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Abstract: - This paper presents a comparative analysis of three current decomposition methods in three-phase 
systems without neutral wire on the basis of some case studies. The analysis takes into consideration the 
Currents’ Physical Components (CPC) introduced by Professor Czarnecki in 1988 [1], the active and the 
reactive components of the p-q theory of the instantaneous power introduced by Professor Akagi and his 
coauthors in 1983 [2] and a modified variant of the Akagi’s components proposed by the authors for the 
operation under unbalanced or nonsinusoidal conditions [3]. We propose four components of the current 
space-vector in terms of DC and AC components of the instantaneous active and reactive powers. The term of 
supplementary useless current vector is also pointed out. The analysis shows that the current decomposition 
which respects the definition of the instantaneous apparent power vector is useful for compensation reasons 
only if the supply voltages are sinusoidal. A modified definition of the components of the current is proposed 
for the operation under nonsinusoidal voltage conditions. This case studies based-analysis allows finding again 
some deficiencies that Professor Czarnecki has pointed out relating to Akagi’s current decomposition [4], [5]. 
It is shown that the proposed active and reactive current components are identical to those of Czarnecki’s CPC 
theory. 
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1   Introduction 
A wide variety of approaches have been proposed to 
decompose the current waveform into various 
components in the general case of nonsinusoidal 
conditions [4]–[7]. Especially, the decomposition 
into necessary and useless components is needed for 
the control of compensators such as active filters. 
Making evident the components of the current, 
especially the active one, is an old concern of 
researchers in straight connection with the necessity 
of substantiation of performant methods for 
improving power factor. Thus, when total 
compensation is expected, the active filter has to 
provide the current vector 

alF iii −= , (1) 
where   and ia are the load current vector and its 
active component. 
In 1983, Akagi and his coauthors introduced the so-
called “p–q theory” in three-phase, three-wire 
systems which was expected to be valid for any 
instantaneous variation of voltage and current [3]. 
This theory uses the complex space vector theory 
and introduces the concepts of instantaneous active 

power (p) and instantaneous reactive power (q). 
Then, the definitions of d and q-axis instantaneous 
active and reactive currents use only the 
instantaneous powers and the voltages in d-q 
coordinates [5]. Many extensions of the original p-q 
theory have been developed [8]–[10].  
However, some conceptual limitations of this theory 
were pointed out by Willems in [11], [12]. 
Moreover, Professor L.S. Czarnecki from Louisiana 
State University has investigated how power 
phenomena and properties of three-phase systems 
are described and interpreted by the instantaneous 
p–q theory [13], [14]. The argumentation through 
which Czarnecki disagrees with the p-q theory is 
principally based on the relativity of the active and 
reactive character of the currents defined by Akagi 
and his followers. Czarnecki introduced his own 
current decomposition in 1988 [15]. These 
components are referred to as Current’s Physical 
Components (CPC) and used as a tool for study 
[16]. Still, there are discussions about p–q and CPC 
theories [17], [18]. 
The decomposition of the currents proposed by the 
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authors avoids both terminology and interpretation 
ambiguities by practical examples.  
Under nonsinusoidal voltage conditions, the 
proposed components of the current do not respect 
the definition of the complex apparent power 
introduced by Akagi. 
 
2   p-q Theory and Currents’ 
Components 
The instantaneous apparent complex power for 
three-phased system is defined by voltage space 
vector and the complex conjugate current space 
vector [19]: 

*

2
3 iujqps ⋅=+=   (2) 

 The expression (1) allows expressing the current 
space-vector by 

*
22

1
3
2 su

uu
jiii

qd
qd ⋅

+
=+= . (3) 

H.Akagi proposed to compensate the AC 
components of the real and imaginary parts (p and q) 
of s, that is to calculate the reference compensation 
currents on the basis of expression (3) [2]. By 
expressing the scalar product in (3), the following 
expression is obtained: 

( )[ ]qdqd puqujqupu
u

i +−++= 2
1

3
2 . (4) 

On this basis, Akagi, Nabae and their co-authors 
(1993) [5] defined the following components of the 
current: 
1. The active current vector (ia), whose 

components are: 
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ad 22 3
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3
2

== ; (5) 

2. The reactive current vector (ir), whose 
components are: 

q
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u
i d
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rd 22 3
2;

3
2

−== . (6) 

In the above three expressions, 2u  is the square of 
voltage space-vector modulus. It should be noticed 
that the voltage space-vector modulus is not time-
dependent only if the supply voltages are sinusoidal. 
This aspect is pointed out by the space-vector 
trajectories of the voltages for two practical cases: 
the secondary of a transformer which supplies a DC 
motor via a three-phase full controlled rectifier (Fig. 
1a) and the output of a three-phase voltage source 
inverter (Fig. 1b). 
 

 

a) 

b)

Fig. 1 Geometric place of the voltage space vector 
modulus: to input of a three-phase bridge 
controlled rectifier - a) and to output of  a voltage 
inverter - b)  

 
3   Currents’ Physical Components 
(CPC) Power Theory for Three-Phase 
Circuits 
Unlike the generalized theory of the instantaneous 
power, the main concern in developing the Currents’ 
Physical Components theory was the connection 
with power phenomena. Power properties in three-
phase circuits under sinusoidal conditions are 
determined by the load features and the following 
independent phenomena [1]:  
1. the permanent energy transmission between the 
supply network and load is associated with the 
active power; 
2. the reactive components of the load generate the 
reactive power; 
3. the unbalanced loads generate an asymmetrical 
supply current. 
The main goal of CPC’s theory is to decompose the 
load current into orthogonal components associated 
with different power phenomena. As the circuits’ 
complexity is increasing, the number of the different 
phenomena is also increasing at the same time. 
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Consequently, the complexity of CPC’s theory is 
increasing. A three-phase linear time-invariant load 
feed by a sinusoidal voltages system of positive 
sequence can be equivalent to a load of equivalent 
conductance Ge with respect to the active power P at 
the same voltage. So, the equivalent conductance of 
the three-phase load can be expressed as [1] 

22
T

2
S

2
R uuuu

PPGe =
++

=  (7) 

On the other hand, each three-phase load feed by a 
three-phase voltage supply can be equivalent to a 
delta structure with respect to the line current. The 
active power of such a load is [1] 

{ } 2Re uYYY TrSTRSP ++= . (8) 
The term RS ST TR e e eG jBY Y Y Y+ + = = + is 
named the equivalent admittance of the three-phase 
load. Its real part is the equivalent conductance Ge 
and the imaginary part is the equivalent susceptance 
Be.  
The line current equivalent to the resistive load is 
the active current given by the expression [1] 
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It is the minimum current of the load needed to 
provide permanent energy transmission. As the 
remaining current component (i-ia) does not 
contribute to permanent energy transmission, it is 
the useless current component which contributes to 
increasing the rms value of the supply current. Two 
different components of the current can be 
distinguished in the useless current. The former (ir) 
exists when the equivalent susceptance of the load 
(Be) is not null and can be expressed as [1] 

{ }1j t
r e2 Re jB ei U ω= . (10) 

A reactive power [1], 
{ }2

TRTR
2

STST
2

RSRSIm uYuYuY ++−=Q
 (11) 
is associated with such a situation, where YRS,  
YST and YTR are the line-to-line admittances of the 
load. The latter component of the useless current (iu) 
[1], 

{ }1j t#
u 2 Re ei AU ω=  (12) 

is associated with the load imbalance and 
consequently it is called the unbalanced current.  
This component occurs in the load current only if 
the negative sequence phasor associated with line 
admittances (A), 

( )*
ST TR RSA Y Y Y= − + α + α  (13) 

is not null. The vector U# corresponds to the 
negative sequence voltages, respectively 

R R
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⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

. (14) 

Consequently, the supply current in three-phase 
systems with sinusoidal voltage can be decomposed 
into three physical components, the active, reactive 
and unbalanced currents, 

a r ui i i i= + + . (15) 
 
4   Correct Interpretation of p-q 
Theory 
In order to obviate the ambiguities generated by 
Akagi’s current components, a possible 
decomposition of the current space-vector takes into 
account the DC components and the AC components 
of the instantaneous powers p and q. Thus, 
expression (4) becomes 

( ) ( )
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Starting from this expression, the following current 
space-vectors are defined. 
1. The active current vector (ia), whose 

components are 
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2. The reactive current vector (ia), whose 
components are 

Q
u

u
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u

u
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q
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3
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3. The supplementary useless current vector on 
account of p~ (isp), whose components are 

~2~2 3
2;

3
2 p

u

u
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u

u
i q

sqp
d
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4. The supplementary useless current vector on 
account of q~ (isq), whose components are 

~2~2 3
2;

3
2 q

u

u
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u

u
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sqq
q

sdq −== . (20) 

It is also possible to define the total supplementary 
useless current vector (is) as a sum of the two 
supplementary useless current vectors. Thus, its 
components are 

2
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2
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3
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It is easy to see that the moduli of above vectors 
comply with the next orthogonality condition 

222
iiiii sqrspa =+++ . (22) 

So, 
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As far as sum of ia, ir and is moduli are concerned, 
we have found that 
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By integrating (22), we get 
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Taking into account that 
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we found that the rms values of the current 
components moduli are mutually ortogonal only 
under sinusoidal voltage operation, i.e. 

=u Constant. 
If the voltages waveform is not sinusoidal, then |u| is 
not constant and, consequently, 

( ) ( )∫
+

−=++
π

ω
π

2

0 2
~~2222 2

2
1

9
4 td

u

QqPp
IIII sra  

So, 2222 IIII sra ≠++  because of 

( ) ( ) 0
2

2
1 2

0 2
~~ ≠

+
∫

π
ω

π
td

u

QqPp
. 

 
5   Case Studies 
 
5.1  Three-phase sinusoidal voltage system 
with single-phase purely resistive load 
Let us consider the first illustration given by 
Czarnecki in [13]. It is about an ideal D/Y 
transformer of ratio 1:1 which supplies a single-
phase purely resistive load, connected as shown in 
Fig. 2. The R-phase instantaneous voltage of the 
positive sequence voltage system is  

VUtUuR 120,cos2 1 == ω  and the load resistance 
is of 2Ω.. 

 

Fig. 2 - Three-phase circuit with single-
phase purely resistive load 

 
Professor Czarnecki expressed: 
- the line currents in the primary of the transformer, 

0;)30cos(2 0
1 =−=+= TSR iitIi ω ; I=103,9A ; 

- the supply current in the α  and β coordinates, 
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- the instantaneous power p and q, 
( )[ ]

( )0
1

0
1

302sin3

;302cos13

+−=

++=

tUIq

tUIp

ω

ω
. (27) 

Then, according to the definition relations (5) and 
(6) introduced by Akagi, the instantaneous active 
and reactive components of the current in (α, β) 
coordinates have been expressed.  Finally, the active 
and reactive currents in the line R (Fig. 3) have been 
obtained through the inverse Clarke Transform: 

( )[ ] ttIiRa 1
0

1 cos302cos1
3
2 ωω ++= ; (28) 

( ) ttIiRr 1
0

1 sin302sin
3
2 ωω += . (29) 

 

Fig. 3 The Akagi’s current 
components  in line R 

 
On this basis, two consequences which disagree 
with physical phenomena have been pointed out:  
1. The active current given by (28) is non sinusoidal 
and contains the third harmonic even the supply 
voltage is sinusoidal and the active power transfer is 
achieved only on the fundamental frequency. 
2. Even if the load is purely resistive, there is a 
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reactive component of the current (29). 
Consequently, the current component given by (28) 
can not be the active one and the reactive current has 
nothing in common with expression (29). 
In order to apply the proposed definitions to this 
case study, the DC and AC components of the real 
imaginary parts of the complex apparent power (i.e. 
P, p~, Q and q~) must be pointed out. 
These components are: 

( )0
1~ 302cos3;3 +== tUIpUIP ω  ; 

0=Q ; ( )0
1~ 302sin3 +−= tUIq ω . 

Thus, the proposed components of the current can be 
expressed from (17)-(21) as follows: 
- the active current in (α, β) coordinates, 
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- the supplementary useless current in (α, β) 
coordinates, 
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- the active current in the phase coordinates, 
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The reactive current is null. Therefore, the proposed 
expressions for the active and reactive components 
of the currents lead to the same results as CPC’s 
theory. As regards the Czarnecki’s unbalanced 
current (18), it corresponds to the supplementary 
useless current introduced by (28). In this way, it 
results that the supplementary useless currents exist 
on account of load unbalance. After their 
compensation, the supply currents are composed of 
only active components, i.e. there is a symmetrical 
balanced three-phase current system that 
corresponds of the optimal energetic regime. 
 
5.2  Three-phase sinusoidal voltage system 
with single-phase purely inductive load 
Let us consider the second illustration given by 
Czarnecki in [8]. The only difference between this 
case study and the previous one is the character of 
the single-phase load. A purely inductive load of  

Ω= 2LX  is considered this time. Similar to 
previous example, Professor Czarnecki found the 
line currents in the primary of the transformer, 

0;)60cos(2 0
1 =−=−= TSR iitIi ω ; I=103,9A; 

and the active current in the line R, by Akagi’s 
relations 

( ) ( )[ ]0
1

0
1 303cos30cos

6
−+−= ttIiRa ωω . (33) 

These results allowed pointing out two 
consequences of Akagi’s p-q theory which disagree 
with physical phenomena: 
1. The active current (33) is non sinusoidal, i.e. it 
has a different shape related to supply voltage. 
2. An active current occurs even in purely reactive 
circuits. 
Certainly, as an active power does not exist, the 
active component of the current must be zero and 
consequently, the current given by (33) cannot be an 
active current. To calculate the proposed 
components of the current, the DC and AC 
components of instantaneous powers p and q must 
be expressed. So, these components are: 

0=P ; ( )0
1~ 302cos3 −= tUIp ω ;  

UIQ 3−= ; ( )0
1~ 302sin3 −−= tUIq ω . 

By using (17)-(21), the following currents are 
obtained: 
- the active current in (α, β) coordinates is null; 
- the reactive current in (α, β) coordinates, 
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- The supplementary useless current in 
(α, β) coordinates, 
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- the reactive current in the phase coordinates, 
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Fig. 4 The identical current components of CPC’s 
and proposed theories in line R for purely 
inductive load  
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The above equations show again that the proposed 
expressions for the current decomposition lead to the 
same results as CPC’s theory, i.e. the reactive 
currents are sinusoidal, symmetrical and balanced 
(like the supply voltages) and the active currents are 
zero because of purely inductive load (Fig. 4). 
 
5.3  Three-phase sinusoidal voltage system 
with unbalanced load without active and 
reactive powers 
In this case study, the unbalanced load is formed by 
connecting an inductance and a capacitance of equal 
impedances Ω== 2CL XX , between R and S 
phases and N. This time, the line currents are 
symmetrical. The waveforms of the line current 
components calculated through the three methods 
(Fig. 5) allow us to emphasize some aspects. 
 

Fig. 5 The Akagi’s current components 
and identical current components of 
CPC’s and proposed theories in line R 

 
- According the CPC’s theory, as the equivalent 
admittance of the load given by (13) is zero, the 
active and reactive currents do not exist. Therefore, 
the unbalanced components of the currents coincide 
with the real supply currents.  
- In spite of zero active power (P), in accordance 
with Akagi’s p-q theory there is a nonzero active 
current (Fig. 9b). It means that there is not a 
relationship between the active power and Akagi’s 
active current. 
- Similarly, Akagi’s reactive current occurs in line 
supply current in spite of zero reactive power. 
- In accordance with the proposed decomposition, 
only the supplementary component of the current 
occurs in the supply line current. Both active and 
reactive components are zero. 

5.4 Sinusoidal Voltages and Nonsinusoidal 
Currents 
Let us consider the thee-phase system with 
sinusoidal voltages and nonsinusoidal currents in the 
primary of a D/Y transformer which supplies a DC 
motor via a full controlled rectifier. The waveforms 
of phase voltage and distorted current for a control 
angle of 30° are shown in Fig. 6. 

 
Fig. 6 Phase voltage and current in the primary of 

the transformer 
 
As it can be seen in Fig. 7, the proposed active 
current waveform is sinusoidal, unlike the active 
current defined by Akagi (Fig. 8), although the both 
currents are in phase with the phase voltage. 

 
Fig. 7 Phase voltage and proposed active current 

waveforms  
 

 
Fig. 8 Phase voltage and active current defined by 

Akagi 
This happens because the Akagi’s active current 
contains both the proper active component and the 
distortion component. 
As regards the proposed reactive component of the 
current, it has a sinusoidal shape like the active 
component, but shifted by 90° behind the voltage, as 
expected (Fig. 9). 
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Fig. 9 Phase voltage and proposed reactive current 

waveforms 
Although the Akagi’s reactive current expressed by 
(6) lags the voltage by 90°, it is much distorted 
owing to its components which characterize the 
nonsinusoidal conditions (Fig. 10). 
 

 
Fig. 10 Phase voltage and reactive current defined 

by (6) 
 
As the active power transfer is achieved only on the 
fundamental frequency in the case of sinusoidal 
voltage conditions, the components of the current 
introduced by (5) and (6) have nothing in common 
with the meaning of the active and reactive currents 
as used in electrical engineering [1], [8], [10], [11].  
Obviously, the trajectories of the active and reactive 
current space-vectors are circles only with the 
proposed definitions (Fig. 11). 
 

 
 

Fig. 11 Space-vector trajectories of the active 
current (a) and reactive current (b) defined by Akagi 
(thin line) and proposed (thick line) by (8) and (9) 

 
The total supplementary useless current according to 
(12) and its vector locus are shown in Fig. 12 and 
Fig. 13. 
 

 
 

Fig. 12 Phase voltage and total supplementary 
useless current 

 
 

Fig. 13 Space-vector trajectory of 
the supplementary useless current 

 
5.5 Nonsinusoidal Voltages and Balanced 
Resistive Load  
As voltages in the secondary of the transformer have low 
distortion level, we have chosen another case study to 
serve as a model to current decomposition. A three-phase 
balanced resistive load of R = 2 � is supplied by a three-
phase nonsinusoidal voltage system as follows: 

( )ttuR ωω 5sin50sin1002 += ;

( ) ( )( )325sin5032sin1002 πωπω −+−= ttuS ; 

( ) ( )( )325sin5032sin1002 πωπω +++= ttuT . 
The waveforms of phase voltage and supply current 
are both nonsinusoidal but they are in-phase (Fig. 
14). 

 
Fig. 14 Nonsinusoidal supply voltage and current 

waveforms in the case of purely resistive load 
 
As it can be seen, the active current, as defined by 
(8), is substantially different in shape compared to 
the supply voltage even in the case of linear load 
(Fig. 15). 
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Fig. 15 Nonsinusoidal supply voltage and active 

current, as defined by (8), in the 5.5 case 
 
This situation is generated by the fact that the square 
of voltage vector modulus in active current 
component definition is time-dependent (Fig. 16). 

 
Fig. 16 Evolution of the voltage vector modulus 

 
As expected, the reactive component of the current 
does not exist and the supplementary useless current 
is shown in Fig. 17. 

 
Fig. 17 Total supplementary useless current, as 

defined by (12), related to supply voltage in the case 
of linear balanced load 

 
Fig. 18 Akagi’s active current related to supply 

voltage in the case of linear balanced load 
On the other hand, the linear character of the 
balanced load makes the Akagi’s current defined by 

(5) have the same waveform as the supply voltage in 
this particular situation (Fig. 18). 
 
5.6 Nonsinusoidal Voltages and Balanced 
Nonlinear Load 
In this example, a series RL load of R = XL = 2 � is 
supplied by the three-phase nonsinusoidal voltage 
system specified by (19). This time, the distorted 
current and voltage have different waveforms. 
Moreover, a delay of the supply current with respect 
to the supply voltage occurs in such a circuit (Fig. 
19). 

 
Fig. 19 Nonsinusoidal supply voltage and current 

waveforms in the case of RL load 
 
The distorted active component of the current (Fig. 
20), as defined by (8), has the following properties: 
its zero-passing coincide with the voltage zero-
passing; it leads to an active power of 7.6 kW which 
is equal to the power consumed by the resistive 
component of the load; its rms value is of 29.4 A. 

 
Fig. 20 Nonsinusoidal supply voltage and active 

current, as defined by (8), in the case of nonlinear 
balanced load 

 
Fig. 21 Akagi’s active current related to supply 
voltage in the case of nonlinear balanced load 

WSEAS TRANSACTIONS on Circuits & Systems
ALEXANDRU BITOLEANU,MIHAELA POPESCU, 
MIRCEA DOBRICEANU,FELICIA NASTASOIU

ISSN: 1109-2734 876 Issue 10, Volume 7, October 2008



The nonlinear character of the load makes the 
Akagi’s active current be much distorted with 
respect to the supply voltage (Fig. 21), unlike the 
purely resistive load situation shown in Fig. 18. 
As it can be seen in Fig. 22, the reactive current, as 
proposed by (9), lags the voltage by 90°. 
 

 
Fig. 22 Nonsinusoidal supply voltage and reactive 
current, as defined by (9), in the case of nonlinear 

balanced load 
 
6   Conclusion 
Taking into account the results obtained by 
analyzing the previous typical examples, we can 
make evident some concluding remarks with 
reference to decomposition of the nonsinusoidal 
current in three-phase, three-wire systems. 
1. The Akagi’s component of the current, as 
introduced by (5), can be an active one only if the 
load is linear and balanced. 
2. In the case of an unbalanced load, the active and 
reactive currents defined by Akagi have nothing in 
common with the active and reactive powers. These 
limitations of Akagi’s current decomposition were 
pointed out by Czarnecki who introduced the CPC’s 
theory in accordance with the physical phenomena. 
3. For a sinusoidal voltage supply, the active and 
reactive components of the current proposed in this 
paper through expressions (24) and (25) lead to the 
same results as CPC’s theory irrespective of 
character of the load. 
4. The supplementary component of the current 
defined by (28) coincides with the unbalanced 
current introduced by Czarnecki. 
5. The proposed manner of interpretation based on 
p-q theory of instantaneous power removes 
Czarnecki’s critical remarks related to Akagi’s 
definitions and makes similar the two theories at 
least under sinusoidal voltage conditions. 
6. The component of the current, as proposed by (8), 
can be the active one only under sinusoidal voltage 
conditions for both linear and nonlinear balanced 
load. 
7. If the supply voltage system is not sinusoidal, the 
current proposed by (8) cannot be an active 

component. This result can be explained by the fact 
that the voltage vector modulus in the denominator 
has a time variation (Fig. 16). As a result, the 
harmonics spectrum of this component of the current 
is not the same with the voltage harmonics 
spectrum.  
The result in these simple case studies allows us to 
conclude that the current components expressed by 
(8)–(12) are not useful for reference current 
calculation in active filtering if the voltages have not 
a sinusoidal shape. 
Indeed, for the fifth case study, if the compensation 
is achieved by a parallel active filter and its 
reference current is distorted related to the supply 
voltage, the RMS value of the supply current is 
higher than the initial load current even if this new 
current provides the necessary active power, 
removes the AC component of the instantaneous 
active power ( ~p ) and has the same phase with the 
voltage. For example, in this case study, the RMS 
initial load current is exceeded by about 30% after 
compensation. Consequently, it is not a better 
solution. 
In the last case study, the component of the current 
defined by (8) contains harmonics whose order is 
6k+1. Clearly, such a current generates active power 
only on fundamental frequency, which explains the 
rms value of 29.4 A of this current. 
8. In order to solve this aspect of the problem, we 
propose the replacement of  u  in (8)–(12) with its 
RMS value, i.e. 

 

dtu
T

U t
Tt

22 1
∫ −=  (34) 

 
After this replacement, the new active, reactive and 
supplementary useless components of the current are: 
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It is obvious that the use of expression (35) for the 
active current calculation makes this current keep 
the voltage waveform. In the case of last case study, 
the active current calculated with (35) provides the 
required active power with only 22.8 A RMS value 
of this current (Fig. 23).  
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Fig. 23 Nonsinusoidal supply voltage and active 

current, as defined by (22), in the case of nonlinear 
balanced load 

 
9. Undoubtedly, the proposed current decomposition 
based on complex apparent power vector is useful in 
the calculation of the reference current for active 
power filters. Thus, when total compensation is 
expected, the reference current requires only the 
load current and its active component. 
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