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Abstract: Embedded systems – multiprocessor systems on a chip with application specific instruction-set 
processors (ASIPs) – become indivisible part of our everyday lives. They are everywhere. Therefore, powerful 
and flexible way of design and simulation of these systems is needed. The simulators of ASIPs are created 
using an architecture description language called ISAC. In this paper, the basic concept of simulation, the 
communication protocol among ASIPs and the three-state synchronization protocol that is used in the 
distributed multiprocessor simulation are described. Further, the basic concept of profiling and consequential 
evaluation of profiling information is described. One needs the results from the simulation itself and the results 
from the profiling to find bugs in the system and to optimize the system as a whole. 
 
Key-Words: Application specific instruction-set processor, multiprocessor system on a chip, simulation, 
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1 Introduction 
Multiprocessor systems on a chip (MPSoC) are very 
popular these days. In this paper, as a MPSoC we 
understand a system which can have several 
processors and basic resources like caches, registers 
etc. It doesn’t contain LCD displays or any other 
peripheral devices. One can find these kinds of 
systems in embedded systems or in other more 
complex systems. 

Processors used in these systems are usually 
application specific instruction-set processors. 
ASIPs, unlike general purpose processors, have 
always some special reason to be in system. The 
reason for this is specific hardware or instruction-set 
requirements on the processors. Hence they provide 
a good compromise between high-performance, 
low-power consumption and flexibility. This means 
that each processor of such system takes care of 
something another. For example, if we have a three-
processor system in an ogg player then one of them 
could take of about displaying information to the 
user, the second processor could be used as the 
encoder of the ogg format, and it could control a 
digital-to-analog converter also, and the last one 
could control these two and accept user action via 
small keyboard. 

As one can expect, designers of such systems 
want to have a tool, with which they describe a 
MPSoC and then simulate this system. All this 
activity we want to do before we synthesize the 
system and make a silicon layout. These tools 
usually use some kind of an architecture description 
language (ADL). ADLs are a special type of 
languages which allow designers to break away 
from hardware details. So the designer can focus on 
the design in a more abstract way. This allows 
having a system-wide outline of a designed device. 
It is useful because it decreases the time spent 
designing the system, and furthermore, it decreases 
the debugging time of the system. Decreasing 
necessary debugging time is especially rewarding, 
because if someone finds a bug in the system, then 
fixing the bug will be done at the software level. 
This fix is fast and doesn’t bring a need to redesign 
the silicon layout which is usually very expensive. 
Thus the system as a whole has a low time-to-
market value. Also, designing with those tools is 
cheaper then designing in the way, in which 
designers have to write their own simulator from the 
scratch.  

Bugs or the insufficiencies in the design can be 
found in the results of simulation. More precisely, 
bugs can be found in the standard simulation results, 
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which are available at and after every simulation. 
Insufficiencies, i.e. bottleneck points or bad source 
code coverage, can be found in the profiling 
information. If profiling is enabled, additional 
information is logged during the simulation. 
Therefore, more statistical information, which is 
computed from the logged information, is available. 
As well, the disadvantage of profiling is that it slows 
simulation down significantly. The results and the 
profiling information are available for example 
through the eclipse plugins (figure 11, 12). 
Nevertheless, we must do profiling, so that we have 
optimal design of ASIPs on MPSoC and an 
application. 

From another point of a view, the simulation of 
one processor on another one has many 
requirements on the resources of a hosted system 
like the frequency of a hosted processor or available 
memory. So, if we want to simulate MPSoC on a 
one-processor system, the requirements of resources 
will be much greater. The simulation of more 
complicated MPSoC may be impossible only on a 
one-processor system. 

A one way out of these troubles is distributed 
simulation. In this case, we divide MPSoC into 
separate parts and each part we simulate using a 
different simulator on several hosted systems. It 
stands to reason that this solution brings some 
disadvantages too. At first, we have to have some 
synchronization protocol which controls accessing 
shared resources. One could say that this is done 
already by a third party library like for example 
OpenMPI [6]. But in this case, we have to have 
support on hosted systems which are unacceptable 
for us. The reasons why are several, e.g. one has to 
take care of having the correct libraries on the 
systems.   Furthermore, we have to have a 
communication protocol. Each simulator has to 
communicate with each other one by this 
communication protocol. Also, we have to choose a 
platform which simulators will use for 
communication, e.g. TCP/IP. 

Despite the mentioned disadvantages, we choose 
this concept because the concept of distributed 
simulation has parallel character and it demands 
fewer requirements on the resources of hosted 
systems. In the text below a methodology of 
designing ASIPs on MPSoC with ADL called ISAC 
is described. Then the concept of simulators 
follows. In the next part a synchronization algorithm 
is described, which is used to control accessing 
shared resources of processors and what 

methodology is used for distributing simulators to 
hosted systems. Further, the methodology of 
profiling ASIPs on MPSoC is described. 
 
2 THE ADL ISAC 
The language ISAC is architecture description 
language which arose out of the language LISA [4]. 
ISAC was developed at the Faculty of Information 
Technology at the Brno University of Technology 
and it is used in the Lissom project. It improves the 
language LISA, support for hardware description 
language (HDL) generation is added [3], and 
furthermore it brings some advantages in the 
structure of the language itself. It is still under minor 
development. Architecture of a processor or a 
multiprocessor system on a chip is described by 
basic language constructions. These constructions 
can be divided into two sections. 

Firstly, there is a section for describing structural 
components, so-called resources. As a resource we 
count, for example memory, caches and so on. 
Secondly, there is a part for describing the behavior 
of a processor, its instruction set and timing model. 
All of these are described by two basic 
constructions, a construction operation and a 
construction group. 

In next two subsections, we will focus on such 
constructions, which are important for simulation 
for the reasons get to be disclosed. Additional 
information about the language ISAC can be found 
in [1]. 

 
 

2.1 Resources 
As was mentioned, in resources a designer describes 
the resources of a processor. This section is 
proposed by the keyword RESOURCES. By 
resources is meant the basic parts of a processor, 
like registers (keyword REGISTER), logic circuits, 
a memory component or a pipeline, etc. Memory 
components could be ideal memory (keyword 
MEMORY), real memory or a cache. Some of these 
resources are mandatory. Every processor must have 
a program counter, which is a special type of the 
register (proposed by the keyword PC before the 
keyword REGISTER), memory of some sort and a 
memory mapping (keyword MEMORY_MAP). The 
need to have a program counter is obvious (the 
processor must know the location of instructions of 
a program). The program needs to be stored 
somewhere, so one must have a memory element. 
And the memory mapping is mandatory because a 
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processor must know, which address area belongs to 
particular elements of memory even if the processor 
has only one element of memory. Each of these 
structural components has several properties. 
Among the most important properties is a bit width 
(keyword bit[<width>]), sizes of the memories 
(keyword SIZE(<size>)), the number of memory 
banks or, if the designer wants to design real 
memory elements, then he must define the latency, 
etc. All of these constructions could be shared in a 
MPSoC. 

The next example shows the resources part 
which consists of mandatory resources and four 
universal registers. 
 
RESOURCE { 
  // program counter, it has 8-bit with  
  PC REGISTER bit[8] pc;  
  universal registers, 8-bit width too // 
  REGISTER bit[8] ax, bx, cx, dx; 
  // special registers for decoding 
  REGISTER bit[8] f_data, f_pc; 
  // ideal memory, it has 255 8-bit blocks 
   and this memory is executable //
  MEMORY bit[8] prog { 
    SIZE(255); 
    FLAGS(X); 
    ... 
  }; 
  // same memory like above, but it is 
  // readable and writeable 
  MEMORY bit[8] data { 
    SIZE(255); 
    FLAGS(R, W); 
    ... 
  }; 
  // assignment of memory entities to 
  // address areas 
  MEMORY_MAP defaultmap { 
    RANGE(0, 254)->prog [(7..0)] 
    RANGE(255, 509}->data [(7..0)] 
  }; 
} 
 

Fig. 1: Example of resource sections 
 
 
2.2 Operations 
On the other hand, this section of operations is used 
for the design of an instruction model and a timing 
model of ASIPs on MPSoC. The instruction model 
describes how instructions look like in assembly and 
machine language. Also this model describes the 
behavior of instructions. The timing model 
describes the behavior of a system as a whole. Every 
operation represents an atomic action in the 
processor. When the designer wants a more 
complicated action which consists of more atomic 
actions, then he could make up a hierarchy. This 

hierarchy could be created by the basic 
constructions of the operation section. These 
constructions are an operation (keyword 
OPERATION) and a group (keyword GROUP). As 
well as in resources section, here also are some 
mandatory operations, like a reset or a master 
synchronization operation main etc. 

The construction group is used when a designer 
needs to aggregate operations and/or others groups 
with similar meaning. Also it is used for creating a 
hierarchy of operations and/or groups. Under the 
first case we can understand a group called 
“registers” which aggregates the operations “ax” 
and “bx”, whereas these two operations could be 
used for identification resources registers. Under the 
second case we can understand the creation of a 
group called “instr_set”. It could also include groups 
“mem” and “alu” whereas these two groups 
aggregate related operations within their respective 
sets. 

The construction operation is used for designing 
atomic entities. It could consist of several sections. 
In them a designer could describe how the operation 
looks like in assembly language and in machine 
language. For this purpose, the assembler (keyword 
ASSEMBLER) and the coding (keyword CODING) 
sections are used. Furthermore, when a designer 
needs to describe the behavior of the operation, then 
he used the behavior (keyword BEHAVIOR) or the 
expression (keyword EXPRESSION) sections. A 
reduced ANSI C language is used in these sections, 
so the behavior is described by a piece of code. 

The most important section in our point of a 
view is the behavior section. As was mentioned in 
the text above, this section describes the atomic 
action of the operation. When a designer designs a 
multiprocessor system on a chip and the operation 
of one processor needs to access a resource or 
resources of another processor, then this access must 
be in its behavior section. Accessing shared 
resources of another processor is denoted by the 
following construction. It consists of the name of a 
processor which owns the shared resource, a dot and 
the name of the shared resource. In such case, when 
the simulation is running at a high level of 
abstraction, the processor knows where the resource 
can by found. 

The next example shows a small hierarchy of 
operations and access to the shared resource “bx”. 
This resource is owned by the processor named 
“enc”. Note, that the next example show the 
instruction model. 
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OPERATION ax { 
  // description of assembly language 
  ASSEMBLER { “ax” };  
  // and of machine language 
  0b denotes binary number // 
  CODING { 0b00 }; 
  EXPRESSION { 0; }; 
} 
// 
OPERATION bx { 

operation has similar form like ax 

  ... 
} 
// 
GROUP register = ax, bx; 

aggregates similar operation 

OPERATION X { 
  ... 
  // operation X accesses enc’s bx resource 
  BEHAVIOR { ax=enc.bx*0.001; }; 
} 
OPERATION Y { 
  ... 
} 
GROUP instr_set = X, Y; 
 

Fig. 2: Example of operation sections 
 
When an operation is used for a timing model 
description, then another two sections are used, a 
coding root (keyword CODINGROOT) and an 
activation (keyword ACTIVATION) section. When 
the operation is used for timing model, we can call it 
the event. The coding root section denotes when and 
what will be decoded. It is possible, that in the 
system, there is more than one instruction decoder 
present. These instruction decoders can be 
dependant on what was decoded by previous 
decoders and they can be delayed.  The activation 
section denotes when and what will be done. In this 
section each activation can be conditional and 
delayed. The condition can be formed from 
constants and/or resource values and/or results from 
the expression section of an operation, etc. 

The next example shows how a timing model 
might look. We have operation main, which is done 
every clock cycle. This operation activates other 
operations etc. 
 
// load data from memory, we have to store 
// program counter too (it is needed 
// to debug the application) 
OPERATION fetch { 
  BEHAVIOR { f_data=prog[pc]; f_pc=pc;  }; 
} 
OPERATION decode { 
  CODINGROOT {  
    // we want to decode operation 
    // which belongs to instr_set 
    instr_set(f_data[f_pc]); 
  }; 

} 
OPERATION main { 
  // %x means delay of x clock cycle 
  ACTIVATION { fetch; %1 decode; }; 
} 

 
Fig. 3: Example of the timing model 

 
 
3 Simulator 
The ways a simulator can simulate ASIPs on 
MPSoC are divided into two basic approaches; 
instruction set simulation and cycle-accurate 
simulation.  

The first approach is based on the idea that the 
basic step of the simulation is the execution of one 
instruction. In this approach, only the instruction 
model is simulated. The instruction model is based 
on coding, behavior and expression sections only. 
We use some machine code as the simulator’s input. 
After the simulation, we can look at the output of 
simulation (more information about simulation 
output is in section 6). As one can expect, there is 
not much information about the behavior of real 
ASIPs on MPSoC present, but enough for fast 
development of an application that will run on them.  

The second approach to simulation is based on 
the clock cycle. In this case, the instruction and 
timing models are simulated together. The timing 
model is based on the activation and coding root 
sections. After the simulation, the designer will have 
detailed information about the behavior of ASIPs on 
MPSoC.  

The simulation of the instruction model can have 
two forms; interpreted form and compiled form. 

The interpreted form means that every time when 
an instruction is recognized, its behavior is executed 
independently. That is why this form is independent 
of the simulated application. 

The compiled form is created in two steps. In the 
first step, when and what instructions are executed, 
gets logged. Second, from this log, we create a 
compiled form of an instruction set simulation. This 
takes longer to create than the previous form and it 
is dependant on the simulated application, but the 
time of the simulation itself is shorter. 

The simulation of the timing model can have two 
forms too; dynamic planning form and static 
planning form. 

The dynamic planning form is based on the idea 
that there is an event scheduler in the system. The 
operations, or events if you will, from this scheduler 
are sequentially executed. Every time that an 
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operation activates another operation, the activated 
operation is inserted into the event scheduler. 

Unlike of the dynamic planning form, the static 
planning form is based on the idea, that whole 
planning is stored in only one state variable [13]. 
More precisely, the value in this state variable 
denotes what operations will be executed (in terms 
of the dynamic planning, what operations are in the 
event scheduler). This form needs to preprocess the 
timing model, from which values for the state 
variable are formed. Again the time of creation is 
longer, but the simulation itself is shorter. 

In the beginning, our simulator was inspired by a 
simulator that is used in [8] and that is created for 
ASIP. Later on, it was shown that their approach is 
insufficient, so we improved it and brought new 
ideas. The main goal is to have one formal model 
for the simulation and for the synthesis. One wants 
to be sure that what he simulates is what he will get 
in the hardware later. So, our approach is based on 
formal concepts and from these concepts C code for 
the simulator or VHDL code for the synthesis is 
generated. As a basic simulator, the cycle-accurate 
interpreted static planed simulator was chosen for its 
performances. There are two formal concepts used. 
One, called “machine code finite automaton”. The 
other called “event finite automaton”. 

The machine code finite automaton is a formal 
model for instruction model simulation, so it accepts 
machine code as input and eventually it executes 
some behavior. An example of this automaton is in 
the figure 4. On the edges are couples. On the first 
position of the couple, there is a terminal symbol 
from the input alphabet, i.e. symbols which are 
accepted and which belong to the machine code 
language. On the second place, there can be some 
behavior.  
 

 
 

Fig. 4: Example of the machine code finite 
automaton 

This behavior is executed when automaton goes 
through the edge, i.e. it executes the behavior, 
expression section. 

So, if we go through the automaton edges and if 
we execute some behavior, it means that we 
recognized some instruction from the instruction set 
and we executed its behavior. More information 
about how the machine code finite automaton is 
created can be found at [9]. 

The event finite automaton is formal model for 
timing model simulation, so it accepts events from 
the systems and eventually executes its behavior. An 
example of this automaton is in the figure 5. This 
time triples are on the edges. On the first position of 
the triple, there is an event, i.e. operation from 
activation, coding root section. On the second 
position, there can be a condition, i.e. if activation 
of an operation is conditional. On the third position, 
there can be some behavior. The value of the nodes 
represents the value that is stored in the state 
variable of the system. 
 

 
 

Fig. 5: Example of the event finite automaton 
 
Therefore, if an event occurs in the architecture, 
then automaton goes through particular edge and 
changes the value of the state variable. Further, this 
passage can execute some behavior, i.e. if we have a 
fetch event, it can load instructions from memory to 
other resource and can activate decoding events, etc. 
More information about how the event finite 
automaton is created can be found at [12]. 

The described formal models are created for 
every ASIP that is placed on MPSoC. These models 
can be connected to each other by the behavior. The 
instructions can access shared resources; so one has 
to determine the optimal approach for 
synchronization of these accesses. This will be 
described in next section. 

main, ε,  fetch, ε, 
pc++; 

n0 n1 n2 
f_data=prog[pc]; 

n4 n5 n3 

main, ε,  fetch, ε, 
pc++; f_data=prog[pc];

f_pc=pc; 

halt, decode, ε, 
decode_instr_set(); decoded_halt==1, 

halt(); 

n0 

n10, ε 

n2 n3 

n4        1, 
ax=enc.bx* 

                             0, 
ax=enc.bx* 

   0.0001;    0.0001; 

0, ε 

1, ε 
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At the end of this section, there is a comparison 
of our solution and solution which is described in 
[8]. Both solutions are based on the statically 
planned form simulation, but our solution has 
several advantages. Firstly, our solution is based on 
formal models, so the equivalency between the 
simulators and the final implementation in hardware 
is guaranteed (VHDL code is generated in similar 
way as the C code for simulator). Secondly, we do 
not create compiled form of the simulator, which 
allows us to change the application that we want to 
simulate. This is very good in the case when the 
designer develops and debugs new applications. 

If we want to have the fastest simulation, then we 
can create an extension of the current concept. The 
compiled form of our simulator will be created. This 
simulator is as fast as the simulator in [8]. 
 
 
4 Synchronization protocol 
A synchronization protocol is used for keeping the 
local copies of resources in processors in a coherent 
state. This means that every time a processor wants 
to obtain the value of some shared resource, the 
synchronization protocol must guarantee that the 
processor has a valid value in the local copy of a 
resource. If the copy is not valid, then the 
synchronization protocol must get a valid value. 
Furthermore, if a processor wants to write a new 
value to a resource, then the synchronization 
protocol must take care of distribution of this new 
value into the processors which have invalid values 
in their local copies of this resource now, or mark 
the copies as invalid. 

There are several ways how one member lets 
another member know that it needs valid data. It 
could be signals or by sending messages (in fact, a 
signal is the simplest form of a message, it carriers 
only information that something happed, nothing 
more). Since the second way is more powerful and 
is more universal, we choose it. 

In the subsections below are discussions about 
the possibilities of synchronization protocols based 
on messages, their advantages and disadvantages 
and their usability for our purpose. Also, in the text 
below by the term processor we mean a simulator of 
a processor. 
 
 
4.1 Arbiter vs. broadcast 
In general, there are two basic approaches how to 
communicate among all members, with or without 

an arbiter. At first we describe communication with 
an arbiter. 

The arbiter is not like any other members in a 
communication group. Its only job is receiving 
requests and sending replies. One could say that it 
works like a proxy. Furthermore for our purposes 
we would add a cache. This cache would keep 
information about the states of copies of resources 
in each processor. Also processors would have their 
own local copies of shared resources. Thus, if an 
arbiter knows valid value, then it will send it 
without bothering a processor which accessed a 
resource for the last time. When some processors 
want to write a new value into shared resource, it 
will send a writing message to an arbiter. The arbiter 
receives its request and in the cache it is noted that 
this processors has valid data. But this value is not 
stored in the cache now. Then it sends to other 
simulators invalidating messages that their local 
copy of the resource is invalid. So in cache, it is 
noted which processor accessed which resource the 
last. If another processor needs to read a value from 
shared resource, then it will send a reading message. 
The arbiter looks into the cache. If it finds, in the 
cache a valid value, then it sends this valid value to 
the processor. Also it changes the state of copies of 
the resource in the other processors according to a 
protocol. If it does not find a valid value in the 
cache, then it sends a getting message to the 
processor which accessed the resource the last. After 
receiving a reply it rewrites the invalid value in the 
cache with this value and the same value it sends to 
the processor which needed this value. And it also 
changes the state of copies according the protocol. 
The advantage of this approach is that members do 
not communicate among each others, so it reduces a 
number of messages. On the other hand, an arbiter is 
a weak point because if it breaks then nothing will 
work. 

Another approach is communication by 
broadcast messages. This means that if some 
member wants to get something, then it will send a 
message to all the others. If this message demands a 
reply, then particular member will send a reply. This 
second approach eliminates a weak point, an arbiter, 
but the number of sent messages will be bigger. But 
after all, this approach has more stability and 
robustness, so we choose this one and the following 
two subsections discuses two synchronization 
protocols based on the broadcast approach. 
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4.2 Two-state synchronization protocol 
The two-state synchronization protocol is the 
simplest variant of synchronization. A local copy of 
the resource in a processor could be only in two 
states. “V” means a copy has a valid value and “I” 
means that the value in a copy is invalid. 

The process of synchronization has the following 
rules. When a processor needs to write a new value 
into some resource then it will send a writing 
message to all the other simulators (it is a 
broadcast), which use the resource too. After 
simulators receive this kind of a message, they will 
change the state of the local copy of the resource to 
the state “I”. On the other hand, when a processor 
needs to read a value from a resource, it could lead 
to two cases. Firstly, if the local copy of a value of a 
resource is in the state “V”, then the processor will 
read this value and continue in computations. 
Secondly, if local copy is in state “I”, then the 
processor will send a reading message. Then it 
receives the valid value from certain processor, 
which has the valid value of the resource. After that 
it rewrites a local value with the received one, 
change state of a copy to “V”, and continues in its 
computations. 

A disadvantage of this synchronization protocol 
is, that if a processor writes to resource which it has 
in exclusive ownership, then it will send writing 
messages to the other processors again even it is 
useless. The exclusive ownership means, that the 
processor wrote a new value to the resource some 
time ago, and no other processor wanted to write to 
this resource till now, i.e. all other processors have 
the state of the copy set to “I”. 

 
Fig. 6: State diagram for the two-state 

synchronization protocol 

Figure 6 shows a state diagram of a copy of a 
resource r in a processor Pi. Pi, Pj and Pk are 
different processors. The below text at transitions 
have the following meanings: processor / action / 
broadcast (the index b in subscripts) or message to a 
particular processor (the other indexes in 
subscripts). 
 
 
4.3 Three-state synchronization protocol 
In the three-state synchronization protocol we want 
to get rid of useless broadcast messages when a 
processor has a resource in an exclusive ownership 
and it writes to this resource again. The solution is 
adding a new state which signalizes that a resource 
is in exclusive ownership. 

Now, instead of the two states “V” and “I” we 
have three states. A state “M”, modified, which 
means that the local copy of a resource is in an 
exclusive ownership. A state “S”, shared, which 
means that the value of a copy is valid, but a 
processor is not an exclusive owner. And we have a 
state “I”, invalid, which has same meaning as in the 
two-state protocol. 

Originally this protocol has been designed for a 
synchronization of the cache in multiprocessor 
systems with shared memory and the 
synchronization is also affected by the controller of 
the bus etc. It is also called the MSI protocol 
(named after initial letters of names of states).  For 
our purpose we modify the MSI protocol for a cache 
to the MSI protocol for a resource. 

The process of synchronization has the following 
rules. Writing a new value into some resource it is 
similar to writing it in the two-state protocol. A 
processor sends a writing message to all the other 
processors which use this resource. Then a local 
copy of the resource in the processor is marked as 
“M”, so the processor is the exclusive owner. The 
other processors mark their copies as “I”, so they 
will know that they do not have a valid value of the 
resource. When a processor wants to gets the value 
of a resource it could lead to three cases. The first 
two cases are that the processor wants to read the 
resource and its state is set “M” or “S”. It means that 
the processor is either the last one, which wrote a 
value to the resource or some another processor has 
a valid value too. In both cases the processor which 
reads does not send any messages. The third case is 
that the value of a local copy of a resource is 
marked as “I”. In that case the processor must send 
a reading message. A processor which was the last 

Pi / R(r) / - 
Pi / W(r) / W(r) 

Pi / W(r) / Wb(r) 
Pi / R(r) / Rj(r) 

Pj / W(r) / Wb(r) 

Pj / R(r) / {-, Pk} 
Pj / W(r) / W(r) 

V 

I 

Pj / R(r) / {-, Pi, Pk} 
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one which changed the resource answers the valid 
value to the processor which wants to read the 
resource. Both of them then set the state of local 
copies of the resource to “S”. 

The tree-state protocol removes the 
disadvantages of the two-state protocol, therefore it 
is used in the MPSoC simulation in the Lissom 
project. 

Figure 7 shows a state diagram of a copy of the 
resource r in processor Pi. Pi, Pj and Pk are different 
processors. The below text at transitions have 
following meanings: processor / action / broadcast 
(the index b in subscripts) or message to particular 
processor (the other indexes in subscripts). 

 
 

 
Fig. 7: State diagram for the three-state 

synchronization protocol 
 
 
4.4   Experimental results 
For testing both synchronization protocols, several 
applications were created. In this section, we go 
briefly through two applications and we compare 
results from the two-state and the three-state 
synchronization protocol. In both applications, the 
processors are the same. Only the programs, which 
run on these processors, are different. In the next 
two paragraphs, the applications and the results 
from simulations are described. 

The first application is a simple counter from 
zero to ten. On all processors, the same application 
is executed. Further, only one register, of one 

processor, is shared among the processors. The 
application has the following behavior. In random 
times, each processor reads the value of the shared 
register.  If the read value is greater then or equal to 
ten, then the processor will halt. Otherwise, it will 
increase the read value by one and will write this 
new value back to the shared register. The whole 
simulation will end when all processors halt. Note 
that the mutual exclusion of accesses to the shared 
resource is done in the processor architecture itself, 
not in the synchronization protocols. In the figure 8, 
the average values of sent messages of several 
simulations are shown. When the two-state 
synchronization protocol is used, the count of the 
writing messages is at the maximum, because apart 
on which processor writes to the shared resource, 
the broadcast messages are sent every time. On the 
other hand, when the three-state synchronization 
protocol is used, the count of writing message can 
be lesser. It depends on the randomness, i.e. one 
processor writes new value more times in sequence. 

Pi / W(r) / Wb(r) 

Pi / W(r) / Wb(r) Pi / R(r) / Rj(r) 
 

 

Pj / W(r) / - Pi / W(r) / - 
Pj / R(r) / {-, Rk(r)} 

 
Fig. 8: Graph of the count of messages for counting 

algorithm 
 
As one can see in this particular application, the 
advantage of the three-state synchronization 
protocol is not very significant. As it was 
mentioned, this is caused by the application 
character, i.e. every processor wants to read and 
write to the same shared resource, and by random 
accesses, i.e. the case when processors alternate in 
the writing is much more probable than the case 
when the most of the writing is done by single 
processor. 

The second application is a simple distributed 
sorting algorithm. On all processors, except one – 
the master processor, the same application is 

Pj / R(r) / Ri(r) Pj / W(r) / Wb(r) 

Pj / W(r) / Wb(r) 

Pi / R(r) / - 

Pi / R(r) / - 

Pj / R(r) / - 

S M I 
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executed. Only one memory of master processor is 
shared among processors. The application has the 
following behavior. Every processor, except the 
master processor, sorts the values in a dedicated part 
of the shared memory. The master processor at the 
beginning writes random values to its shared 
memory and at the end, it merges the sorted parts 
and it saves the sorted values in a different non-
shared memory. For the sorting algorithm, a simple 
bubble sort is used. In the figure 9, values of sent 
messages of the simulation are shown. When the 
two-state synchronization protocol is used, the count 
of the writing messages is again at the maximum. 
The reason is the same as in the previous 
application. When the three-state synchronization 
protocol is used the count of sent messages is 
notably lesser. This is because every sorting 
simulator has its own dedicated part of shared 
memory. That means that when a particular 
processor is sorting, then it reads and writes to its 
own part of shared memory and it does not have to 
send any message. 
 

 
 

Fig. 9: Graph of the count of messages for sorting 
algorithm 

 
Now, the advantage of the three-state 
synchronization protocol is clear. It always depends 
on the application’s character, just how much 
advantage we will gain, but nevertheless, an 
advantage is there in 99.9% of cases. 
 
 
5   Communication protocol  
A communication protocol is a collection of rules 
and everyone who wants to communicate in some 
communication group must follow the rules of this 
group. It prescribes a body and a form for messages, 

which has to be done if a message is lost, which part 
can communicate with the others etc. 

In the Lissom project, a XML fragment is chose 
as the body and the form of the message. Every 
message carries a type and it could carry some data. 
Lissom uses the three-layer architecture, i.e. we 
have presentation, middle and simulation layers. 
Each of these layers can run on other hosted 
systems. In the figure 10 it is shown who with who 
can communicate. In the bottom is layer of 
simulators. In this layer simulators can 
communicate among others simulators (broadcast 
character) and can communicate with the middle 
layer. The middle layer takes care of accepting 
requests from presentation layer and sending back 
data which will be displayed to user. Also it takes 
care of controlling and getting data from simulators. 
Furthermore it takes care of creating simulators and 
other instruction set tools like assembler or 
disassembler. When and what is created or run 
determines the presentation layer, more precisely a 
user who uses the presentation layer. That means 
that when the user writes a source code in particular 
application specific instruction-set, then that user 
will activate compilation in the presentation layer 
(by pushing a button or writing a command in 
command line). The presentation layer accepts this 
user requirement and creates a message for the 
middle layer. The message will contain a type, 
which tells us that we want to compile something, 
and data: the source code. The middle layer accepts 
this message and run an assembler and as a 
parameter gives the source code. After compilation, 
the middle layer lets us know about success or 
failure, so it creates a message with particular type 
and send it back to the presentation layer. This 
approach, which was described a short while ago, is 
commonly used for all requirements and replies in 
the three-layer architecture. The presentation layer 
has several forms. It could be simple web interface, 
a command line or it could be plugins to the IDE 
Eclipse (figure 11, 12). All these user interfaces 
communicate with the middle layer with the same 
protocol. This concept has implicit multiuser 
character. We could have one computer for the 
middle layer, some computers for simulation, and 
one or more computers for the designers. On these 
computers, different kinds of user interfaces can 
run. Users are identified by theirs names so 
everyone has their own space to creating projects.  

If a user wants to run a simulation, then he has to 
set some environment variables in the presentation 
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layer in a user interface. These variables denote 
which computers are used for simulation, the 
program which will be simulated etc. Because 
simulators are created on a computer which is used 
for the run of the middle layer, it is obvious that on 
computers the same operation system must be used 
for simulation. When the simulation is started, the 
simulators are copied to computers by the middle 
layer according an environment variable. Coping is 
done automatically by the middle layer using the 
protocol for secure copy (the application scp), which 
was chosen because of multiplatform independence 
and security features. So, every simulator can run on 
another computer and this, as was mentioned in the 
introduction, brings some advantages. After the 
simulation, the middle layer asks every simulator to 
send statistic and resource values and this data is 
interpreted by some kind of user interface in the 
presentation layer. More information about statistics 
can be found in the section 6. 

So, in one extreme case is that we have three 
computers for the layers of the communication 
protocol and n systems for n simulators. The other 
extreme case is that everything runs on only one 
computer. 

 
 

Fig. 10: Three layer model 
 
 
6   Simulation results and profiling 
After the simulation or during the simulation, the 
designer needs to get values of resources for 
validation and verification, since he needs to check 
that the application does the correct computation. In 
some cases, he also needs profiling information. 
This kind of information is available only after the 
simulation and can be basically divided into two 
types. With the first type, we understand 

information that is relevant to the processor itself. 
With the second type, we understand information 
that is relevant to the simulated application. That 
means that the designer needs information about the 
utilization of the instruction set, how often particular 
instructions access certain resources, and so on. He 
also needs information about source code coverage, 
which parts of the source code are bottleneck points, 
which parts of the source code are the most difficult 
in terms of time, etc. All this information helps to 
optimize either the processor or the application 
which is run on the processor. So, after the profiling, 
we can find that the utilization of some elements in 
the design are insufficient and we can remove them 
from the design without any negative consequence. 
Or, if we found the bottleneck point in the design, 
then we can rework this point and remove the 
insufficiency. 

In the Lissom project, every resource has 
counters for read, write and executable access. 
Resources, like memory, have counters for every 
cell. The only exception is cache. The most 
important information about cache is how many 
times we hit or miss the value of the resource in the 
cache. That is why, for cache resources, only hit and 
miss statistics are logged. 

Every time when an operation uses a resource, it 
is logged. In standard simulation, there is no relation 
between what operation accesses what resource. 
That means that only counters are increased and 
nothing more is logged. Thus the relations are 
available during profiling only. 

Presentation Layer 

Middle Layer 

If we have a MPSoC, then the simulators can run 
independently on one or more hosts. They collect 
theirs own values of counters and resource values 
during the simulation independently. After 
simulation, they send their results to the middle 
layer. This layer puts together all results and resends 
this collection to the presentation layer. This layer 
manages to display them in proper way. The same 
situation occurs if we do the profiling. Every 
simulator sends profiling information to the middle 
layer. The middle layer collects them then resends 
the collection to the presentation layer. In this case, 
the results of the simulation and the profiling 
information are displayed independently for every 
ASIP, i.e. in the IDE Eclipse we would have several 
tabs. 

Simulator 

Simulator Simulator

Simulation Layer 

The example of results of the simulation is 
shown in the figure 11. One can see a part of a 
memory called “program” and a few registers and 
their values. The results from the simulation are 
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available during the simulation too, mostly used 
when the designer debugs the application. When an 
execution is stopped at a breakpoint, the designer 
can see actual values of resources and their 
statistics, which is necessary for usable debugging. 

 

 
 

Fig. 11: Screenshot of simulation results 
 

The profiler is based on the upgrade of the behavior 
on edges in the machine code finite automaton, i.e. a 
special behavior is inserted after or before basic 
behavior. The special behavior takes care about a 
watching system activity and takes care of logging. 
More information about the profiler can be found in 
[14]. 

The profiling information is formed from 
statistical information, e.g. the instruction set 
coverage or top five instructions by memory 
accesses, etc. Furthermore, the mentioned relation 
between instruction and resource accesses is 
available. That means that we know how many 
times each instruction accesses a particular resource.  
 

 
 

Fig. 12: Screenshot of the profiling 

If we have more ASIPs on MPSoC, then the 
situation is the same like in the simulation without 
the profiling, i.e. the profiling information is 
available independently for each ASIP. The 
profiling information, unlike of results of the 
simulation, is available on request and after the 
simulation only. This is needed because retrieving 
this information during the simulation makes the 
simulation much slower. 

The example of the profiling information is show 
in the figure 12. As one can see, there is a graph of 
instruction set coverage and part of the top 5 by the 
count of the execution statistic. 
 
7   Conclusion 
In this paper, a way how to design the new ASIPs 
which can be used on a multiprocessor system on a 
chip was proposed. The structure of one simulator, 
which represents one ASIP on MPSoC, was 
described. Further a way how to simulate and 
synchronize a shared resource among ASIPs on this 
MPSoC was proposed. The architecture description 
language ISAC is used for description of ASIPs on 
MPSoC architecture. This language has features that 
identify and access shared resources. The 
synchronization protocol is based on modified MSI 
protocol which is used in multiprocessors systems 
with shared memory. Because of that, this protocol 
is not dependant on any third-party libraries which 
would care of accesses to shared resources. It allows 
us to have very simple distribution of simulators to 
hosted systems in a cluster of computers which are 
used for simulation without many requirements on 
resources of these systems. The communication 
protocol is based on three layer architecture which 
allows us to run these layers on independent 
computers. Both the synchronization and the 
communication protocols use sending messages as 
form of communication act. The body of a message 
is constructed by the XML language. Further, the 
profiling and particular statistical information, 
which can be used for the optimization, were 
described. 

All of these create a powerful, robust and 
flexible environment for the designer to develop a 
new application specific instruction-set processors 
and multiprocessor systems on a chip which uses 
these processors. 
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