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Abstract: In this paper, a novel spatial domain 2-D sigma-delta modulation using two-layered discrete-time cellular
neural networks (DT-CNNs) with multi-stage noise shaping (MASH) property is proposed. Although the sigma-
delta modulation is widely used for realizing of analog to digital converter (ADC), sigma-delta concepts are only
for 1-D signals. Signal processing in the digital domain is extremely useful in 2-D signals such as image processing,
medical imaging, ultrasound imaging and so on. In the proposed architecture, the A-template is used for a digital
to analog converter (DAC), the C-template works as an integrator, and the nonlinear output function is used for the
bilevel output. Besides, due to the CNN characteristic, each pixel of an image corresponds to the cell of CNN, and
each cell is connected spatially by the A-template. Also, the multi stage noise shaping (MUSH) property, which
is one of a very effective framework for a high order sigma-delta modulation, is exploited for realizing a second
order sigma-delta modulator by cascade connected first-order CNN sigma-delta modulators.

Key–Words: Celluler neural network, Sigma-delta modulation, Image reconstruction, Image halftoning, Second-
order noise shaping.

1 Introduction

The sigma-delta modulation [1] is a widely used and
well-known technique for converting analog signals
into pulse digital sequences. One significant advan-
tage of this method is that the analog signals are con-
verted using only a 1-bit analog to digital converter
(ADC). Therefore, the precision of analog signal pro-
cessing circuits is usually much less than the reso-
lution of the overall converter [2] – [5]. The impor-
tant characteristics of sigma-delta modulation are sig-
nal reconstruction and noise shaping properties. In
the sigma-delta modulation, quantization noises are
distributed into the high frequency regions by the
noise shaping property with an oversampling tech-
nique. Also, the original input analog signal is recon-
structed by the collective operation of low-pass deci-
mation filtering of a 1-bit digital data stream which is
the output of a low-resolution quantizer incorporated
within a feed back loop. However, the original sigma-
delta modulation technique is limited to 1-D signals.

The multi stage noise shaping (MASH) [6] is a
very effective concept for constructing a high-order
sigma-delta modulator by combination of basic first-
order sigma-delta modulators. This paper uses the

characteristic of the MASH modulator for the 2-D
sigma-delta modulation. The basic characteristics of
MASH are that quantization noise in the first sigma-
delta loop is requantized by the next sigma-delta loop
and cancelled by adding the requantized noise to the
first stage signal. Therefore, the 2-D sigma-delta mod-
ulator with MASH property can reduce the quantiza-
tion noise more than the 1-D sigma-delta modulator.

The cellular neural networks (CNNs) [7] has been
applied to many signal processing applications such
as image compression, filtering, nonlinear phenom-
ena, retinal imaging and pattern recognition [8] – [15].
The image processing tasks using CNNs were mainly
developed for black and white output images, since
a cell in the CNN has a stable equilibrium point at
the two saturation regions of the piecewise linear out-
put function after the transient has decayed toward
equilibrium [16] [17]. The output at the two satura-
tion regions corresponds to the black and white pix-
els. In contrast, the nonlinear dynamics of a CNN
with a two-level output function converts the input im-
ages into bilevel pulse digital sequences. Actually,
CNN can convert the multi-bit image into an opti-
mal binary halftone image. This significant charac-
teristic of a CNN suggests the possibility of a spatial
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domain sigma-delta modulation. The nonlinear dy-
namics by feed back A-template is one of the signif-
icant characteristics of CNNs. This paper proposes a
novel second-order spatial domain sigma-delta modu-
lator by cascaded CNN sigma-delta modulators [18] –
[20]. Because of the MASH property, this method can
be composed using two basic first-order CNN sigma-
delta modulators. Moreover, stability conditions of
the proposed CNN system can be described by that
of the conventional CNN having C-template.

2 First-order CNN Σ ΔModulator

2.1 CNN Design

Figure 1: The block diagram of the DT-CNN: z−1 is a
time-delay element.

To derive a DT-CNN with a C-template, we con-
sider the continuous-time cellular neural network (CT-
CNN). The state equation of a CT-CNN is given by

C
dxi j(t)

dt
= − 1

Rx
xi j(t) (1)

+
∑

C(k,l)∈Nr(i, j)

A(i, j; k, l)ykl(t)

+
∑

C(k,l)∈Nr(i, j)

B(i, j; k, l)ukl + Th,

where C, Rx, xi j(t), yi j(t), ui j(t), Th and Nr(i, j)
are the linear capacitor, the linear resistor, the state
variable, the output, the input, the threshold, and
the r−neighborhood of the cell C(i, j) as Nr(i, j) =
{C(k, l)|max{|k−i|, |l− j|} ≤ r}, respectively. A(i, j; k, l)
and B(i, j; k, l) are feed back and feed forward tem-
plate coefficients. The discrete version of (1) is de-
scribed as

C
xi j(t + Δt) − xi j(t)

Δt
= − 1

Rx
xi j(t) (2)

+
∑

C(k,l)∈Nr(i, j)

A(i, j; k, l)ykl(t)

+
∑

C(k,l)∈Nr(i, j)

B(i, j; k, l)ukl + Th.

Let C = 1 and Δt = 1, then we have

xi j(t + 1) =

(
1 − 1

Rx

)
xi j(t) (3)

+
∑

C(k,l)∈Nr(i, j)

A(i, j; k, l)ykl(t)

+
∑

C(k,l)∈Nr(i, j)

B(i, j; k, l)ukl + Th.

In the case of Rx = 1, the DT-CNN proposed by Har-
rer and Nossek can be derived. The state equation of
the DT-CNN is described as

xi j(t + 1) =
∑

C(k,l)∈Nr(i, j)

C(i, j; k, l)xkl(t) (4)

+
∑

C(k,l)∈Nr(i, j)

A(i, j; k, l)ykl(t)

+
∑

C(k,l)∈Nr(i, j)

B(i, j; k, l)ukl + Th,

y(t) = f (x(t)), (5)

f (x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1 x ≥ 1,

f̂ (x) |x| ≤ 1,

−1 x ≤ −1,
(6)

where C(i, j; k, l) is the neighborhood connection co-
efficients between state variables. The coefficients of
a C-template are defined by

C(i, j; k, l) =diag {ξ, · · · , ξ} , (7)

ξ =1 − 1
Rx
. (8)

Then the state equation can be rewritten as

xi j(t + 1) =ξxi j(t) +
∑

C(k,l)∈Nr(i, j)

A(i, j; k, l)ykl(t) (9)

+
∑

C(k,l)∈Nr(i, j)

B(i, j; k, l)ukl + Th.

Also, the energy function E(t) can be defined by

E(t) = − 1
2

∑
(i, j)

∑
(k,l)

A(i, j; k, l)yi j(t)ykl(t) (10)

−
∑
(i, j)

∑
(k,l)

B(i, j; k, l)yi j(t)ukl

−
∑
(i, j)

Thyi j(t) + (1 − ξ)
∑
(i, j)

∫ yi j(t)

0
f −1(y)dy,

where f −1(·) is the pseudo-inverse function of f (·) de-
fined as

f −1(y) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1 y = 1,

f̂ −1(y) = x |y| < 1,

−1 y = −1.
(11)
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The following theorem holds in terms of the Lyapunov
function [18].

Theorem 1 If A(i, j; k, l) = A(k, l; i, j), then the en-
ergy function E(t) is monotonously decreasing.

Since the energy function E(t) does not calculate
exactly, the present form of the energy function can-
not be applied to various nonlinear optimization prob-
lems. Therefore, let

∑
(i, j)

∫ yi j(t)

0
f −1(y)dy ≈ 1

2
yi j(t)

2, (12)

and then the approximated Lyapunov energy function
is obtained in matrix form as

E(t) = −1
2
yT (A − (1 − ξ)I) y − yTBu − TT

h y, (13)

where aT is the transposed matrix of a.Moreover, the
steady-state behavior of a CNN was discussed in [21],
and the following theorem was proven.

Theorem 2 If the center of the A-template of a CNN
satisfies

A(i, j; i, j) >
1
Rx
, (14)

then each cell of the CNN settles at the stable equilib-
rium points after the convergence of the dynamics.

If f (·) corresponds to the unit quantization func-
tion (1-bit quantizer), then the integration term of the
Lyapunov energy function can be approximated by

∑
(i, j)

∫ yi j(t)

0
f −1(y)dy ≈ 0. (15)

Therefore, (20) can be rewritten as

E(t) = −1
2
yT Ay − yTBu − TT

h y. (16)

In addition, the stability condition for the center ele-
ment of the A-template can be given by

A(i, j; i, j) > 0. (17)

Fig. 1 shows the block diagram of the DT-CNN.
The state equation of the DT-CNN is described in ma-
trix form as

xn+1 = Af (xn) + Bu + Th, (18)

yn+1 = f (xn+1), (19)

where u is the input matrix, x is the state variable and
f () is the multi-level quantizing function. A and B
are feed back and feed forward template coefficients
and Th is the threshold, respectively. The Lyapunov
energy function is obtained in matrix form as

E = −1
2
yT Ay − yTBu − Th

Ty. (20)

For achieving a spatial domain 2-D sigma-delta mod-
ulation by DT-CNN, CNN templates and parameter
which satisfy a nonlinear optimization problem mini-
mizing the distortion between the input image and the
output image including quantization noises, should be
designed.

In the CNN dynamics, the objective function must
provide the optimal halftoning image from the co-
efficients including noises. Also, the difference be-
tween the output halftoning image and the input image
should be small. Hence, the objective function called
distortion function is given by

dist(y,u) =
∥∥∥∥∥12 yT (Gy − u)

∥∥∥∥∥ , (21)

where G is a Gaussian filter.
Since the reconstruction image is obtained by the

summation of bilevel pulse sequence images, the qual-
ity of the reconstruction image can be determined like
MSE:

err(y,u) =

∥∥∥∥∥∥∥u − G
∑
t

y(t)

∥∥∥∥∥∥∥ . (22)

Although we can get three conditions which de-
termine the spatial domain 2-D sigma-delta modula-
tion, (22) can not be applied directly to the DT-CNN
due to the summation term. It can be said that the re-
construction image is gradually improved because of
the Lyapunov energy function property. Therefore the
output that minimizes (21) becomes a solution which
minimizes (22). In other words, the DT-CNN param-
eter for image binarization can be obtained from two
conditions.

2.2 CNN Templates and Parameters

By the comparison between (20) and (21), the A, B,
and C templates and the parameter Th of the first layer
DT-CNN for image halftoning can be determined as

A =A(i, j; k, l), C(k, l) ∈ Nr(i, j) (23)

= − 1
2πσ2

exp

(
− (k − i)

2 + (l − j)2

2σ2

)
,
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B =B(i, j; k, l), C(k, l) ∈ Nr(i, j) (24)

=

{
1 if k = i and l = j ,
0 otherwise,

C =C(i, j; k, l), C(k, l) ∈ Nr(i, j) (25)

=

{
ξ if k = i and l = j ,
0 otherwise,

Th = O, (26)

where σ is the standard deviation of the Gaussian
function, and O is a zero matrix. Then we can recall
the dynamics using the above parameters as follows;

x(t + 1) = ξx(t) +
∑

C(k,l)∈Nr(i, j)

A(i, j; k, l)ykl(t) + ui j,

(27)

y(t) = f (x(t)), (28)

f (x) =

⎧⎪⎪⎨⎪⎪⎩
1 x ≥ 0,

−1 x < 0.
(29)

The output function f (·) corresponds to the 1-bit
quantizer.

The output of the first layer DT-CNN ŷ becomes
the input of the second layer DT-CNN for image re-
construction. Obviously, the output of the first layer
DT-CNN can minimize (22). Hence, the reconstruc-
tion image ỹ is given by

ỹi j =
∑

ykl∈Nr(i, j)

B̂(i, j; k, l)ŷi j, (30)

where

B̂ =B̂(i, j; k, l), C(k, l) ∈ Nr(i, j) (31)

=
1

2πσ2
exp

(
− (k − i)

2 + (l − j)2

2σ2

)
.

3 Proposed Second-Order Σ Δ CNN

3.1 System

The proposed second-order sigma-delta modulator by
DT-CNN is shown in Fig. 2. It is composed of the
cascade connected two first-order CNN sigma-delta
modulators. Therefore, the system is an equivalent
framework of the spatial domain second-order sigma-
delta modulator with MASH property.

In the 1st Layer DT-CNN, the input signal is
quantized. The 2-D distributed quantization noises
given by the 1st Layer DT-CNN1 become an input

u B z
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+

+
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-1 z-1

-11-z-1 f()
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-

+

+

+

+

+

-

-

+

1st Layer DT-CNN 2

1st Layer DT-CNN 1

2nd Layer DT-CNN

Figure 2: Two-layered second-order sigma-delta mod-
ulator using a cascaded DT-CNN: In the first layer DT-
CNN, the first stage in the part enclosed with the dot-
ted line was named ”1st Layer DT-CNN1”, and the
second stage was named ”1st Layer DT-CNN2”. In
the second layer DT-CNN, the part enclosed with the
dotted line was named ”2nd Layer DT-CNN”.

to the second stage, and they are remodulated by the
1st Layer DT-CNN2. In addition, the 2-D remodu-
lated quantization noises by the 1st Layer DT-CNN2
are added to the output by the 1st Layer DT-CNN1,
and total quantization noises through the modulation
can be reduced. Therefore, the good binary halftoning
images are provided by the 2-D sigma-delta modula-
tor using DT-CNN at each iteration of dynamics.

In the 2nd layer DT-CNN, the output by the 1st
layer DT-CNN1 and DT-CNN2 are the input of the
2nd layer DT-CNN. In the 2nd layer DT-CNN which
has no dynamics, bilevel pulse digital sequence im-
ages are added for the reconstruction image. After the
transient of the dynamics of the 1st layer DT-CNN,
the optimal reconstruction image is obtained. Accord-
ing as the sigma-delta characteristic, the reconstruc-
tion image gradually approaches the original image
by the iteration of dynamics.

3.2 Noise Shapong Property

In the Z-domain, the first layer and the second layer
of the proposed architecture is shown in Fig. 3. The
input and output relationship is given by

Y1 (zv, zh) =U (zv, zh)
z−1t

1 − ξz−1t
(32)

− A (zv, zh) Y1 (zv, zh)
z−1t

1 − ξz−1t
+ N1 (zv, zh) ,
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Figure 3: The first layer DT-CNN in Z-domain.

where zv is the vertical frequency, zh is the horizontal
frequency and z−1t is a time-delay element. U (zv, zh),
Y1 (zv, zh) and N (zv, zh) are the 2-D Z-transform of the
input, the output and the 1-bit quantizer, respectively.

If the DAC with the A-template is ideal, then (32)
can be rewritten as

Y1 (zv, zh) =
z−1t

1 + (1 − ξ)z−1t
U (zv, zh) (33)

+
1 − ξz−1t

1 + (1 − ξ)z−1t
N1 (zv, zh) .

If ξ is a small value, (33) can be approximated by

Y1 (zv, zh) ≈z−1t U (zv, zh) (34)

+
(
1 − z−1t

)
N1 (zv, zh) .

In the same maner, the input and output relationship of
the 1st layar DT-CNN2 is calculated when the input
of the 1st layar DT-CNN2 is assumed to U2 (zv, zh).
The input and output relationship of the 1st layar DT-
CNN2 is given by

Y2 (zv, zh) ≈z−1t U2 (zv, zh) (35)

+
(
1 − z−1t

)
N2 (zv, zh) .

Therefore, the total output Y (zv, zh) is

Y (zv, zh) =z
−1
t Y1 (zv, zh) +

(
1 − z−1t

)
Y2 (zv, zh) (36)

=z−2t U (zv, zh) +
(
1 − z−1t

)2
N2 (zv, zh) ,

where the input of the U2 (zv, zh) is −N (zv, zh) of the
input from the first layer. (36) shows the second-order
noise shaping property.

4 Experimental Results

In order to evaluate the performance of our proposed
the second-order sigma-delta modulator using two-
layered DT-CNN, we implemented the A/D system
by ANSI C++. We applied our system to the 8-bit
standard gray-scale test images; ”Aerial,” ”Barbara,”
”Boat,” ”Couple,” ”Crowd,” ”Goldhill,” ”Lena,” and
”Milkdrop.” The size of all the images is 512×512
pixels. Fig. 4 shows the relationship between the
iteration of dynamics and the peak signal-to-noise ra-
tio (PSNR) of the reconstructed images. These results
suggest that the relevant conditions for the maximum
iteration is given by nmax ≥ 128.
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Figure 4: The relationship between iteration of dy-
namics and PSNR of reconstruction images.
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Table 1: Optimum σ of Gaussian function and recon-
struction performance in terms of PSNR (dB).

Image Method σ1/σ2/Threshold PSNR

Proposed 0.72 33.75

Aerial 1st-order 0.705 33.70

fastiht2 127 25.58

Proposed 0.71 31.91

Barbara 1st-order 0.71 31.78

fastiht2 127 24.44

Proposed 0.77 35.27

Boat 1st-order 0.755 34.45

fastiht2 127 28.56

Proposed 0.74 36.84

Couple 1st-order 0.735 36.20

fastiht2 127 28.15

Proposed 0.99 34.74

Crowd 1st-order 0.985 34.29

fastiht2 127 29.67

Proposed 0.77 37.01

Goldhill 1st-order 0.765 36.64

fastiht2 127 29.51

Proposed 0.82 39.09

Lena 1st-order 0.795 38.18

fastiht2 127 31.35

Proposed 0.74 33.57

Milkdrop 1st-order 0.74 33.32

fastiht2 127 31.22
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Figure 5: Reconstruction performance of each image
in terms of PSNR (dB).

For the simulation, the coding factors are decided
experimentally; the r−neighborhood of cell r = 2, the
number of iterations n = 128, and the standard devi-
ation of Gaussian σ is decided like Table 1. The re-
construction performance of the proposed method is
compared with the basic first-order CNN sigma-delta
modulator labeled ”1st-order” in Table 1, and the best
known linear method which achieves high peak sig-
mal to noise ratio (PSNR) in inverse halftoning called
”fastiht2” [22], labeled ”fastiht2” in Table 1, from the
Floyd-Steinberg error diffusion method [23].

Fig. 6 shows the amplitude spectrum of the Lena
image. 6-(a) is the spectrum of Lena, 6-(b) is the
spectrum of a denoised image with 128 iterations by
the first order sigma-delta modulation, 6-(c) is the
spectrum of a denoised image with 128 iterations by
the second order sigma-delta modulation, 6-(d) is the
spectrum of a summation image with 2 iterations by
the first order sigma-delta modulation, 6-(e) is the
spectrum of a summation image with 256 iterations
by the first order sigma-delta modulation, 6-(f) is the
spectrum of a summation image with 1024 iterations
by the first order sigma-delta modulation, 6-(g) is the
spectrum of a summation image with 2 iterations by
the second order sigma-delta modulation, 6-(h) is the
spectrum of a summation image with 256 iterations
by the second order sigma-delta modulation and 6-(i)
is the spectrum of a summation image with 1024 it-
erations by the second order sigma-delta modulation.
As shown in these figures, the original signal spec-
trum is reconstructed and the quantization noises are
shaped into high spatial frequencies by the noise shap-
ing property. Moreover, due to the second order noise
shaping property, noises of the amplitude spectrum of
each iteration by the proposed algorithm are more ac-
curmlated into high frequency regions than that of the
first order. In addition, these shaped noises can be cut
by the decimation filter which is provided by the 2nd
layer DT-CNN.

Table 1 suggests that our proposed method has
a better reconstruction performance compared with
conventional methods. Fig. 5 shows the relationship
of each image between σ and PSNR. Fig. 7, 8, and
9 show the input image, the modulated image and re-
construction images at each original image.

5 Conclusion

The second-order sigma-delta modulator using a cas-
caded sigma-delta CNNs for image reconstruction has
been proposed. In our method, the nonlinear dynam-
ics of the DT-CNN is exploited to modulate the input
image. Also, the second-order sigma-delta modula-
tor has been realized by a cascaded CNN sigma-delta
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Figure 6: Amplitude spectrums of the Lena image; (a) Original Lena, (b) reconstructed image (128 iterations
by the first order sigma-delta modulation), (c) reconstructed image (128 iterations by the second order sigma-
delta modulation), (d) summation image (2 iterations by the first order sigma-delta modulation), (e) summation
image (256 iterations by the first order sigma-delta modulation), (f) summation image (1024 iterations by the first
order sigma-delta modulation), (g) summation image (2 iterations by the second order sigma-delta modulation),
(h) summation image (256 iterations by the second order sigma-delta modulation), (i) summation image (1024
iterations by the second order sigma-delta modulation).

modulators.
The experimental results show that our proposed

method has a better reconstruction performance com-
pared with conventional methods. Moreover, owing
to the second-order noise shaping property of the pro-
posed system, the image reconstruction performance
of the proposed method is better than that of the first-
order CNN sigma-delta modulator.
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