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Abstract: - Efficient leak detection techniques need to be characterized both by rapidity and robustness. This 
paper studies a simple detection method based on the second order autoregressive (AR) parameters of the 
pipeline signals- a trade-off between the two required characteristics. The theoretical geometrical positions 
defined by the AR coefficients are developed for some particular cases of interest. The resulted model proves 
to be in concordance with the experimental data. The algorithm is next tested under non-stationary burst-type 
conditions induced both soft and hard, indicating a good stability in comparison with the basic most 
inexpensive computational detection method. The area under the Receiver Operating Characteristics (ROC) 
curves indicates also a better performance of the proposed detector. 
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1   Introduction 
Fluid transportation through pipeline systems has 
been since ancient times a preoccupation of great 
practical importance. However, the major problem 
concerning these systems is that a significant 
amount of the transported fluid is lost if leakage 
occurs in the distribution pipes. On the other hand, 
besides the fact that a great quantity of material is 
wasted, another problem that rises is the 
environment erosion and pollution. Therefore, a 
great attention must be paid to a careful pipeline 
monitoring, in order to be able to diagnose the 
pipeline’s state at every time moment, if possible. 
Consequently, two major problems must be solved 
here: firstly, the detection as soon as possible of a 
leak occurrence and secondly, in case of a leak has 
been detected, the accurate position of the leak on 
the pipe.  This paper addresses to the first problem 
of leak detection. 
     In practice, many methods for solving this 
problem have been developed. Among them we 
recognize: methods that use the measurements of 
pressure and flow investigating the material balance 
between input and output; detection by patrolling 
and inspecting along the pipeline; remote acoustic 
methods which detect leaks through processing the 
information contained in the random signals 
captured from the sensing devices placed on the 
pipeline [2],[3]. Other methods involve different 
techniques such as tracer gas, infrared imaging or 
ground penetrating radar but their use is limited. 

Until now, no universal effective method for 
detecting and locating leaks was found. Lately, 
combined techniques of flow measurement and 
acoustic methods are used in practice. An important 
step in improving the effectiveness of the leak 
detection systems would be to find algorithms that 
speed up the detection process and permit a remote 
detection from the pipeline inlet.  
     A quick detection method frequently used is 
based on monitoring the increase of the acquired 
signals’ power from the background noise [3]. 
However, in practice, the pipeline signals prove to 
have a non-stationary behavior with respect to both 
their mean and variance, due to various internal and 
external conditions such as road traffic, sudden 
pressure and flow velocity variations (turbulences), 
etc. The non-stationary behavior can interfere with 
the de decision criterion for leak detection.  
     Another approach is based on performing the 
spectral analysis of the acquired signals and 
deciding if any major changes occurred in their 
spectral components. On this principle, for metal 
water pipelines, leak detection professionals can 
discern if there is a leak on the pipe or not, by using 
a simple listening device (e.g. ground microphone, 
etc.) [2]. Fig.1 shows two typical power spectra 
corresponding respectively to both situations when a 
leak isn’t and is present, at the same locations on an 
experimental pipeline installation. It can be observed 
that in the presence of a leak the corresponding 
signal has higher spectral components.  
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Fig.1 Typical power spectral densities for pipeline 

signals 
     Observing also that both signals can be modeled 
as a couple of low-pass harmonics plus noise, a 
simple method for detection is developed based on 
modeling the received signals using only the second 
order AR parameters, a1 and a2 [5],[8] . The distance 
measure between the obtained points in the plane 
defined by the a1, and a2 coordinates is used as a test 
statistic for detection. This is a robust technique, 
especially for non-stationary situations. Also, this 
method is simple, quick, need only one non-
intrusive sensing device and is passive (i.e. no 
external test signals are used).  
     Fig.2 illustrates the algorithm’s principle. Briefly, 
the received signals are divided in short segments, 
which can be viewed as piecewise stationary; for 
each segment the second order AR coefficients are 
computed [8]; the “gravity” center of each set of 
data is estimated, using their median values; finally, 
the distance measure between the data “gravity” 
centers is evaluated: if the value of this random 
variable exceeds a certain threshold, then the 
algorithm decides that there is a leak in the pipeline 
system; otherwise, not.   
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Fig.2 The estimated AR parameter sets for two 

typical pipeline signals. 
 

2   Problem Formulation 
As previously stated, the major question here is 
included in the binary detection problem [4],[5], 
where the receiver processes the acquired random 
signals in order to decide if  any leak is present 
according to the general detection model described 
by [4]: 
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where r(t) is a sample function of the received 
random signal; s0(t)  denotes the signal produced by 
the main stream flowing through the pipeline; s1(t) 
denotes the signal produced by the leak and the main 
stream; n(t) is the background disturbing noise; t 
denotes the time variable which takes values 
between the initial and final moment, Ti and Tf, 
respectively; finally H0 and H1 denote the  null and 
the alternative hypothesis, respectively.  The null 
hypothesis assumes that the source leak signal is not 
present, while the alternative hypothesis assumes the 
opposite. In this problem, the received signals may 
be characterized mainly by a non-stationary 
behavior. 
     In attempting to solve this problem, a case study 
is developed in order to find a possible connection 
between the received signal’s spectral components 
and their second order AR parameters, a1 and a2.  
Therefore, the following ideal cases for the received 
signals are presented in Table 1, while the 
corresponding autocorrelations functions are 
described by equations (2) to (6). 
 
 Table 1 

No. Considered 
cases 

Received 
signal 

Auto 
-correlation

function 
1. one sinusoid ftA π2sin  Eq.(2) 

2.
one sinusoid 

in 
white noise 

( )twftA +π2sin  Eq.(3) 

3. two sinusoids
tfA
tfA

22

11

2sin
2sin
π
π +

 Eq.(4) 

4.
two sinusoids

in 
white noise ( )twtfA

tfA
+
+

22

11

2sin
2sin
π
π

 Eq.(5) 

5.
two sinusoids

in 
colored noise ( )twtfA

tfA
+
+

22

11

2sin
2sin
π
π

 Eq.(6) 
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In the above relationships A denote amplitudes, f 
denote frequencies, τ stands for the time lag 
argument; δ is the unit impulse; σw

2 is the white 
noise’s power. Finally, α is a constant factor 
defining the spectrum of the colored noise according 
to: 

( ) .
4

4
222

2

f
fS w

w πα
ασ
+

=    (7) 

 
     Other answers that need to be found regard the 
degree by which the experimental data match the 
theoretical results; finding a variable that can be 
used as a test statistic and it’s probability density 
functions for both situations; selecting a hypothesis 
test procedure; computing the ROC curves for 
describing  the detector’s performance. 
 
 
3   Problem Solution 
The second order AR parameters a1 and a2 are 
obtained by solving the normal equations [5], [8] 
described, for this particular case, as: 
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Here, R denotes the received signal’s autocorrelation 
function computed at the time lags corresponding to 
the number of samples indicated in the square 
brackets. Hence, for each case described in Table 1 
the autocorrelation samples R[0], R[1]=R[-1] and 
R[2] are found from equations (2)-(6), prior to 
calculating the AR coefficients according to: 
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3.1 The theoretical geometrical positions  
For each case presented in Table 1, in the plane 
specified by the a1 and a2 coordinates, the 
theoretical points obtained define specific 
geometrical positions with varying frequencies and 
amplitudes. Next, these geometrical positions are 
derived with the purpose of comparing them with 
the experimental data. 
3.1.1   One sinusoid 
In this case, the relationships (2) and (9) produce the 
following simple solution: 
  

,12;2cos21 =−= a
F

fa
s

π
  (10) 

 
where Fs is the sampling frequency used in the 
signal acquisition. The geometrical positions of 
these points vary only with the signal’s frequency as 
in Fig.3. 
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Fig.3 The theoretical AR coefficients for case 1 

 
3.1.2   One sinusoid in white noise 
Following the steps mentioned above, the AR 
coefficients become: 
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By eliminating the cos y factor between a1 and a2 
yields: 
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 The AR coefficients for different m values and 
frequencies varying from 0 to Fs/2 are depicted in 
Fig.4 and Fig.5.  

0 2000 4000 6000 8000 10000 12000 14000
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

f[Hz]

a k

The AR Theoretical Coefficients vs.Frequency

-a1theoretical 
-.a2theoretical

 
Fig.4 Variation of the a1 and a2 parameters with 
frequency for different harmonic-to-noise ratios. 
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Fig.5 Corresponding geometrical positions for the 

second case. 
 

In can be seen that the specified M, N and P  points 
in Fig.5, corresponding respectively to zero, a 
quarter and a half of the sampling rate, have the 
following particular coordinates in the (a1a2) plane: 
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in rapport to a1=0. When the m parameter 
approaches unity (i.e. the harmonic component is 
much stronger than the white noise component), this 
case tends be reduced to case one. Conversely, when 
m tends to infinity (i.e. the white noise component 
predominates), the geometrical position is 
concentrated towards the axes origin. 

3.1.3   Two sinusoids 
The second order AR coefficients in this case can be 
written as: 
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The corresponding curves are shown in Fig.6 to 
Fig.9. 
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Fig.6 Family curves for AR coefficients versus f2 

when f1 is fixed ρ varies. 
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Fig.7 Geometrical positions for the third case (f1-

fixed,  f2 ,ρ  varies) 
 
Also it can be observed that this case reduces to the 
first case if one of the harmonics is significantly 
grater than the other one.  
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Fig.8 Family curves for AR coefficients versus f2 

when ρ is fixed while f1 varies. 
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Fig.9 Geometrical curves for the third case (ρ is 

fixed,  f1, f2   varies) 
 
3.1.4   Two sinusoids in white noise 
In a similar fashion, in this case, the corresponding 
relations for the a1 and a2 parameters are described 
by the next equations while their variations are 
illustrated in Fig.10 to Fig.13. 
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where the variables y, ρ and ν have the same 
definitions as in the previous section, and η2 is 
defined as: 

2
2

2
2 2

A
wσ

η =    (15) 

This time also, the previous case can be viewed as a 
particular case of the current one, by substituting 
η2=0 in equations (14).   
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Fig.10 AR coefficients versus f2 when f1 is fixed 
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Fig.11 Geometrical positions for f1 fixed 
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Fig.12 AR coefficients for ρ fixed 
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Fig.13 Geometrical positions for ρ fixed 

 
3.1.5   Two sinusoids in colored noise 
Finally, the two AR parameters for the fifth case 
become: 
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In analogy with the previous sub-sections, Fig.14 to 
Fig.17 illustrate the a1 and a2 theoretical variations 
corresponding to this case. The obtained curves look 
somehow similar with the ones from the previous 
cases depending on the amount of the harmonics or 
noise allowed to be contained in the signal.  
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Fig.14 Case five: AR coefficients variations with 2nd 

harmonic frequency when f1 is fixed. 
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Fig.15 Geometrical curves for f1, A1, α and σw

2 fixed 
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Fig.16 AR coefficients families of curves when ρ is 

fixed, while f1 is taken as parameter 
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Fig.17  Geometrical curves (from left to right) when 

f1 is taken as a parameter and ρ is fixed. 
 
     The parameter α from (16), that reflects the noise 
“coloring” degree, produces the asymmetrical aspect 
of the curves in Fig.17 (i.e. as α decreases, the 
inclination of the graphs increases to the left). 
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3.2 Algorithm behavior in burst-type 
environments. Computer simulation 
results.  

One of the most common problems encountered in 
leak signals is the non-stationary burst-type 
component that overlaps over the basic signal.   This 
paragraph studies the proposed algorithm’s behavior 
using computer generated burst perturbations of 
exponential type with a random Poisson occurrence 
[6],[9]. Both amplitude and concentration of the 
induced bursts were varied in order to establish the 
algorithm’s robustness.   Fig.18 presents a typical 
non-stationary signal obtained by computer 
simulation, similar to signals encountered in 
practice. 

 
Fig.18 A typical test signal with burst component 

 
In order to be able to evaluate the effect of the 

burst-type component on the algorithm’s 
performance the burst signal-to-noise ratio factor 
(BSNR) is defined as in: 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⋅=

P
P

b

sdBBSNR lg10][    (17) 

where Ps and Pb denote the power of the primary 
source signal and the burst component, respectively. 
Fig.19 displays the positions of the second order AR 
coefficients for a computer generated stationary 
source signal (blue marks) and for the signal in 
Fig.18, (green marks). It can be observed that the 
distance measure L between the data gravity centers 
(red marks) is practically not affected by the 
existence of the burst component, due to the 
segmentation procedure performed by the algorithm. 
Although the burst component produces a scattering 
effect on the AR coefficients’ locations, their 
median values remain stable to the environment’s 
abrupt variations. On the other hand, the total 
power, P of the observed signal increases if burst 
events occur. This can affect the decision results in 

detection systems based on monitoring the power 
increase above a detection threshold [2],[3]. 
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Fig.19 AR coefficients’ locations in computer burst 

simulated environments 
 

Fig. 20 and fig. 21 present comparative 
simulation results corresponding to the proposed 
detection algorithm and to the basic algorithm of 
monitoring the power increase of the received 
signal, respectively. In the first case, presented by 
fig. 20, the burst concentration was kept constant 
and the burst amplitude varied, while in the second 
case (fig.21) the burst concentration was varied and 
the burst amplitude was kept constant. The random 
variables L and P were obtained by choosing the 
maximum values among a large number of trials and 
are represented versus the burst signal-to-noise ratio 
factor. The maximum limits of these variables in the 
no-burst case are also shown (blue dotted lines). It 
can be observed that, for the considered domains of 
burst amplitudes and concentrations, the L variable 
does not exceed the maximum limit value 
corresponding to the no-burst case, while the 
random variable P always exceeds its maximum 
limit.  
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L and P. Varying burst amplitude case.  
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