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Abstract: - This paper has studied techniques for building system configuration, control architecture
and implementation of a vision-based wheeled mobile robot. The completed WMR has been built with
the dead-reckoning method so as to determine the vehicle’s velocity and posture by the numerical
differentiation/integration over short travelling. The developed PID controllers show good transient
performances, that is, velocity of right and left wheels can track the commands quickly and correctly.
Moreover, the path tracking control laws have been also executed in the DSP-based controller in the
WMR. The image-recognized system can obtain motion information 15 [frames/sec] by using H -S
model, which is one of the well -known color detection methods. The better performance a vision
system has, the more successful the control laws design. The WMR obtains its posture from the dead-
reckoning device together with the vision system. Finally, we integrate these subsystems and complete
the operators of the whole system. This complementing wheeled mobile robot system can be thought
of as a platform for testing various tracking con trol laws and signal filtering method. To solve the
problem of position/orientation tracking control of the WMR, two kinematical optimal nonlinear predictive
control laws are developed to manipulate the vehicle to asymptotically follow the desired trajecto ries. A
Kalman filtering scheme is used to reduce the bad effect of the imagine nose, thereby improving the accuracy
of pose estimation. The experimental system is composed of a wireless RS232 modem, a DSP -based controller
for the wheeled mobile robot and a vision system with a host computer. A computation -effective and high-
performance DSP-based controller is constructed for executing the developed sophisticated path tracking laws.
Simulation and experimental results are included to illustrate the feasibil ity and effectiveness of the proposed
control laws.
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1 Introduction
This paper is devoted to developing

methodologies and techniques for control
architecture design, path tracking laws and
implementation of a vision-based wheeled mobile
robot (WMR). This study has been mainly excited
by a wide variety of practical mobile robots
applications due to their ability to work in various
domains. WMRs have already gained widespread
applications, such as planetary exploration,
materials transportation, military tasks,
manufacturing servicing, hazardous environment
and mine excavation. To achieve the
aforementioned tasks, the WMR requires sensing of
the environments, intelligent trajectory planning,
navigation and path tracking control. This desired
autonomous or intelligent behavior has motivated an
intensive research over the past decades.

To achieve path-tracking control for the WMRs,
many sophisticated control approaches have been
investigated by several researchers. The existing
tracking control methods for the WMR can be
classified into five categories: (i.) sliding mode [1];
(ii.) nonlinear control [2-3]; (iii.) fuzzy control [4];
(iv.) neural network control  [5]; and (v.) adaptive
backstepping control [6]. In 2007, Qiuling et al.
used sliding mode control for tracking control,
which is complicated and computationally
expensive. The generated velocity command with
respect to time is not a smooth curve in [1]. Lei et al.
introduced the fuzzy tracking control approaches [ 4]
in 2006. But it is very difficult to formulate the
fuzzy rules, which are usually obtained from the
trial-and-error procedure. In 2006, the
computational expensive neural network was
adopted by Heinen et al. [5]. The algorithm requires
on-line learning in order to make the robot perform
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properly. Design of the path following controller for
gyrobot, a gyroscopically stabilized single-wheeled
robot, is presented [7].

In this paper, we introduced two optimal
nonlinear predictive control approaches [ 8-9] for
manipulators. The control laws minimized a
quadratic performance index of the state predicted
tracking error. The algorithms were shown to
improve tracking accuracy of the manipulators.

In addition, Kalman filter police has been
proposed in [10-11]. In this paper, we extend the
Kalman filter method to deal with the pose
estimation problem of the WMR with corrupted
imaging noise.

This paper is organized as follows. Camera -Space
Tracking Control is presented in Section 2, and
section 3 introductions kinematic model and
kinematic tracking control design. Section 4 aims at
developing two optimal nonlinear predictive control
approaches.  Section 5, an extended Kalman
filtering scheme is adopted to fil ter out the corrupted
noise in the images. In Section 6 simulation and
experimental results are presented. Section 7
concludes this paper.

2 Camera-Space Tracking Control
2.1 Vision-based Control System

The control objective for the vision -based
tracking problem is to manipulate the WMR to
follow the desired trajectory. This system is
composed of a ceil-mounted fixed camera whose
outputs are connected to a host computer, and a
WMR with two atop different color, round marks
(in Fig.1).

 Fig. 1 Camera system configuration

The host computer is used to periodically provide
the position and orientation information of the

WMR for tracking the reference trajectory, via the
wireless RS232 modem. The operation of such a
control system can be easily understood from the
system block diagram shown in Fig.2.

Fig.2 A block diagram of the vision-based control
system

The digital DSP-based controller has been
designed with multi-loop characteristics. Fig.3
details the DSP-Based control system with inner P
current control loop, encoder -based PID motor
velocity control and dead-reckoning-based path
tracing control. The very structure of the DSP-based
controller is very useful in proving high -
performance operation and control for the WMR.

Fig. 3  DSP-based control system

2.2 PID Velocity Controller Design
In the following design, the wheeled mobile robot

employs the two DC servo motors with two optical
encoders. The digital optical encoder generates 16
QEP pulses per revolution, and the motors have the
maximum velocity of MAX(w)=482 [rpm].

Fig.4 shows the chassis of the WMR, where the
length of the driving axis between the wheels is

0L 15[cm], and the radius of the wheels i s

0 2.7056[cm]. Hence we can calculate the

maximum linear and angular velocities of the WMR,
as below
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Fig. 4 The chassis of wheeled mobile robot
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The DSP-based controller demodulates the
modem signals sent from the host computer , and
obtains the position and orientation of the WMR.
After performing the tracking control algorithm,
with the sampling period of 20 [ms], the DSP-based
controller outputs the following speed commands to
the two driving wheels

2
2
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VR


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2
2
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L

VL


                                         (2)

Therefore, with the speed commands, the
velocities of the right and left wheels of the WMR
are regulated by the PID control laws, whose
sampling period is 1 [ms].

2.3 Dead-reckoned Posture Estimation
The output signals of the encoder are directly

connected to DSP. Counting the pulse numbers from
the encoders composes the dead-reckoning device.
Thus, we have

 2
64

 L
L

N
 2

64
 R

R

N
(3)

Rd LL   0rd RR          (4)

The ( 0r ) is the mentioned radius of the wheels.

Hence we can know the traveling distances of the
right and left wheels, Ld  and Rd . The

orientation difference,   and the traveling
distance d  can be employed to find the
subsequent position and orientation of the vehicle.
Thus, we have
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)(sin)1()( kdkyky  (5)

2.4 Accomplished WMR and Controller ’s
Circuitry

Fig. 5 Physical view of the integrated DSP-based
control board

Fig.5 shows the completed DSP-based controller
on a print circuit board (PCB). Fig.6 depicts a recent
picture of the wheeled

Fig. 6 A recent picture of the wheeled mobile robot

2.5 Vision System
To achieve quick and smooth motion of the robot,

the vision servoing system plays an important key.
Here we use a color CCD-based vision system to
localize the position and orientation of the WMR.
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 Fig.7 The operational procedure of the vision
system

A camera mounted on the ceiling has a height of
3[m] above the robot workspace in order to
continuously capture the motion images of the robot
into the host computer through the image -capturing
card. Fig 7 shows the operational procedure of the
vision system. Before obtaining the positions of the
color marks, we must be to check and calibrate the
image distortion caused by the lens effect. Two
kinds of distortions caused by the lens are illustrated
in Fig. 8. Since not all parts of the lens can match
the ideal pin-hole model, the image magnification
factors should be compensated according to the
distortion condition.

Fig. 8 Image distortions caused by the lens
effects

From Fig. 8(a), we observe that the distortion type
of the camera in our vision system belongs to  the
type of concave distortion. In Fig.9, to calibrate
such a distortion, the following equation canceling
the effects is expressed by

Fig. 9 Concave distortion effects (a) in the task-
space, (b) in the camera-space

rQrPR  2 (6)

where R is the distance in the task -space, r is the
distance in the camera-space, and the Parameters P
and Q are two ratios. By finding out the relationship

Fig. 10 HIS model

between (R1, R2) in the task-space and (r1, r2) in
the camera-space, we obtain the following equation
to computer the values of P ad Q,
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Object recognition in a vision system  can be
achieved using edge detection or a gray level
detection method. Here two different color patterns
mounted on the top plate of the robot are adopted to
estimate the WMR position/orientation. Aside from
the previous detection approaches, an alternative to
pattern recognition is a color detection method.
There are several color models for image processes,
such as RGB, HIS, YUV and so on. The RGB
values of each pixel in the image can be grabbed
utilizing MIL (Matrox Imaging Library
programming) in the vision system. Although the
pattern recognition can be completed via the RGB
model, we choose HIS color model  (see Fig. 10) as
the basis of the recognition i n contrast to the
unstable behavior of the RGB model  in each pixel.
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The transform function of the RGB model to HIS
model is described as follows:

(8)

2.6 Concluding Remarks
This paper has studied techniques for building

system configuration, control architecture and
implementation of a vision-based wheeled mobile
robot. The completed WMR has been built with the
dead-reckoning method so as to determine the
vehicle’s velocity and posture by the numerical
differentiation/integration over short traveling. The
developed PID controllers show good transient
performances, that is, velocity of right and left
wheels can track the commands quickly and
correctly.  Moreover, the path tracking control laws
have been also executed in the DSP-based controller
in the WMR. The image-recognized system can
obtain motion information 15 [frames/sec] by using
H-S model, which is one of the  well-known color
detection methods. The better performance a vision
system has, the more successful the control laws
design. The WMR obtains its posture from the dead-
reckoning device together with the vision system.
Finally, we integrate these subsystems and complete
the operators of the whole system. This
complementing wheeled mobile robot system can be
thought of as a platform for testing various tracking
control laws and signal filtering method.

3 Preliminary Background
3.1 Kinematic Model

Consider a nonholonomic WMR under the
assumption of pure rolling and non -slipping. Its
kinematic model is given by

( )q S q u                                                              ( 9)

Where 3( ), ( )q t q t  are defined by

 c cq x y 
T

c cq x y    
                   (10)

( )cx t , ( )cy t and ( )t represent the

position/orientation of the WMR in Fig.11

respectively, the matrix 3 2( )S   is defined as
follows

cos 0

( ) sin 0

0 1

S q




 
   
  

(11)

And the velocity vector 2( )u t  is denoted by

 1 2

TT

lu v v v     
 (12)

Fig. 11 Wheeled mobile robot

We defined one another Cartesian
position/orientation in the camera space

by
T

c cq x y     , and thus, the kinematic

model in the camera-space takes the same form

( )q S q u                  (13)
Where the velocity vector

  2
1 2( )

T
u t v v  represent the linear and

angular velocities in the camera-space.
In order to control the WMR in the c amera-space

to track a camera-space desired trajectory (i.e., rcx ,

rcy and r ), task-camera space transformations is

required such that the proposed velocity vector in
the task-space is able to effectively and correctly
drive WMR in the camera–space.

Instead of generating the reference trajectory in
the task-space using the vision system, we specify
the desired velocity vector rcu in the camera-space

such that the reference trajectory can be produced in
the camera-space via the following expression

( )r rq S q u                                              (14)

3.2 Kinematic Tracking Control Design
To develop the control law, we have to find  out

the open loop error system in terms of ( )x t , ( )y t ,

and 1( )t  which denote the differences between
the camera-space Cartesian posture and the desired
posture by
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rc cx y y  , rc cy y y  , r    (15)

To facilitate the control design process, we
employ a well-known global invertible

transformation between ( )x t , ( )y t and ( )t the
auxiliary error signal.

  3
1 2 3( ) ( ) ( ) ( )

T
e t e t e t e t 

1

2

3

cos sin 0

sin cos 0

0 0 1

e x

e y

e

 
 


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         
        





(16)

We observe that 1 2 3( ), ( ), ( )e t e t e t denotes the

errors in the tangent direction, normal direction and
orientation, respectively. With the invariability of
transformation in Eq. (13), it is easy to prove that

1 2 3lim ( ), ( ), ( ) 0 lim ( ), ( ), ( ) 0
x x

e t e t e t x t y t t
 
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4. Optimal Nonlinear Predictive
Control

In this section we present kinematically tracking
controllers based on minimization of the predictive
state tracking errors. The two nonlinear predictive
control schemes are developed to allow the vehicles
position and orientation tracking of a desired
reference trajectory.

4.1 A fixed End Point Predictive Controller
We improve tracking accuracy at next instant

( )t h , where h is a small time increment. That is,
the tracking error is defined as:

( ) ( ) ( )e t h e t h e t     (19)

( ) ( )e t h p u       (20)

In order to find the control vector )(tu that
improves tracking error at next instant, we consider
a dynamic performance index that penalizes the
predictive tracking error and control efforts.

1

1 1
( ) ( )

2 2
T TJ e t h Q e t h u R u          (21)

1

2

, 0, 0T Tv
u Q Q R R

v

 
     
 

(22)

where 3 30TQ Q R    is a semi positive-definite

matrix and 2 20TR R R    is a positive definite
matrix. The minimization of 1J with respect to

( )u t yields:

*1 ( ) ( ) 0TJ e
Q e t h R u

u u

 
      

 
(23)

Therefore, we have the optimal control vector as

1* 1 1

2

( ) ( ) ( ( ) )T T v
u t P Q P P Q h e t

v
   

            
 

(24)

4.2 A Finite Horizon Nonlinear Predictive
Control

Like the previous case, the tracking error at next
instant ( )t T is approximated by the following
equation:

( ) ( ) ( ) ( ) ( )e t T e t T e t e t T P u          (25)
 The control goal is to find the best control vector
( )u t so as to minimize the following nonsingular

quadratic cost function:

2 0 0

1 1
( ) ( ) ( )

2 2
c ch hT TJ e t T Q e t T dT u t T R u           (26)

where ch is the predicted control signal horizon,
3 30TQ Q R    is a positive semi-definite

matrix and 2 20TR R R    is a positive definite
matrix. The minimization of 2J with respect to

( )u t yields:

2 0
J

u





       (27)

* 2 1 21 1
( ) ( ( ))
2 2

T T Tu h P QP R h P Q P Qe t      (28)

5 Pose Estimation Using Kalman
Filtering

5.1 Introduction
Filtering noise in real-time image sequences is

required in many applications like visual servoing.
There are also lots of examples in engineering
where filtering is desirable. Kalman filter has been
applied in areas as diverse as aerospace, marine
navigation, nuclear power plant in strumentation,
demographic modeling, manufacturing, and many
others. A good filtering algorithm can remove
measurement noise from measurements.
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In practice, the individual state variables of a
dynamic system may not be determined exactly by
direct measurements. In contrast, we usually find
that the measurements are corrupted by random
noise. The system itself may also be subjected to
random disturbances. It is then required to estimate
the state variables from the noisy observations. In
1960, Kalman described a Kalman filtering scheme
recursively find solutions to the discrete -data linear
filtering problems. Fig.12 and Fig.13 illustrate the
basic flowchart and calculation modules of the
Kalman filter design. The main purpose of this
chapter is to use Kalman filter to develop a pose
estimate of the WMR.

Current
estimate

Present input
(Observation)

y(k)

K

TAC

Previous estimate
x(k-1)
x(0) = 0

step 0

Prediction
x'(k) = A x(k-1)

step 1

Estimate of present
input

y(k) = C  x'(k)

e'(k)

e'(k)=y(k) -C x(k)

step 2
K from figure 3.11

Correction :K e'(k)

x'(k)+K e'(k) = x(k)
+

-

+

+

Fig.12 Computation steps in Kalman filter

P(k)

C(k)

Compute
P(k)

Delay

Compute
K(k)

Compute
P1(K)

C(k)
R(k)

K(k)

( to Kalman fiter)

A (k,k-1)
Q(k-1)

P(k-1)

Fig.13 Subroutine calculations for Kalman filter

5.2 Kalman Filtering Method
Under the assumptions of no slipping and pure

rolling, the dynamic behavior of the WMR can be
described by the following discrete time state
equation
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where )1(  kw  is a random process noise

vector and T is the sampling period. Furthermore
the measurement at time k  can be denoted by

kkk PZ   where k  is random measurement

noise, that is,
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The Kalman filter is formulated as follows. We

assume that the process noise kw  and the

measurement noise )(k  are two white Gaussian

noise vectors with the covariance matrix Q  and R ,
respectively

)(])()([ kQkwkwE T  (31)

)(])()([ kRkkE T   (32)
We propose a pose estimation algorithm for the

WMR with the following two criteria:
The estimate value is finally equal to the true

value of the state i.e., xx   as t . The
algorithm method minimizes the expected value of
the square of the estimation   error as

]/)[( 2 zxxE
 .

The Kalman Filter uses two sets of equations to
predict value of the state variable. The first one is
the time update equation that is responsible for
predicting the current state and covariance matrix,
used in time 1k  to predict the previous state. The
second one is Measurement Update Equation is
responsible for correcting the errors. In a sense, it is
back propagating to get a new value for the prior
state to improve the guess for the next state. The
equations for a general Kalman filter are given by

A) Time Update Equations
)()1()1()1()( kukBkxkAkx  

  (33)

)1()1()1()1()(  kQkAkPkAkP T   (34)
B) The Measurement Equations

1))()()()(()()()(  kRkCkPkCkCkPkK TT (35)

))()()(()()( kxkCkZKkxkx
               (36)

)())()(()( kPkCkKIkP                     (37)

where )(kk , and )(kp are the Kalman filtering
gain matrix and covariance matrix, respectively.

The detailed procedure for proceeding Kalman
filter for the pose estimation of the WMR is
expressed as follows;
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 Step 0: initialize )]0([)0/0( xEx 
 and

)]0(cov[)0/0( xP 
Step 1: one-step prediction with given

)]1(/)1([)1/1(  kzkxEkkx


)]1(/)([)1/(  kzkxEkkx


)]1(/)1()1()1()1()1([  kzkwGkukBkxkAE

)]([)1()1()]1(/)1([)1( kwEGkukBkzkxEkA 
)1()1()1/1()1(  kukBkkxkA

   (38)

)]1(/)1/()([()1/( 2
1  kzkkxkxEkkP



)]1(/))()1/1()1()()1([( 2  kzkuBkkxAkwGkuBkxAE


)]1(/))1/1()1()1()1()1([( 2  kzkkxkAkwGkxkAE


TT GkQGkAkkPkA  )1()1()1/1()1( 1
                (39)

Step2: we compute kalman gain as
)]1/()([)1/()/(  kkxCkZKkkxkkx

  (40)
1

11 )]()1/([)1/()(  kRCkkPCCkkPkK TT   (41)

)1/()()1/()/( 11  kkPCkKkkPkkP

)1/(])([ 1  kkPCkKI (42)
When the noise in the real mobile robot occurs,

Kalman filter police has been proposed in [ 10-11].
In this paper, we extend the Kalman filter method to
deal with the pose estimation problem of the WMR
with corrupted imaging noise.

6 Simulations and Experimental
Results

6.1 Simulation Results
Before preceding the following experiment,

numerical simulations using Matlab/Simulink wer e
used to illustrate the feasibility of the proposed
controllers and to verify the effectiveness of the
proposed methods. Fig.14 shows a simulation block
diagram for implementing the pin -hole lens model
and the proposed controllers Eq.(2 4) and Eq.(28).
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Fig. 14 Simulation block diagram of the path
tracking control system

In this section, two different reference trajectories,
such as line, circular are considered (see Fig.1 5).

(a).Line

(b).Circle

Fig.15 Desired reference trajectories

Fig. 16 shows the Line trajectory tracking
responses. A fixed-end point predictive controller:
(a) tracking response. For the finite -horizon
nonlinear predictive controller: (b) tracking
response.
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Fig. 16 Line trajectory tracking responses

Fig. 17 shows the Circle trajectory tracking
responses. A fixed-end point predictive controller:
(a) tracking response. For the finite -horizon
nonlinear predictive controller: (b) tracking
response.
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Fig. 17 Circle trajectory tracking responses

Fig. 18(a) depicts the line-tracking path that is
corrupted with the noise. Fig. 18(b) shows that the
corrupted noise is removed. Fig. 18(c) depicts the

circle-tracking path that is corrupted with the noise.
Fig. 18(d) shows the filtered circle trajectory. Fig.
18 reveals that the noise effect on posture estimation
has been significantly reduced.

(a)

(b)

(c)
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(d)
Fig. 18 The corrupted noise and  Kalman filter

trajectory tracking responses

6.2 Experimental Results
Fig. 19(a) shows the resulting tracking responses

for the camera-space desired trajectory line.
Furthermore, Fig. 19(b) displays the resulting
tracking responses for of the camera -space desired
circle trajectory.

Fig. 20 (a) shows that the Kalman filter tracking
responses for the desired line trajectory
experimental result. Furthermore, Fig.  20(b)
displays the resulting tracking responses for of the
Kalman filter desired circle trajectory. The Kalman
filter indeed removes out measurement noise from
measurements.

(a)

(b)
Fig. 19 The experimental tracking responses for

the desired line trajectory

(a)

(b)
Fig. 20 The experimental Kalman filter tracking

responses
The computer simulation results and experimental

results have verified that two the predictive path
tracking controllers really achieve the mission of
path tracking control. From the experimental results
illustrated in Fig. 13 there exist fluctuations caused
by the image noise. Although sometimes the WMR
seems to detour the desire trajectory in the camera
space, the image-recognition process maybe cause
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the errors. This situation can be avoided if the
experimental setup system is using Kalman filter.

7. Concludes
This paper has studied methodologies and

techniques for control architecture design, path
tracking and implementation of a vision -based
wheeled mobile robot. The overall control system
consists of three subsystems: the wireless
communication system, the DSP-based motion
control system for the WMR and the vision system
for pattern recognition. Two kinematical, predictive
path tracking control laws have been proposed in
order to achieve asymptotical path tracking. The
developed system obtains the posture of the WMR
using combination of the vision system and dead -
reckoning device, such that the accumulated errors
caused by the numerical differentiation/integration
will be reduced or even eliminated. The designed
systems together with proposed control laws have
been successfully used to manipulate the WMR
follow the desired reference trajectories. The main
results of this paper are summarized as below;

First, a DSP-based controlled WMR with internal
current feedback loop has been constructed. The
built wireless communication system has been
implemented for signal transmission. Through the
proposed PID control, the WMR achieves good
transient performance to track velocity or torque
commands. Aside form the simple PID control loop,
the DSP-based low-level controller for the WMR is
further constructed in order to perform sophisticated
path tracking control laws. The WMR obtains the
posture not only by the DR device but also by the
vision system. The image-recognition system can
process 15 frames per second by using one well -
known color model, e.g. H-S model. These
subsystems are integrated to test the path tracking
control laws.

Second, two novel predictive control laws have
been proposed for the system associated with the
kinematical model, i.e. the model without the
incorporation of its dynamic effects . In addition, the
so-called pin-hole lens model has been supplied in
the procedure of the control laws design. Computer
simulations and experimental results have also
shown the feasibility and effectiveness of the
proposed predictive controller associated with the
kinematical model.

Third, there is noise reduction for pose estimation
of the WMR by applying the Kalman filter to
remove the noise corrupted the captured images, so
the Kalman filter can be applied in order to reduce
the noise. Computer simulations and experimental

results have also shown the feasibility and
effectiveness of the proposed Kalman filter
associated with imaging processing.

References
[1] J. Qiuling, X. Xiaojun, and L. Guangwen,

Formation Path Tracking Controller of
Multiple Robot System By High Order Sliding
Mode, Automation and Logistics, IEEE
International Conference  .18-21 Aug. 2007 ,pp.
923 – 927

[2] J. Y. Lee, J. S. Yeon, and J. H. Park, Robust
nonlinear control for flexible joint robot
manipulators, SICE,  Annual Conference . 17-20
Sept. 2007. pp.440 – 445

[3] B. Song, and J. W. Choi, Robust Non linear
Control for Biped Walking with a Variable
Step Size, SICE-ICASE, 2006. International
Joint Conference, Oct. 2006 Page(s):3490 –
3495

[4] G. Lei, L. Qizheng, and W. Shiming, Design of
Fuzzy Sliding-mode Controller for Bicycle
Robot, Nonlinear System Robotics and
Biomimetics, ROBIO '06. IEEE International
Conference. Dec. 2006 Page(s):176 – 180

[5] M. R. Heinen, and F. S. Osorio, Neural
Networks Applied to Gait Control of Physically
Based Simulated Robots, Neural Networks,
SBRN '06. Ninth Brazilian Symposium .  Oct.
2006 Page(s):26 - 26

[6] D. G, and R. RD, Robust adaptive
backstepping control for a nonholonomic
mobile robot, Wilson, Systems, Man, and
Cybernetics, 2001 IEEE International
Conference. Vol. 5,  7-10 Oct. 2001
Page(s):3241 - 3245 vol.5

[7] A. Al-Mamun, Z. Zhu, P. Vadakkepat and T.H.
Lee, Path Following Controller for
Gyroscopically Stabilized Single-Wheeled
Robot, Proceedings of the 9th WSEAS
International Conference on Automatic Control,
Modeling & Simulation, Istanbul, Turkey, May
27-29, 2007 11.

[8] De-Feng He, Hai-Bo Ji, Tao Zheng, On
robustness of suboptimal min -max model
predictive control, WSEAS TRANSACTIONS
on SYSTEMS and CONTROL,  Issue 8, Volume
2, pp. 428-433. August 2007.

[9] R. Hedjar, R. Toumi, P. Boucher, and D.
Dumur, Feedback nonlinear predi ctive control
of rigid link robot manipulations, Proceedings
of American Control Conference, Anchorage,
AK, pp. 3594-3599, May 2002.

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Ying-Shing Shiao, Jui-Liang Yang, Ding-Tsair Su

ISSN: 1109-2734 975 Issue 12, Volume 7, December 2008



[10] S. Kwon, K. W. Yang, and S. Park, An
Effective Kalman Filter Localization Method
for Mobile Robots,  Intelligent Robots and
Systems, 2006 IEEE/RSJ International
Conference. Oct. 2006 Page(s):1524 – 1529.

[11] J. Zhu, J. Park, and K. Lee, Robust Kalman
filter of discrete-time Markovian jump system
with parameter and noise uncertainty ,
Proceedings of the 7th WSEAS International
Conference on Simulation, Modelling and
Optimization, Beijing, China, September 15-17,
2007 .

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Ying-Shing Shiao, Jui-Liang Yang, Ding-Tsair Su

ISSN: 1109-2734 976 Issue 12, Volume 7, December 2008




