
Distributed Simulation and Profiling of
Multiprocessor Systems on a Chip

ZDENĚK PŘIKRYL, TOMÁŠ HRUŠKA, KAREL MASAŘÍK

Department of Information Systems
Brno University of Technology, Faculty of Information Technology

Božetěchova 2, 612 66 Brno
CZECH REPUBLIC

iprikryl@fit.vutbr.cz http://www.fit.vutbr.cz/~iprikryl
hruska@fit.vutbr.cz http://www.fit.vutbr.cz/~hruska

masarik@fit.vutbr.cz http://www.fit.vutbr.cz/~masarik

Abstract: Embedded systems – multiprocessor systems on a chip with application specific instruction-set
processors (ASIPs) – become indivisible part of our everyday lives. They are everywhere. Therefore, powerful
and flexible way of design and simulation of these systems is needed. The simulators of ASIPs are created
using an architecture description language called ISAC. In this paper, the basic concept of simulation, the
communication protocol among ASIPs and the three-state synchronization protocol that is used in the
distributed multiprocessor simulation are described. Further, the basic concept of profiling and consequential
evaluation of profiling information is described. One needs the results from the simulation itself and the results
from the profiling to find bugs in the system and to optimize the system as a whole.

Key-Words: Application specific instruction-set processor, multiprocessor system on a chip, simulation,
simulator, synchronization protocol, communication protocol, profiling, ISAC.

1 Introduction
Multiprocessor systems on a chip (MPSoC) are very
popular these days. In this paper, as a MPSoC we
understand a system which can have several
processors and basic resources like caches, registers
etc. It doesn’t contain LCD displays or any other
peripheral devices. One can find these kinds of
systems in embedded systems or in other more
complex systems.

Processors used in these systems are usually
application specific instruction-set processors.
ASIPs, unlike general purpose processors, have
always some special reason to be in system. The
reason for this is specific hardware or instruction-set
requirements on the processors. Hence they provide
a good compromise between high-performance,
low-power consumption and flexibility. This means
that each processor of such system takes care of
something another. For example, if we have a three-
processor system in an ogg player then one of them
could take of about displaying information to the
user, the second processor could be used as the
encoder of the ogg format, and it could control a
digital-to-analog converter also, and the last one
could control these two and accept user action via
small keyboard.

As one can expect, designers of such systems
want to have a tool, with which they describe a
MPSoC and then simulate this system. All this
activity we want to do before we synthesize the
system and make a silicon layout. These tools
usually use some kind of an architecture description
language (ADL). ADLs are a special type of
languages which allow designers to break away
from hardware details. So the designer can focus on
the design in a more abstract way. This allows
having a system-wide outline of a designed device.
It is useful because it decreases the time spent
designing the system, and furthermore, it decreases
the debugging time of the system. Decreasing
necessary debugging time is especially rewarding,
because if someone finds a bug in the system, then
fixing the bug will be done at the software level.
This fix is fast and doesn’t bring a need to redesign
the silicon layout which is usually very expensive.
Thus the system as a whole has a low time-to-
market value. Also, designing with those tools is
cheaper then designing in the way, in which
designers have to write their own simulator from the
scratch.

Bugs or the insufficiencies in the design can be
found in the results of simulation. More precisely,
bugs can be found in the standard simulation results,

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS

Zdeněk Přikryl, Tomáš Hruška, Karel Masařík

ISSN: 1109-2734 788 Issue 8, Volume 7, August 2008

mailto:iprikryl@fit.vutbr.cz
http://www.fit.vutbr.cz/%7Eiprikryl
mailto:hruska@fit.vutbr.cz
http://www.fit.vutbr.cz/%7Ehruska
mailto:masarik@fit.vutbr.cz
http://www.fit.vutbr.cz/%7Emasarik

which are available at and after every simulation.
Insufficiencies, i.e. bottleneck points or bad source
code coverage, can be found in the profiling
information. If profiling is enabled, additional
information is logged during the simulation.
Therefore, more statistical information, which is
computed from the logged information, is available.
As well, the disadvantage of profiling is that it slows
simulation down significantly. The results and the
profiling information are available for example
through the eclipse plugins (figure 11, 12).
Nevertheless, we must do profiling, so that we have
optimal design of ASIPs on MPSoC and an
application.

From another point of a view, the simulation of
one processor on another one has many
requirements on the resources of a hosted system
like the frequency of a hosted processor or available
memory. So, if we want to simulate MPSoC on a
one-processor system, the requirements of resources
will be much greater. The simulation of more
complicated MPSoC may be impossible only on a
one-processor system.

A one way out of these troubles is distributed
simulation. In this case, we divide MPSoC into
separate parts and each part we simulate using a
different simulator on several hosted systems. It
stands to reason that this solution brings some
disadvantages too. At first, we have to have some
synchronization protocol which controls accessing
shared resources. One could say that this is done
already by a third party library like for example
OpenMPI [6]. But in this case, we have to have
support on hosted systems which are unacceptable
for us. The reasons why are several, e.g. one has to
take care of having the correct libraries on the
systems. Furthermore, we have to have a
communication protocol. Each simulator has to
communicate with each other one by this
communication protocol. Also, we have to choose a
platform which simulators will use for
communication, e.g. TCP/IP.

Despite the mentioned disadvantages, we choose
this concept because the concept of distributed
simulation has parallel character and it demands
fewer requirements on the resources of hosted
systems. In the text below a methodology of
designing ASIPs on MPSoC with ADL called ISAC
is described. Then the concept of simulators
follows. In the next part a synchronization algorithm
is described, which is used to control accessing
shared resources of processors and what

methodology is used for distributing simulators to
hosted systems. Further, the methodology of
profiling ASIPs on MPSoC is described.

2 THE ADL ISAC
The language ISAC is architecture description
language which arose out of the language LISA [4].
ISAC was developed at the Faculty of Information
Technology at the Brno University of Technology
and it is used in the Lissom project. It improves the
language LISA, support for hardware description
language (HDL) generation is added [3], and
furthermore it brings some advantages in the
structure of the language itself. It is still under minor
development. Architecture of a processor or a
multiprocessor system on a chip is described by
basic language constructions. These constructions
can be divided into two sections.

Firstly, there is a section for describing structural
components, so-called resources. As a resource we
count, for example memory, caches and so on.
Secondly, there is a part for describing the behavior
of a processor, its instruction set and timing model.
All of these are described by two basic
constructions, a construction operation and a
construction group.

In next two subsections, we will focus on such
constructions, which are important for simulation
for the reasons get to be disclosed. Additional
information about the language ISAC can be found
in [1].

2.1 Resources
As was mentioned, in resources a designer describes
the resources of a processor. This section is
proposed by the keyword RESOURCES. By
resources is meant the basic parts of a processor,
like registers (keyword REGISTER), logic circuits,
a memory component or a pipeline, etc. Memory
components could be ideal memory (keyword
MEMORY), real memory or a cache. Some of these
resources are mandatory. Every processor must have
a program counter, which is a special type of the
register (proposed by the keyword PC before the
keyword REGISTER), memory of some sort and a
memory mapping (keyword MEMORY_MAP). The
need to have a program counter is obvious (the
processor must know the location of instructions of
a program). The program needs to be stored
somewhere, so one must have a memory element.
And the memory mapping is mandatory because a

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Zdeněk Přikryl, Tomáš Hruška, Karel Masařík

ISSN: 1109-2734 789 Issue 8, Volume 7, August 2008

processor must know, which address area belongs to
particular elements of memory even if the processor
has only one element of memory. Each of these
structural components has several properties.
Among the most important properties is a bit width
(keyword bit[<width>]), sizes of the memories
(keyword SIZE(<size>)), the number of memory
banks or, if the designer wants to design real
memory elements, then he must define the latency,
etc. All of these constructions could be shared in a
MPSoC.

The next example shows the resources part
which consists of mandatory resources and four
universal registers.

RESOURCE {
 // program counter, it has 8-bit with
 PC REGISTER bit[8] pc;
 universal registers, 8-bit width too //
 REGISTER bit[8] ax, bx, cx, dx;
 // special registers for decoding
 REGISTER bit[8] f_data, f_pc;
 // ideal memory, it has 255 8-bit blocks
 and this memory is executable //
 MEMORY bit[8] prog {
 SIZE(255);
 FLAGS(X);
 ...
 };
 // same memory like above, but it is
 // readable and writeable
 MEMORY bit[8] data {
 SIZE(255);
 FLAGS(R, W);
 ...
 };
 // assignment of memory entities to
 // address areas
 MEMORY_MAP defaultmap {
 RANGE(0, 254)->prog [(7..0)]
 RANGE(255, 509}->data [(7..0)]
 };
}

Fig. 1: Example of resource sections

2.2 Operations
On the other hand, this section of operations is used
for the design of an instruction model and a timing
model of ASIPs on MPSoC. The instruction model
describes how instructions look like in assembly and
machine language. Also this model describes the
behavior of instructions. The timing model
describes the behavior of a system as a whole. Every
operation represents an atomic action in the
processor. When the designer wants a more
complicated action which consists of more atomic
actions, then he could make up a hierarchy. This

hierarchy could be created by the basic
constructions of the operation section. These
constructions are an operation (keyword
OPERATION) and a group (keyword GROUP). As
well as in resources section, here also are some
mandatory operations, like a reset or a master
synchronization operation main etc.

The construction group is used when a designer
needs to aggregate operations and/or others groups
with similar meaning. Also it is used for creating a
hierarchy of operations and/or groups. Under the
first case we can understand a group called
“registers” which aggregates the operations “ax”
and “bx”, whereas these two operations could be
used for identification resources registers. Under the
second case we can understand the creation of a
group called “instr_set”. It could also include groups
“mem” and “alu” whereas these two groups
aggregate related operations within their respective
sets.

The construction operation is used for designing
atomic entities. It could consist of several sections.
In them a designer could describe how the operation
looks like in assembly language and in machine
language. For this purpose, the assembler (keyword
ASSEMBLER) and the coding (keyword CODING)
sections are used. Furthermore, when a designer
needs to describe the behavior of the operation, then
he used the behavior (keyword BEHAVIOR) or the
expression (keyword EXPRESSION) sections. A
reduced ANSI C language is used in these sections,
so the behavior is described by a piece of code.

The most important section in our point of a
view is the behavior section. As was mentioned in
the text above, this section describes the atomic
action of the operation. When a designer designs a
multiprocessor system on a chip and the operation
of one processor needs to access a resource or
resources of another processor, then this access must
be in its behavior section. Accessing shared
resources of another processor is denoted by the
following construction. It consists of the name of a
processor which owns the shared resource, a dot and
the name of the shared resource. In such case, when
the simulation is running at a high level of
abstraction, the processor knows where the resource
can by found.

The next example shows a small hierarchy of
operations and access to the shared resource “bx”.
This resource is owned by the processor named
“enc”. Note, that the next example show the
instruction model.

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Zdeněk Přikryl, Tomáš Hruška, Karel Masařík

ISSN: 1109-2734 790 Issue 8, Volume 7, August 2008

OPERATION ax {
 // description of assembly language
 ASSEMBLER { “ax” };
 // and of machine language
 0b denotes binary number //
 CODING { 0b00 };
 EXPRESSION { 0; };
}
//
OPERATION bx {

operation has similar form like ax

 ...
}
//
GROUP register = ax, bx;

aggregates similar operation

OPERATION X {
 ...
 // operation X accesses enc’s bx resource
 BEHAVIOR { ax=enc.bx*0.001; };
}
OPERATION Y {
 ...
}
GROUP instr_set = X, Y;

Fig. 2: Example of operation sections

When an operation is used for a timing model
description, then another two sections are used, a
coding root (keyword CODINGROOT) and an
activation (keyword ACTIVATION) section. When
the operation is used for timing model, we can call it
the event. The coding root section denotes when and
what will be decoded. It is possible, that in the
system, there is more than one instruction decoder
present. These instruction decoders can be
dependant on what was decoded by previous
decoders and they can be delayed. The activation
section denotes when and what will be done. In this
section each activation can be conditional and
delayed. The condition can be formed from
constants and/or resource values and/or results from
the expression section of an operation, etc.

The next example shows how a timing model
might look. We have operation main, which is done
every clock cycle. This operation activates other
operations etc.

// load data from memory, we have to store
// program counter too (it is needed
// to debug the application)
OPERATION fetch {
 BEHAVIOR { f_data=prog[pc]; f_pc=pc; };
}
OPERATION decode {
 CODINGROOT {
 // we want to decode operation
 // which belongs to instr_set
 instr_set(f_data[f_pc]);
 };

}
OPERATION main {
 // %x means delay of x clock cycle
 ACTIVATION { fetch; %1 decode; };
}

Fig. 3: Example of the timing model

3 Simulator
The ways a simulator can simulate ASIPs on
MPSoC are divided into two basic approaches;
instruction set simulation and cycle-accurate
simulation.

The first approach is based on the idea that the
basic step of the simulation is the execution of one
instruction. In this approach, only the instruction
model is simulated. The instruction model is based
on coding, behavior and expression sections only.
We use some machine code as the simulator’s input.
After the simulation, we can look at the output of
simulation (more information about simulation
output is in section 6). As one can expect, there is
not much information about the behavior of real
ASIPs on MPSoC present, but enough for fast
development of an application that will run on them.

The second approach to simulation is based on
the clock cycle. In this case, the instruction and
timing models are simulated together. The timing
model is based on the activation and coding root
sections. After the simulation, the designer will have
detailed information about the behavior of ASIPs on
MPSoC.

The simulation of the instruction model can have
two forms; interpreted form and compiled form.

The interpreted form means that every time when
an instruction is recognized, its behavior is executed
independently. That is why this form is independent
of the simulated application.

The compiled form is created in two steps. In the
first step, when and what instructions are executed,
gets logged. Second, from this log, we create a
compiled form of an instruction set simulation. This
takes longer to create than the previous form and it
is dependant on the simulated application, but the
time of the simulation itself is shorter.

The simulation of the timing model can have two
forms too; dynamic planning form and static
planning form.

The dynamic planning form is based on the idea
that there is an event scheduler in the system. The
operations, or events if you will, from this scheduler
are sequentially executed. Every time that an

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Zdeněk Přikryl, Tomáš Hruška, Karel Masařík

ISSN: 1109-2734 791 Issue 8, Volume 7, August 2008

operation activates another operation, the activated
operation is inserted into the event scheduler.

Unlike of the dynamic planning form, the static
planning form is based on the idea, that whole
planning is stored in only one state variable [13].
More precisely, the value in this state variable
denotes what operations will be executed (in terms
of the dynamic planning, what operations are in the
event scheduler). This form needs to preprocess the
timing model, from which values for the state
variable are formed. Again the time of creation is
longer, but the simulation itself is shorter.

In the beginning, our simulator was inspired by a
simulator that is used in [8] and that is created for
ASIP. Later on, it was shown that their approach is
insufficient, so we improved it and brought new
ideas. The main goal is to have one formal model
for the simulation and for the synthesis. One wants
to be sure that what he simulates is what he will get
in the hardware later. So, our approach is based on
formal concepts and from these concepts C code for
the simulator or VHDL code for the synthesis is
generated. As a basic simulator, the cycle-accurate
interpreted static planed simulator was chosen for its
performances. There are two formal concepts used.
One, called “machine code finite automaton”. The
other called “event finite automaton”.

The machine code finite automaton is a formal
model for instruction model simulation, so it accepts
machine code as input and eventually it executes
some behavior. An example of this automaton is in
the figure 4. On the edges are couples. On the first
position of the couple, there is a terminal symbol
from the input alphabet, i.e. symbols which are
accepted and which belong to the machine code
language. On the second place, there can be some
behavior.

Fig. 4: Example of the machine code finite
automaton

This behavior is executed when automaton goes
through the edge, i.e. it executes the behavior,
expression section.

So, if we go through the automaton edges and if
we execute some behavior, it means that we
recognized some instruction from the instruction set
and we executed its behavior. More information
about how the machine code finite automaton is
created can be found at [9].

The event finite automaton is formal model for
timing model simulation, so it accepts events from
the systems and eventually executes its behavior. An
example of this automaton is in the figure 5. This
time triples are on the edges. On the first position of
the triple, there is an event, i.e. operation from
activation, coding root section. On the second
position, there can be a condition, i.e. if activation
of an operation is conditional. On the third position,
there can be some behavior. The value of the nodes
represents the value that is stored in the state
variable of the system.

Fig. 5: Example of the event finite automaton

Therefore, if an event occurs in the architecture,
then automaton goes through particular edge and
changes the value of the state variable. Further, this
passage can execute some behavior, i.e. if we have a
fetch event, it can load instructions from memory to
other resource and can activate decoding events, etc.
More information about how the event finite
automaton is created can be found at [12].

The described formal models are created for
every ASIP that is placed on MPSoC. These models
can be connected to each other by the behavior. The
instructions can access shared resources; so one has
to determine the optimal approach for
synchronization of these accesses. This will be
described in next section.

main, ε, fetch, ε,
pc++;

n0 n1 n2
f_data=prog[pc];

n4 n5 n3

main, ε, fetch, ε,
pc++; f_data=prog[pc];

f_pc=pc;

halt, decode, ε,
decode_instr_set(); decoded_halt==1,

halt();

n0

n10, ε

n2 n3

n4 1,
ax=enc.bx*

 0,
ax=enc.bx*

 0.0001; 0.0001;

0, ε

1, ε

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Zdeněk Přikryl, Tomáš Hruška, Karel Masařík

ISSN: 1109-2734 792 Issue 8, Volume 7, August 2008

At the end of this section, there is a comparison
of our solution and solution which is described in
[8]. Both solutions are based on the statically
planned form simulation, but our solution has
several advantages. Firstly, our solution is based on
formal models, so the equivalency between the
simulators and the final implementation in hardware
is guaranteed (VHDL code is generated in similar
way as the C code for simulator). Secondly, we do
not create compiled form of the simulator, which
allows us to change the application that we want to
simulate. This is very good in the case when the
designer develops and debugs new applications.

If we want to have the fastest simulation, then we
can create an extension of the current concept. The
compiled form of our simulator will be created. This
simulator is as fast as the simulator in [8].

4 Synchronization protocol
A synchronization protocol is used for keeping the
local copies of resources in processors in a coherent
state. This means that every time a processor wants
to obtain the value of some shared resource, the
synchronization protocol must guarantee that the
processor has a valid value in the local copy of a
resource. If the copy is not valid, then the
synchronization protocol must get a valid value.
Furthermore, if a processor wants to write a new
value to a resource, then the synchronization
protocol must take care of distribution of this new
value into the processors which have invalid values
in their local copies of this resource now, or mark
the copies as invalid.

There are several ways how one member lets
another member know that it needs valid data. It
could be signals or by sending messages (in fact, a
signal is the simplest form of a message, it carriers
only information that something happed, nothing
more). Since the second way is more powerful and
is more universal, we choose it.

In the subsections below are discussions about
the possibilities of synchronization protocols based
on messages, their advantages and disadvantages
and their usability for our purpose. Also, in the text
below by the term processor we mean a simulator of
a processor.

4.1 Arbiter vs. broadcast
In general, there are two basic approaches how to
communicate among all members, with or without

an arbiter. At first we describe communication with
an arbiter.

The arbiter is not like any other members in a
communication group. Its only job is receiving
requests and sending replies. One could say that it
works like a proxy. Furthermore for our purposes
we would add a cache. This cache would keep
information about the states of copies of resources
in each processor. Also processors would have their
own local copies of shared resources. Thus, if an
arbiter knows valid value, then it will send it
without bothering a processor which accessed a
resource for the last time. When some processors
want to write a new value into shared resource, it
will send a writing message to an arbiter. The arbiter
receives its request and in the cache it is noted that
this processors has valid data. But this value is not
stored in the cache now. Then it sends to other
simulators invalidating messages that their local
copy of the resource is invalid. So in cache, it is
noted which processor accessed which resource the
last. If another processor needs to read a value from
shared resource, then it will send a reading message.
The arbiter looks into the cache. If it finds, in the
cache a valid value, then it sends this valid value to
the processor. Also it changes the state of copies of
the resource in the other processors according to a
protocol. If it does not find a valid value in the
cache, then it sends a getting message to the
processor which accessed the resource the last. After
receiving a reply it rewrites the invalid value in the
cache with this value and the same value it sends to
the processor which needed this value. And it also
changes the state of copies according the protocol.
The advantage of this approach is that members do
not communicate among each others, so it reduces a
number of messages. On the other hand, an arbiter is
a weak point because if it breaks then nothing will
work.

Another approach is communication by
broadcast messages. This means that if some
member wants to get something, then it will send a
message to all the others. If this message demands a
reply, then particular member will send a reply. This
second approach eliminates a weak point, an arbiter,
but the number of sent messages will be bigger. But
after all, this approach has more stability and
robustness, so we choose this one and the following
two subsections discuses two synchronization
protocols based on the broadcast approach.

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Zdeněk Přikryl, Tomáš Hruška, Karel Masařík

ISSN: 1109-2734 793 Issue 8, Volume 7, August 2008

4.2 Two-state synchronization protocol
The two-state synchronization protocol is the
simplest variant of synchronization. A local copy of
the resource in a processor could be only in two
states. “V” means a copy has a valid value and “I”
means that the value in a copy is invalid.

The process of synchronization has the following
rules. When a processor needs to write a new value
into some resource then it will send a writing
message to all the other simulators (it is a
broadcast), which use the resource too. After
simulators receive this kind of a message, they will
change the state of the local copy of the resource to
the state “I”. On the other hand, when a processor
needs to read a value from a resource, it could lead
to two cases. Firstly, if the local copy of a value of a
resource is in the state “V”, then the processor will
read this value and continue in computations.
Secondly, if local copy is in state “I”, then the
processor will send a reading message. Then it
receives the valid value from certain processor,
which has the valid value of the resource. After that
it rewrites a local value with the received one,
change state of a copy to “V”, and continues in its
computations.

A disadvantage of this synchronization protocol
is, that if a processor writes to resource which it has
in exclusive ownership, then it will send writing
messages to the other processors again even it is
useless. The exclusive ownership means, that the
processor wrote a new value to the resource some
time ago, and no other processor wanted to write to
this resource till now, i.e. all other processors have
the state of the copy set to “I”.

Fig. 6: State diagram for the two-state

synchronization protocol

Figure 6 shows a state diagram of a copy of a
resource r in a processor Pi. Pi, Pj and Pk are
different processors. The below text at transitions
have the following meanings: processor / action /
broadcast (the index b in subscripts) or message to a
particular processor (the other indexes in
subscripts).

4.3 Three-state synchronization protocol
In the three-state synchronization protocol we want
to get rid of useless broadcast messages when a
processor has a resource in an exclusive ownership
and it writes to this resource again. The solution is
adding a new state which signalizes that a resource
is in exclusive ownership.

Now, instead of the two states “V” and “I” we
have three states. A state “M”, modified, which
means that the local copy of a resource is in an
exclusive ownership. A state “S”, shared, which
means that the value of a copy is valid, but a
processor is not an exclusive owner. And we have a
state “I”, invalid, which has same meaning as in the
two-state protocol.

Originally this protocol has been designed for a
synchronization of the cache in multiprocessor
systems with shared memory and the
synchronization is also affected by the controller of
the bus etc. It is also called the MSI protocol
(named after initial letters of names of states). For
our purpose we modify the MSI protocol for a cache
to the MSI protocol for a resource.

The process of synchronization has the following
rules. Writing a new value into some resource it is
similar to writing it in the two-state protocol. A
processor sends a writing message to all the other
processors which use this resource. Then a local
copy of the resource in the processor is marked as
“M”, so the processor is the exclusive owner. The
other processors mark their copies as “I”, so they
will know that they do not have a valid value of the
resource. When a processor wants to gets the value
of a resource it could lead to three cases. The first
two cases are that the processor wants to read the
resource and its state is set “M” or “S”. It means that
the processor is either the last one, which wrote a
value to the resource or some another processor has
a valid value too. In both cases the processor which
reads does not send any messages. The third case is
that the value of a local copy of a resource is
marked as “I”. In that case the processor must send
a reading message. A processor which was the last

Pi / R(r) / -
Pi / W(r) / W(r)

Pi / W(r) / Wb(r)
Pi / R(r) / Rj(r)

Pj / W(r) / Wb(r)

Pj / R(r) / {-, Pk}
Pj / W(r) / W(r)

V

I

Pj / R(r) / {-, Pi, Pk}

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Zdeněk Přikryl, Tomáš Hruška, Karel Masařík

ISSN: 1109-2734 794 Issue 8, Volume 7, August 2008

one which changed the resource answers the valid
value to the processor which wants to read the
resource. Both of them then set the state of local
copies of the resource to “S”.

The tree-state protocol removes the
disadvantages of the two-state protocol, therefore it
is used in the MPSoC simulation in the Lissom
project.

Figure 7 shows a state diagram of a copy of the
resource r in processor Pi. Pi, Pj and Pk are different
processors. The below text at transitions have
following meanings: processor / action / broadcast
(the index b in subscripts) or message to particular
processor (the other indexes in subscripts).

Fig. 7: State diagram for the three-state

synchronization protocol

4.4 Experimental results
For testing both synchronization protocols, several
applications were created. In this section, we go
briefly through two applications and we compare
results from the two-state and the three-state
synchronization protocol. In both applications, the
processors are the same. Only the programs, which
run on these processors, are different. In the next
two paragraphs, the applications and the results
from simulations are described.

The first application is a simple counter from
zero to ten. On all processors, the same application
is executed. Further, only one register, of one

processor, is shared among the processors. The
application has the following behavior. In random
times, each processor reads the value of the shared
register. If the read value is greater then or equal to
ten, then the processor will halt. Otherwise, it will
increase the read value by one and will write this
new value back to the shared register. The whole
simulation will end when all processors halt. Note
that the mutual exclusion of accesses to the shared
resource is done in the processor architecture itself,
not in the synchronization protocols. In the figure 8,
the average values of sent messages of several
simulations are shown. When the two-state
synchronization protocol is used, the count of the
writing messages is at the maximum, because apart
on which processor writes to the shared resource,
the broadcast messages are sent every time. On the
other hand, when the three-state synchronization
protocol is used, the count of writing message can
be lesser. It depends on the randomness, i.e. one
processor writes new value more times in sequence.

Pi / W(r) / Wb(r)

Pi / W(r) / Wb(r) Pi / R(r) / Rj(r)

Pj / W(r) / - Pi / W(r) / -
Pj / R(r) / {-, Rk(r)}

Fig. 8: Graph of the count of messages for counting

algorithm

As one can see in this particular application, the
advantage of the three-state synchronization
protocol is not very significant. As it was
mentioned, this is caused by the application
character, i.e. every processor wants to read and
write to the same shared resource, and by random
accesses, i.e. the case when processors alternate in
the writing is much more probable than the case
when the most of the writing is done by single
processor.

The second application is a simple distributed
sorting algorithm. On all processors, except one –
the master processor, the same application is

Pj / R(r) / Ri(r) Pj / W(r) / Wb(r)

Pj / W(r) / Wb(r)

Pi / R(r) / -

Pi / R(r) / -

Pj / R(r) / -

S M I

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Zdeněk Přikryl, Tomáš Hruška, Karel Masařík

ISSN: 1109-2734 795 Issue 8, Volume 7, August 2008

executed. Only one memory of master processor is
shared among processors. The application has the
following behavior. Every processor, except the
master processor, sorts the values in a dedicated part
of the shared memory. The master processor at the
beginning writes random values to its shared
memory and at the end, it merges the sorted parts
and it saves the sorted values in a different non-
shared memory. For the sorting algorithm, a simple
bubble sort is used. In the figure 9, values of sent
messages of the simulation are shown. When the
two-state synchronization protocol is used, the count
of the writing messages is again at the maximum.
The reason is the same as in the previous
application. When the three-state synchronization
protocol is used the count of sent messages is
notably lesser. This is because every sorting
simulator has its own dedicated part of shared
memory. That means that when a particular
processor is sorting, then it reads and writes to its
own part of shared memory and it does not have to
send any message.

Fig. 9: Graph of the count of messages for sorting
algorithm

Now, the advantage of the three-state
synchronization protocol is clear. It always depends
on the application’s character, just how much
advantage we will gain, but nevertheless, an
advantage is there in 99.9% of cases.

5 Communication protocol
A communication protocol is a collection of rules
and everyone who wants to communicate in some
communication group must follow the rules of this
group. It prescribes a body and a form for messages,

which has to be done if a message is lost, which part
can communicate with the others etc.

In the Lissom project, a XML fragment is chose
as the body and the form of the message. Every
message carries a type and it could carry some data.
Lissom uses the three-layer architecture, i.e. we
have presentation, middle and simulation layers.
Each of these layers can run on other hosted
systems. In the figure 10 it is shown who with who
can communicate. In the bottom is layer of
simulators. In this layer simulators can
communicate among others simulators (broadcast
character) and can communicate with the middle
layer. The middle layer takes care of accepting
requests from presentation layer and sending back
data which will be displayed to user. Also it takes
care of controlling and getting data from simulators.
Furthermore it takes care of creating simulators and
other instruction set tools like assembler or
disassembler. When and what is created or run
determines the presentation layer, more precisely a
user who uses the presentation layer. That means
that when the user writes a source code in particular
application specific instruction-set, then that user
will activate compilation in the presentation layer
(by pushing a button or writing a command in
command line). The presentation layer accepts this
user requirement and creates a message for the
middle layer. The message will contain a type,
which tells us that we want to compile something,
and data: the source code. The middle layer accepts
this message and run an assembler and as a
parameter gives the source code. After compilation,
the middle layer lets us know about success or
failure, so it creates a message with particular type
and send it back to the presentation layer. This
approach, which was described a short while ago, is
commonly used for all requirements and replies in
the three-layer architecture. The presentation layer
has several forms. It could be simple web interface,
a command line or it could be plugins to the IDE
Eclipse (figure 11, 12). All these user interfaces
communicate with the middle layer with the same
protocol. This concept has implicit multiuser
character. We could have one computer for the
middle layer, some computers for simulation, and
one or more computers for the designers. On these
computers, different kinds of user interfaces can
run. Users are identified by theirs names so
everyone has their own space to creating projects.

If a user wants to run a simulation, then he has to
set some environment variables in the presentation

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Zdeněk Přikryl, Tomáš Hruška, Karel Masařík

ISSN: 1109-2734 796 Issue 8, Volume 7, August 2008

layer in a user interface. These variables denote
which computers are used for simulation, the
program which will be simulated etc. Because
simulators are created on a computer which is used
for the run of the middle layer, it is obvious that on
computers the same operation system must be used
for simulation. When the simulation is started, the
simulators are copied to computers by the middle
layer according an environment variable. Coping is
done automatically by the middle layer using the
protocol for secure copy (the application scp), which
was chosen because of multiplatform independence
and security features. So, every simulator can run on
another computer and this, as was mentioned in the
introduction, brings some advantages. After the
simulation, the middle layer asks every simulator to
send statistic and resource values and this data is
interpreted by some kind of user interface in the
presentation layer. More information about statistics
can be found in the section 6.

So, in one extreme case is that we have three
computers for the layers of the communication
protocol and n systems for n simulators. The other
extreme case is that everything runs on only one
computer.

Fig. 10: Three layer model

6 Simulation results and profiling
After the simulation or during the simulation, the
designer needs to get values of resources for
validation and verification, since he needs to check
that the application does the correct computation. In
some cases, he also needs profiling information.
This kind of information is available only after the
simulation and can be basically divided into two
types. With the first type, we understand

information that is relevant to the processor itself.
With the second type, we understand information
that is relevant to the simulated application. That
means that the designer needs information about the
utilization of the instruction set, how often particular
instructions access certain resources, and so on. He
also needs information about source code coverage,
which parts of the source code are bottleneck points,
which parts of the source code are the most difficult
in terms of time, etc. All this information helps to
optimize either the processor or the application
which is run on the processor. So, after the profiling,
we can find that the utilization of some elements in
the design are insufficient and we can remove them
from the design without any negative consequence.
Or, if we found the bottleneck point in the design,
then we can rework this point and remove the
insufficiency.

In the Lissom project, every resource has
counters for read, write and executable access.
Resources, like memory, have counters for every
cell. The only exception is cache. The most
important information about cache is how many
times we hit or miss the value of the resource in the
cache. That is why, for cache resources, only hit and
miss statistics are logged.

Every time when an operation uses a resource, it
is logged. In standard simulation, there is no relation
between what operation accesses what resource.
That means that only counters are increased and
nothing more is logged. Thus the relations are
available during profiling only.

Presentation Layer

Middle Layer

If we have a MPSoC, then the simulators can run
independently on one or more hosts. They collect
theirs own values of counters and resource values
during the simulation independently. After
simulation, they send their results to the middle
layer. This layer puts together all results and resends
this collection to the presentation layer. This layer
manages to display them in proper way. The same
situation occurs if we do the profiling. Every
simulator sends profiling information to the middle
layer. The middle layer collects them then resends
the collection to the presentation layer. In this case,
the results of the simulation and the profiling
information are displayed independently for every
ASIP, i.e. in the IDE Eclipse we would have several
tabs.

Simulator

Simulator Simulator

Simulation Layer

The example of results of the simulation is
shown in the figure 11. One can see a part of a
memory called “program” and a few registers and
their values. The results from the simulation are

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Zdeněk Přikryl, Tomáš Hruška, Karel Masařík

ISSN: 1109-2734 797 Issue 8, Volume 7, August 2008

available during the simulation too, mostly used
when the designer debugs the application. When an
execution is stopped at a breakpoint, the designer
can see actual values of resources and their
statistics, which is necessary for usable debugging.

Fig. 11: Screenshot of simulation results

The profiler is based on the upgrade of the behavior
on edges in the machine code finite automaton, i.e. a
special behavior is inserted after or before basic
behavior. The special behavior takes care about a
watching system activity and takes care of logging.
More information about the profiler can be found in
[14].

The profiling information is formed from
statistical information, e.g. the instruction set
coverage or top five instructions by memory
accesses, etc. Furthermore, the mentioned relation
between instruction and resource accesses is
available. That means that we know how many
times each instruction accesses a particular resource.

Fig. 12: Screenshot of the profiling

If we have more ASIPs on MPSoC, then the
situation is the same like in the simulation without
the profiling, i.e. the profiling information is
available independently for each ASIP. The
profiling information, unlike of results of the
simulation, is available on request and after the
simulation only. This is needed because retrieving
this information during the simulation makes the
simulation much slower.

The example of the profiling information is show
in the figure 12. As one can see, there is a graph of
instruction set coverage and part of the top 5 by the
count of the execution statistic.

7 Conclusion
In this paper, a way how to design the new ASIPs
which can be used on a multiprocessor system on a
chip was proposed. The structure of one simulator,
which represents one ASIP on MPSoC, was
described. Further a way how to simulate and
synchronize a shared resource among ASIPs on this
MPSoC was proposed. The architecture description
language ISAC is used for description of ASIPs on
MPSoC architecture. This language has features that
identify and access shared resources. The
synchronization protocol is based on modified MSI
protocol which is used in multiprocessors systems
with shared memory. Because of that, this protocol
is not dependant on any third-party libraries which
would care of accesses to shared resources. It allows
us to have very simple distribution of simulators to
hosted systems in a cluster of computers which are
used for simulation without many requirements on
resources of these systems. The communication
protocol is based on three layer architecture which
allows us to run these layers on independent
computers. Both the synchronization and the
communication protocols use sending messages as
form of communication act. The body of a message
is constructed by the XML language. Further, the
profiling and particular statistical information,
which can be used for the optimization, were
described.

All of these create a powerful, robust and
flexible environment for the designer to develop a
new application specific instruction-set processors
and multiprocessor systems on a chip which uses
these processors.

References:
[1] Hruška, T., Instruction set Architecture,

Internal material, FIT VUT Brno, 2004.

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Zdeněk Přikryl, Tomáš Hruška, Karel Masařík

ISSN: 1109-2734 798 Issue 8, Volume 7, August 2008

[2] Moskovčák, J., Design of Communication
Protocol for Generic Simulators of
Microprocessor, Master thesis, FIT VUT Brno,
2007.

[3] Novotný, T., Transformation of the
Microprocessor’s Description Language to the
Hardware Description Language, Master
thesis, FIT VUT Brno, 2007.

[4] Hoffmann, A., Meyr, H., Leupers, R.,
Architecture Exploration for Embedded
Processors with LISA, Kluwer Academic
Publischers, ISBN-4020-7338-0.X2, 2002.

[5] Dvořák, V., Architektura a programování
paralelních systémů, VUTIUM Brno, 2004.

[6] Open MPI Team, Open Source High
Performance Computing, available at www:
http://www.open-mpi.org/.

[7] Wieferink, A., Kogel, T., Nohl, A., et al.: A
Generic Tool-Set for SoC Multiprocessor
Debugging and Synchronization, IEEE Int.
Conf. On Application-specific Systems,
Architectures and Processors (ASAP), The
Hague (Netherlands), 2003.

[8] Braun, G., Hoffmann, A., Nohl, A., Meyr, H.:
Using Static Scheduling Techniques for the
Retargeting of High Speed, Compiled
Simulators for Embedded Processors from an

Abstract Machine Description, Aachen
University of Technology, Institute for
Integrated Signal Processing Systems,
Germany, 2005.

[9] Hruška, T., Kolář, D., Lukáš, R., Zámečníková,
E.: Two-way Coupled Finite Automaton an Its
Usage in Translation, WSEAS Int. Conf. On
Circuits, New Aspects of Circuits, Greece,
2008.

[10] Economou, D., Mouratidis, N., Lykakis, G.,
Tavoularis, A., Kostopoulos, A., Manousaridis,
A., Konstantoulakis, G.: An Innovative SoC
Design for Broadband Residential
Applications, WSEAS Transaction on
Communication, Greece, 2004.

[11] Reynaga, R., Yupanqui, F.: Two-dimensional
cellular automata of radius one for
synchronization task, WSEAS Transaction on
Computers, Greece, 2003.

[12] Masařík, K., Přikryl, Z.,: Simulace časového
modelu mikroprocesoru, Internal material, FIT
VUT Brno, 2008.

[13] Patterson, D., Hennessy, J.: Computer
Organization and Design, Morgan Kaufmann
Publisher, ISBN-978-0-12-370606-5, 2007.

[14] Přikryl, Z.: Návrh a implementace profileru,
Internal material, 2008.

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Zdeněk Přikryl, Tomáš Hruška, Karel Masařík

ISSN: 1109-2734 799 Issue 8, Volume 7, August 2008

