear conductor
having a cubic current-voltage characteristic and a
nonlinear inductor represented similarly by a third
order function. The operational mode of the circuit
is changed by a switch turned on and off periodically
resulting in a sequence of nonlinear circuits being
toggled in a supposedly orderly manner. Thus, the
considered switched circuit involves two differential
equations one in each region so the corresponding
map is continuous across and its derivatives become
discontinuous. Applying the general methodology,
the Poincaŕe mapping was taken as a composite
discrete mapping. Three main transition modes will
be outlined in this paper such as doubling period
bifurcations succession, direct transition from funda-
mental harmonic or odd subharmonic responses to
chaos and a special transition through period-n orbits
succession,n = 4, 5, 6, 7.. .

In what follows we will outline the plethora of
different dynamical behaviors exhibited by the con-
sidered oscillator. Section 2 is mainly intended to de-
scribe the modified Alpazur oscillator including an ex-
ternal force depending switch. Section 3 is devoted
to present three different ways leading to chaotic be-
haviors. In section 4, we have attempted to charac-
terize intermittent phenomenon by subharmonic pre-
dominance via spectral analysis accordingly to former
studies [6]. Section 5 is reserved to present chaotic re-
gions resulting from two different transition modes.

2 System description and general re-
minders

2.1 Modified Alpazur oscillator

Firstly, we should note that the modification done on
the classical Alpazur oscillator discussed in [8] con-
sists in replacing the linear inductor by a nonlinear
one so that the circuit includes two nonlinear elements
the conductor G and the inductor L. Such circuit is
a combination of a Rayleigh-type oscillator unit and
two supplied dc power interchanged by a switchSp

which operates at switching edgesP1 andP2 as shown
in Figure 1. For0 < t ≤ τp1 ; τp1 = ρ.T , Sp is

Figure 1: Modified Alpazur Oscillator circuit

Figure 2: A chronogram of the switch excitation

thrown into contact with positionP1 so the circuit dy-
namics is governed by two dimensional autonomous

system:

{
dφ
dt = −v

C dv
dt = i−G(v) + E1−v

r+R1

0 < t ≤ ρ.T
(1)
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Then it is switched to positionP2 for so the governing

equations are:

{
dφ
dt = −v

C dv
dt = i−G(v) + E2−v

r+R2

ρ.T < t ≤ T
(2)

Where the capacitor voltagev(t) and the magnetic
flux φ(t) in the inductor are state variables of the sys-
tem. The nonlinear current-voltage characteristic of
the conductorG is a smooth cubic functionG(v) =
−v + 1

3v3 and the nonlinear current-flux character-
istic of the inductorL is supposed to have the form
i = αφ + βφ3 , α > 0, β > 0 . After normalization
of the state variables and the parameters, the differen-
tial systems (1)and (2) are respectively rewritten as:{

dx1
dt = −x2

dx2
dt = αx1 + βx3

1 + (1− ε1)x2 − 1
3x3

2 + H1

0 < t ≤ ρ.T
(3){

dx1
dt = −x2

dx2
dt = αx1 + βx3

1 + (1− ε2)x2 − 1
3x3

2 + H2

ρ.T < t ≤ T
(4)

whereε1 = 1
r+R1

, ε2 = 1
r+R2

, H1 = ε1E1, H2 =
ε2E2, C = 1.0 , τp1 = ρ.T and τp2 = (1 − ρ).T
(i.e. τp1 + τp2 = T ), and by considering the following
transformation of the state variablesφ = x1 andv =
x2, The switching sequence is given in Figure 2.

2.2 Some properties of Poincaŕe map
The differential systems (3) and (4) can be written in
a compact form:

dx
dt = fp1(x, λ, λ1), 0 < t ≤ ρ.T

dx
dt = fp2(x, λ, λ2), ρ.T < t ≤ T

(5)

The general solution of such kind of differential equa-
tion can be expressed as :

x(t) = ϕ(t, x0, λ, λ1, λ2) (6)

Where t ∈ IR is the time,x0 ∈ IR2 is the state
variable,(λc, λ1, λ2) ∈ IR3. λc is a common param-
eter for the functionsfp1 andfp2 , whereasλ1 andλ2

are specific parameters for each of them respectively.
These functions are assumed to be smooth and differ-
entiable as many times as necessary in regard to the
variables and parameters. Referring to the illustrative
trajectory example shown in Figure 3, and taking into
account the border continuity conditions, it is obvious

to see that the switching system possesses a composite
solution, we then define the following two maps:

Mp1 : IR2 → IR2

x0 7→ x1 = ϕp1(ρ.T, x0, λc, λ1)
(7)

Mp2 : IR2 → IR2

x1 7→ x2 = ϕp2((1− ρ).T, x1, λc, λ2)
(8)

Where
ϕp1(ρ.T, x0, λc, λ1) = ϕ(ρ.T, x0, λc, λ1, λ2)
ϕp2((1 − ρ).T, x0, λc, λ2) = ϕ((1 −
ρ).T, x0, λc, λ1, λ2)
Poincaŕe section is given by choosing transversal plan
definedt = k.T , the resulting composite mapping
Mc expressed as:

Mc : IR2 → IR2

x0 7→ Mc(x0) = Mp2 ◦Mp1(x0)
(9)

For fixed points investigation we merely solve
Mc(x0) = x0. Additional condition about the deriva-
tive is required for solving such equation:

∂Mc

∂x0

∣∣∣∣
t=T

=
∂Mp2

∂x1

∣∣∣∣
t=(1−ρ).T

.
∂Mp1

∂x0

∣∣∣∣
t=ρ.T

(10)

Figure 3: Composite trajectory

2.3 Basic methods of analysis
In this section, we will briefly introduce the method
previously discussed in [12] to investigate the govern-
ing equations of system under study, which typically
consist of two nonlinear autonomous systems. More
generally, we consider the following n-dimensional
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differential equations: The solution of these equations
can be expressed as: For0 < t ≤ ρ.T , Sp is atp1:

x(t) = ϕp1(t, x0, λc, λ1) (11)

Forρ.T < t ≤ T , Sp is atp2:

x(t) = ϕp2(t− ρ.T, ϕp1(t, x0, λc, λ1), λc, λ2)
(12)

based on the equations, we can easily define the fol-
lowing two maps: In practice the Poincaré section can
be generated by choosing the transversal plan defined
at t = ρ.T . Thus, By using the property of the switch-
ing actions, Poincaré mapping was constructed as a
composite discrete mappingMc of Mp1 andMp2 :

Mc : IRn → IRn

x0 7→ Mc(x0) = Mp2 ◦Mp1(x0)
(13)

It is obvious to verify that a fixed pointx0 in the cho-
sen surface section, is a point of the mapMc, where
Mc(x0) = x0. The knowledge of the singularities of
Mc enables to study the dynamical behaviors of the
initial system. Indeed a a fixed point ofMc is associ-
ated to a periodical solution having the period of the
fundamental harmonic (or a period-1 orbit) whereas a
k-order cycle ofMc is associated to a periodical solu-
tion having the period of a k-order subharmonic (or a
period-k orbit).

To numerically solve the equation mentioned
above we can apply the Newton’s method. In fact,
we must calculate the derivative term presented in this
method witch is defined as:

We note that the eigenvalues of the Jacobian
matrix ∂Mc

∂x0
at a fixed point are called the charac-

teristic multipliers, and they will be noted here by
(si)i=1, 2, ... n, which are the roots of the characteristic
equation defined as:

χ(µ) =
∣∣∣∣∂Mc

∂x0
− sIn

∣∣∣∣ = 0 (14)

Generally, there are three critical points associ-
ated to the value of(si), called bifurcation points:
Fold and Pitchfork bifurcation (s= 1), Flip or period-
doubling bifurcation (s= −1) and Neimark bifurca-
tion (complex conjugate multipliers with modulus 1).
Consider a period-1 solution of (4) and (5), its Fourier
series expansion and the corresponding frequency
spectrum (made of of lines). Letr be place occupied
by an order p higher harmonic spectral line from an
ordering based on the amplitudes of spectral lines in
descending order [6].
A given order p higher harmonic is said predominant
if it occupies the second place(r = 2) in the above
classification. It is said fully predominant if it occu-
pies the first place(r = 1).

Choosing an arbitrary parameter plane, it can be con-
sidered as made up of sheets (foliated representa-
tion), each one being associated with a well defined
response. For two dimensional nonlinear dynamical
system, every period k orbit (associated with order k
cycle) possesses two multiplierss1 ands2 determined
from the Jacobian matrix, so a fold bifurcation curve
is the junction of two sheets of same period, one is re-
lated to a saddle fixed point(s1 < 1, 0 < s2 < 1) the
other to a fixed point with|si| < 1, i = 1, 2, (stable
node, or stable focus). A flip bifurcation curve is the
junction of three sheets. one is associated to a stable
period k cycle with|si| < 1, i = 1, 2, another with
a saddle type period k cycle withs1 < −1, |s2| < 1,
the third sheet is associated to a period 2k cycle hav-
ing |si| < 1, i = 1, 2 ’(stable node, or stable focus).
A pitchfork bifurcation curve is the junction of four
sheets. Three are related to node cycles having the
same order and the fourth is linked to a saddle cycle
having the same order too.

3 Transition modes to chaotic orbits

The main property of a chaotic response is that it is
not asymptotically stable and closely correlated ini-
tial conditions have trajectories which quickly become
unrelated. Among the characteristics of chaos, that
can be quantified we distinguish apparent randomness
in the time variation, the broad band components to
the power spectrum and sensitive dependence on ini-
tial conditions.
The Lyapunov characteristic exponent gives the rate
of exponential divergence from perturbed initial con-
ditions, The dominant Lyapunov exponent is one of
the most widely used indicators to describe the qual-
itative behavior in a dynamical system . A system of
order n acquire n Lyapunov exponents. In a chaotic
behavior, the Lyapunov exponents can measure how
two different trajectories starting from different initial
conditions converge to or diverge from each other.
Under a parameter change, transition to chaotic states
can be gradually or abruptly as it will be seen in next
sections.
Varying system parameters, one can observe three
different cases leading to chaotic orbits, the classi-
cal doubling period bifurcation, direct transition to
chaotic states from fundamental harmonic or odd sub-
harmonic solutions and a special case raising the suc-
cession of subharmonic orbits of orders 4, 5,6 and 7
ended by chaotic orbit.
Many interesting features investigated in phase plan
known as strange attractors are shown in illustrative
figures below.
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3.1 Transition to chaos via doubling period
succession

The period doubling bifurcation plays an important
role in the occurrence of chaotic attractors. In a Duff-
ing type equation [6], the bifurcation structure shows
flip bifurcation closed curves surrounding chaotic re-
gions. Thus when a system parameter is varied, the
responses gradually enter into chaotic regions then its
exit these domains in order to turn to lower order cy-
cles. This sequence is repeatedly reproduced as many
times as the flip bifurcation curves number is. Aiming
to maintain an acceptable stable operating point one
has to investigate in the system parameters in order to
narrow the chaotic zone or make it entirely disappear.
It is worth noting, that coming close to the chaotic re-
gions, the flip bifurcations become increasingly closer
to each other. Crossing a small range of T values, one
can meet four different solutions schemed in phase
plane as shown in Figure 4, it is obvious to remark that
when T increases fromT = 0.98 to T = 10.016 the
system responses undergo a doubling period cascade
of bifurcations. The red points plotted in all phase
portraits belong to the discrete trajectory generated by
the composite Poincaré map.

Figure 4: phase portraits for different values ofT and
ρ = 0.58,(a1) period-4 orbit, (a2) period-8 orbit, (a3)
period-16 orbit, (a4) chaotic state

Figure 5 exhibits a doubling period sequence of
a period-3 orbit under variation ofT . chaotic state is
obtained here for decreasing values ofT from 5.2620
to 5.2224. In a doubling period cascade of bifurca-
tion, the bifurcation points become closer and closer
to each other, so that at a certain ordern it is difficult
to distinguish period-2n orbits.

In Figure 6, we plot phase portraits of the state

x1 
 

x1 
 

x1 
 

x1 
 

x2 
 

x2 
 

x2 
 

x2 
 

(a1)    T = 5.2224 
 

(a2)    T = 5.2320 
 

(a3)    T = 5.2584 
 

(a4)    T = 5.2620 
 

Figure 5: phase portraits for different values ofT and
ρ = 0.58,(a1) chaotic orbit, (a2) period-12 orbit, (a3)
period-6 orbit, (a4) period-3 orbit

variables(x2, x1) for different values of the param-
eterT in order to give an illustrative example of in-
termittent chaotic states resulting from doubling pe-
riod cascades.It is shown that the system intermit-
tently bifurcates from an initial regular chaotic state
for T = 5.0604 to lower subharmonic orbits for in-
creasing values ofT and then turns again to another
chaotic state forT = 5.1926 through the same bifur-
cation type but in the reverse path.

3.2 Direct transition from harmonic or sub-
harmonic orbits to chaos

From [11] it was stated that it is sufficient for one
dimensional case to have a period 3 orbit to deduce
the existence of a chaotic behavior. But later, it was
proved that actually many other bifurcations types can
lead to chaotic orbits such as the period doubling bi-
furcation succession of either a fixed point giving rise
to 2,4,8,16,...-order cycles or of k-order cycle leading
to 2k,4k,8k,16k,...order cycles. From Figure 7, the
graph clearly shows the abrupt transition from sub-
harmonic response of order 3 to chaotic state, under a
parameter variation fromρ = 0.898 to ρ = 0.90. An-
other remarkable observation is that the direct transi-
tion happens from odd subharmonic orbit to a chaotic
state, this can be illustrated by a second example of
transition from period-5 orbit to chaos for a parameter
change fromρ = 0.9309 ρ = 0.9310 see Figure 9. In
Figure 11, it is shown the transition from fundamen-
tal harmonic orbit to chaotic state by varyingH2 from
0.8353 to 0.836.
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Figure 6: intermittency of chaotic states

Figures 8 and 10 show the direct transition from
period-3 orbits to chaos for relatively small and large
values of parameterT . Note that the obtained re-
sults are derived from observed examples. Hence the
statement that there is a direct transition from an odd
subharmonic to chaotic state is a subject for further
investigations and development.

3.3 Transition to chaos via a special period-n
orbit succession

Varying the parameterε2 over a small range of magni-
tudes, our investigation indicates that the traces in Fig-
ure 12 change following a certain order of merging of
period-n,n = 4, 5, 6, 7 orbits ended by a chaotic state

Figure 7: (a) period-3 orbit, (b) chaotic orbit

 

x1 x1 

x2 x2 

(a1)      T = 1.1130 (a2)      T = 1.1132 

Figure 8: (a) period-3 orbit, (b) chaotic orbit

 

x2 x2 

x1 x1 

Figure 9: (a) period-5 orbit, (b) chaotic orbit

 

(a1)    T = 5.3316 
 

(a2)    T = 5.3318 
 

x1 
 

x1 
 

x2 
 

x2 
 

Figure 10: (a) period-3 orbit, (b) chaotic orbit

for ε2 = 0.4342. To our knowledge this succession
of appearance of subharmonics with ’incremental’ or-
der leading to a chaotic behavior, different from dou-
bling period cascade and from direct transition from
odd period-n orbit to chaotic orbit, is a special inter-
esting case. Thus further investigation is necessary to
characterize this behavior in dynamical switching sys-
tems.
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(a)   H2=0.8353 (b)   H2=0.836

x2

x1

x2

(a)   H2=0.8353 (b)   H2=0.836

x2

x1

x2

Figure 11: (a) period-1 orbit, (b) chaotic orbit

Figure 12: phase portraits for different values ofε2

,(a1) period-4 orbit, (a2) period-5 orbit, (a3) period-6
orbit, (a4) period-7 orbit, (a5) chaotic state

The transition from period-4 orbit to period-5 or-
bit, then from period-5 orbit to period-6 orbit and so
on may be related to a certain type of bifurcation that
is not revealed here. But one can say that it is not
a fold or pitchfork bifurcation, because the order of
periodic orbits which undergo such type of bifurca-
tion does not change. Furthermore, the hypothetical
bifurcation is not a flip a period doubling bifurca-
tion. Border collision which plays an important role in
switched dynamical systems was said in recent stud-
ied that it can be connected to saddle-node bifurcation.
The bifurcation succession identified can have a subtle
link with border collision bifurcation.

4 Higher harmonic predominance

4.1 Spectral analysis of period-1 orbits
Generally, in series resonance circuits periodic re-
sponses, terms of harmonics higher than the third are
certain to be present but are ignored to this order.
Nevertheless in certain cases namely in nonlinear sys-
tems described by a Duffing type equation, the peri-
odic responses spectra can include higher harmonics
with amplitudes greater than the third and even the
fundamental harmonic. Spectral analysis of periodic
responses in such systems led to find the role linking
between higher harmonics amplitudes and a particu-
lar fold bifurcation structure namely isoordinal cas-
cade of lips[6]. This structure contains a finite set
of pairs of Fold bifurcation curves (lips) associated
to well defined domains for which the amplitude of a
rank-mhigher harmonic line,m = 1, 2, 3, ..., has the
placer (r = 1, 2) from an ordering based on higher
harmonics amplitudes in descending order. Such do-
mains defined for fixed points bifurcation structure
are calledpredominance domainsof the rank-mhar-
monicsr = 2, andfull predominance domainswhen
r = 1.
For a period-1 response, the corresponding spectral
ordering contains a supplementary useful information
about the response that should be considered among
other characteristics such as order, stability and the
nature of the period-1 orbit.

4.2 Simple predominance case
From figure 13,(ai), i = 1, 6 are the phase trajec-
tories of fixed points corresponding to different val-
ues ofH2, (bi) are the correspondingx2-spectra. For
H2 = 0.01, the higher harmonic classification shown
in Figure 13(b1) presents the fundamental harmonic
in the first rank, and the order-2 higher harmonic in
the second rank so this case is regarded as a sim-
ple predominance of second higher harmonic. The
higher harmonic spectral lines classification is then
{1, 2, 3, 5, 4, 8, 7, ....} . For the same fixed parame-
ters a slight variation ofH2 aroundH2 = 0.01 make
the spectral lines amplitudes vary smoothly so that it
exists a predominance domain of order-2 higher har-
monic containing at least such point. Computation
of predominance domains corresponding to the dif-
ferent higher harmonic orders in a given parameter
plane provide supplementary characterization of the
periodic orbits identified in these domains. Increas-
ing the value ofH2 to H2 = 0.24 we have also
a fixed point having the phase portrait of Figure 13
(a2) but seemingly with simple predominance of third
higher harmonic see Figure 13(b2). The spectral
lines classification is deduced from Figure 13(b2) as
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{1, 3, 5, 4, 2, 8, 7, ....}. A first glimpse to the reorgani-
zation of the spectral lines classification under varia-
tion of H2 from 0.01 to 0.24 leads to point out several
changes. Firstly the order-2 higher harmonic moves
from the 2nd to the 5th rank and we have the order-3
higher harmonic instead of it (i.e in 2nd rank).
Secondly the obtained spectrum forH2 = 0.24 re-
veals that the amplitudes of order-3 and order-5 har-
monics are apparently equal. This kind of situation
was called in [6] a permutation point of the third and
the fifth higher harmonic. Subsequently forH2 =
0.71 the obtained period-1 orbit spectra is character-
ized by a fourth order higher harmonic simple pre-
dominance see Figure 13(a3) and (b3). Thus, The
spectral lines classification{1, 4, 2, 5, 3, 8, 7, ....} cor-
responds to a periodic solution which belongs to a
fourth order higher harmonic predominance domain
and it is close to a permutation point of the second and
the fifth higher harmonics being in the third rank of
the classification. The studied switched circuit, under
a gradual increasing ofH2 values, exhibits an inter-
mittent appearance of order m higher harmonics sim-
ple predominance: m=2,3,4.., therefore an isoordinal
cascade of lips may exist in the neighborhood of the
H2 values range given above. The identification of
such bifurcation structure in a given parameter plane
is let to further researches.

4.3 Full predominance case
Accordingly to their power spectra, the remaining
fixed points of Figure 13 ((a4),(a5),(a6)) obtained
for H2 = 5.185,H2 = 8.76 and H2 = 11.26 are
associated to full predominance of higher harmon-
ics of orders 2,3 and 4 respectively. ForH2 =
5.185, the corresponding spectral lines classification
is {2, 3, 1, 4, 5, 6, 11, ....}, see Figure 13(b4); it is ob-
vious to remark that the fundamental harmonic oc-
cupies the third rank and the second order higher
harmonic has the greatest amplitude in the called
spectral lines classification. ForH2 = 8.76, the
spectral lines classification of a period -1 solution is
{3, 4, 1, 2, 6, 5, 10, ....},see Figure 13(b5) and the fun-
damental harmonic is similarly in the third rank but
the 2nd order higher harmonic moves to the fourth
rank of the decreasing amplitudes classification. A
particular case in which the fundamental harmonic
moves to the fourth rank forH2 = 11.26 and the
classification becomes{4, 2, 3, 1, 6, 4, 10, 7, ....} see
Figure 13(b6). For such values range ofH2 or in
other words for large amplitudes of the second DC
generatorE2, the higher harmonics play an important
role regarding to their increasing amplitudes and be-
come more predominant than the low order ones in the
Fourier spectrum of period-1 solutions. The trajecto-

ries shown in phase plane present as more undulations
asH2 increases.
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Figure 13: Higher harmonic predominance
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This raises the following question: do the higher har-
monic predominance change under parameter varia-
tion shown in the fixed points spectra is connected to
an isoordinal cascade of fold bifurcation similarly to
the case of Duffing type equation as in [6]? To settle
this issue further investigation to characterize certain
bifurcation structure in switching dynamical systems
through higher harmonic predominance is needed.

Figure 14: (a) chaotic orbit, (b)period-2 orbit

Figure 15: (a) chaotic orbit, (b)period-2 orbit

Figure 16: (a) chaotic orbit, (b)period-1 orbit

5 Chaotic states from different tran-
sition modes

5.1 Diagram of a reverse bubble

The doubling period bifurcation succession leads gen-
erally to a chaotic state it is also called Myrberg cas-
cade of bifurcations. Two illustrative patterns of such
type of bifurcation were observed in Chua’s circuit
namely diagram of a bubble and diagram of a re-
verse bubble [7]. The reverse bubble reveals the un-
avoidable reversals of doubling period which is a typ-
ical phenomenon of nonlinear circuits. Increasing the
values ofH2 the Alpazur circuit responses cross the
regionsD1, D2, D3, D4, D5 displayed in figure 17.
Each region is associated to harmonic,subharmonic or
chaotic behavior.

H2

D5 D4
D2 D1D3

0.856       1.552.95 1.8

Figure 17: reverse bubble amid two direct transition
modes

5.2 Transition modes between the five re-
gions

The regionD1 corresponds to period 1 orbit, changing
the value ofH2 from 0.8353 to 0.836, the responses
suddenly go into chaotic regionD2. The fundamen-
tal harmonic orbit and the chaotic orbit obtained from
transition fromD1 to D2 or vice versa are given in
figure 11. The chaotic domainD2 is located in pa-
rameter intervalH2 ∈ [0.836; 1.55].
ForH2 = 1.58 a transition from chaotic regionD2 to
low order orbits regionD3 happens resulting in a pe-
riod 2 orbit see figure 14. VaryingH2 from H2 = 1.7
to H2 = 1.8, the responses go out the regionD3 and
turn again to a chaotic regionD4, the transition or-
bits are given in figure 15. Then, forH2 = 2.95 the
responses exit the regionD4 and enter abruptly the
region D5 giving rise to a period-1 orbit see figure
16.The chaotic domainD4 is enclosed in parameter
intervalH2 ∈ [1.8; 2.95].
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5.3 Miscellaneous chaotic regions

It is worth noting that the chaotic regionsD2 andD4

do not outcome from only one transition mode. Either
transition from fundamental harmonic orbit or from
doubling period succession can lead to a chaotic state
inside such regions. In a parameter plane a closed flip
bifurcation curve includes period doubling sequences
associated with a corresponding reverse period dou-
bling cascade,chaotic regions generally appear amid
these two cascades. The chaotic states belonging to
such regions which purely result from doubling period
succession are dissimilar from those of the regionsD2

andD4.

6 Conclusion
In this paper, we have considered a modified Al-
pazur oscillator and through numerical investigation
a variety of observations over time, Poincaré maps,
phase trajectories, and power spectrum is established.
Three main remarks are deduced from this work, even
though rigorous proof is needed. The first point deals
with bifurcations leading to chaotic states, three dif-
ferent ways are described: doubling period cascade
of bifurcation, direct transition from fundamental har-
monic or odd subharmonic orbits to chaos and a spe-
cial bifurcation succession following a certain order
(4 − 5 − 6 − 7) of subharmonic responses merging
ended by a chaotic orbit. The second point is the
higher harmonic behavior under a parameter variation
which encourages to prospect the existence of isoor-
dinal cascade of lips in a proper parameter plane. The
third point concerns the existence of chaotic regions
resulting from either doubling period cascade or direct
transition from a fundamental harmonic orbit. The re-
sults reported in this paper pave the way to further
investigations for proper understanding of the bifur-
cation paths leading to chaotic states in switched dy-
namical systems. These results also call for further
developments of the theory of higher harmonic oscil-
lations in regard to fold bifurcation cascade (or isoor-
dinal cascade of lips).
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