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Abstract: - Efficient leak detection techniques need to be characterized both by rapidity and robustness. This
paper studies a simple detection method based on the second order autoregressive (AR) parameters of the
pipeline signals- a trade-off between the two required characteristics. The theoretical geometrical positions
defined by the AR coefficients are developed for some particular cases of interest. The resulted model proves
to be in concordance with the experimental data. The algorithm is next tested under non-stationary burst-type
conditions induced both soft and hard, indicating a good stability in comparison with the basic most
inexpensive computational detection method. The area under the Receiver Operating Characteristics (ROC)
curves indicates also a better performance of the proposed detector.
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1 Introduction

Fluid transportation through pipeline systems has
been since ancient times a preoccupation of great
practical importance. However, the major problem
concerning these systems is that a significant
amount of the transported fluid is lost if leakage
occurs in the distribution pipes. On the other hand,
besides the fact that a great quantity of material is
wasted, another problem that rises 1is the
environment erosion and pollution. Therefore, a
great attention must be paid to a careful pipeline
monitoring, in order to be able to diagnose the
pipeline’s state at every time moment, if possible.
Consequently, two major problems must be solved
here: firstly, the detection as soon as possible of a
leak occurrence and secondly, in case of a leak has
been detected, the accurate position of the leak on
the pipe. This paper addresses to the first problem
of leak detection.

In practice, many methods for solving this
problem have been developed. Among them we
recognize: methods that use the measurements of
pressure and flow investigating the material balance
between input and output; detection by patrolling
and inspecting along the pipeline; remote acoustic
methods which detect leaks through processing the
information contained in the random signals
captured from the sensing devices placed on the
pipeline [2],[3]. Other methods involve different
techniques such as tracer gas, infrared imaging or
ground penetrating radar but their use is limited.
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Until now, no universal effective method for
detecting and locating leaks was found. Lately,
combined techniques of flow measurement and
acoustic methods are used in practice. An important
step in improving the effectiveness of the leak
detection systems would be to find algorithms that
speed up the detection process and permit a remote
detection from the pipeline inlet.

A quick detection method frequently used is
based on monitoring the increase of the acquired
signals’ power from the background noise [3].
However, in practice, the pipeline signals prove to
have a non-stationary behavior with respect to both
their mean and variance, due to various internal and
external conditions such as road traffic, sudden
pressure and flow velocity variations (turbulences),
etc. The non-stationary behavior can interfere with
the de decision criterion for leak detection.

Another approach is based on performing the
spectral analysis of the acquired signals and
deciding if any major changes occurred in their
spectral components. On this principle, for metal
water pipelines, leak detection professionals can
discern if there is a leak on the pipe or not, by using
a simple listening device (e.g. ground microphone,
etc.) [2]. Fig.1 shows two typical power spectra
corresponding respectively to both situations when a
leak isn’t and is present, at the same locations on an
experimental pipeline installation. It can be observed
that in the presence of a leak the corresponding
signal has higher spectral components.
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Fig.1 Typical power spectral densities for pipeline
signals

Observing also that both signals can be modeled
as a couple of low-pass harmonics plus noise, a
simple method for detection is developed based on
modeling the received signals using only the second
order AR parameters, «; and a, [5],[8] . The distance
measure between the obtained points in the plane
defined by the a;, and @, coordinates is used as a test
statistic for detection. This is a robust technique,
especially for non-stationary situations. Also, this
method is simple, quick, need only one non-
intrusive sensing device and is passive (i.e. no
external test signals are used).

Fig.2 illustrates the algorithm’s principle. Briefly,
the received signals are divided in short segments,
which can be viewed as piecewise stationary; for
each segment the second order AR coefficients are
computed [8]; the “gravity” center of each set of
data is estimated, using their median values; finally,
the distance measure between the data “gravity”
centers is evaluated: if the value of this random
variable exceeds a certain threshold, then the
algorithm decides that there is a leak in the pipeline
system; otherwise, not.

Second Order AR Coefficients for Signals Segments

O Leak present
* No leak
+ AR Gravity Centers |

a(2)

Fig.2 The estimated AR parameter sets for two
typical pipeline signals.
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2 Problem Formulation

As previously stated, the major question here is
included in the binary detection problem [4],[5],
where the receiver processes the acquired random
signals in order to decide if any leak is present
according to the general detection model described

by [4]:

r(t)zso(t)Jrn(t), te[Tl.,TfJ :HO,
(t)=s,(t)+nlt), te[T,.,T/.] H.

where r(¢) is a sample function of the received
random signal; sy(?) denotes the signal produced by
the main stream flowing through the pipeline; s;(?)
denotes the signal produced by the leak and the main
stream; n(?) is the background disturbing noise; ¢
denotes the time variable which takes wvalues
between the initial and final moment, 7; and 7}
respectively; finally Hy and H; denote the null and
the alternative hypothesis, respectively. The null
hypothesis assumes that the source leak signal is not
present, while the alternative hypothesis assumes the
opposite. In this problem, the received signals may
be characterized mainly by a non-stationary
behavior.

In attempting to solve this problem, a case study
is developed in order to find a possible connection
between the received signal’s spectral components
and their second order AR parameters, a; and a;,
Therefore, the following ideal cases for the received
signals are presented in Table 1, while the
corresponding  autocorrelations  functions are
described by equations (2) to (6).

(M

Table 1
Considered Received Auto .
No. . -correlation
cases signal funct;
unction
1. | one sinusoid Asin 2 nft Eq.(2)
one sinusoid
2. in Asin2aft + w(t) | Eq.(3)
white noise
; q A, sin27f t + A
. | two sinusoids . Eq.
A, sin27f,t +4)
) two siiIIlusoids A, sin27fit + Eo(5)
white noise | 42 SIn 275t + W(t)
two sinusoids | 4 sin 27f,¢ +
. 1 1
5. in . Eq.(6)
colored noise | 42 SIN 275t + W(t )
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R(T):ATICOS 27y”12'+A72005 27,7+ 0268(r) (%)

2 2

A A —ar
R(T)z?cos 27y’lr+72cos 2nf,r+o. e (6)

In the above relationships A denote amplitudes, f
denote frequencies, T stands for the time lag
argument; & is the unit impulse; o, is the white
noise’s power. Finally, o is a constant factor
defining the spectrum of the colored noise according

to:
2

4ao;,
Sw(f)=m- (7

Other answers that need to be found regard the
degree by which the experimental data match the
theoretical results; finding a variable that can be
used as a test statistic and it’s probability density
functions for both situations; selecting a hypothesis
test procedure; computing the ROC curves for
describing the detector’s performance.

3 Problem Solution

The second order AR parameters a; and a, are
obtained by solving the normal equations [5], [8]
described, for this particular case, as:

{R[I]+ a,R[0]+ a,R[-1]=0; (8)

R[2]+ a,R[1]+ a,R[0] = 0.

Here, R denotes the received signal’s autocorrelation
function computed at the time lags corresponding to
the number of samples indicated in the square
brackets. Hence, for each case described in Table 1
the autocorrelation samples R[0], R[1]=R[-1] and
R[2] are found from equations (2)-(6), prior to
calculating the AR coefficients according to:

, = Rl (R[2]- R[0]

" RYo]-R1]
_ R[]~ RoRRP
— R*o]-R[1] ¢

©)

2
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3.1 The theoretical geometrical positions

For each case presented in Table 1, in the plane
specified by the a; and a, coordinates, the
theoretical points obtained define specific
geometrical positions with varying frequencies and
amplitudes. Next, these geometrical positions are
derived with the purpose of comparing them with
the experimental data.

3.1.1 One sinusoid

In this case, the relationships (2) and (9) produce the
following simple solution:

a, = —2cosﬁ; a2 =1, (10)
F

s

where Fs is the sampling frequency used in the
signal acquisition. The geometrical positions of
these points vary only with the signal’s frequency as
in Fig.3.

Geometrical Position for One Sinusoid
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Fig.3 The theoretical AR coefficients for case 1

3.1.2 One sinusoid in white noise
Following the steps mentioned above, the AR
coefficients become:

_ Zcos3y—(2+772)cosy.
(1+772)2 —cos’ y

2

2 2 2
a2:1+77 —(142—277 )cos y; (11)
(1+772) —cos’ y
2nf ) ol
:—’ :2 w‘
y F n VB

s

By eliminating the cos y factor between al and a2
yields:
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ql = (maz —1)(a2 +1)2 1.
: a, —2m+1 m’ (12)

m e (1,+00).

m=1+n’,

The AR coefficients for different m values and
frequencies varying from 0 to Fs/2 are depicted in
Fig.4 and Fig.5.

The AR Theoretical Coefficients vs.Frequency
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Fig.4 Variation of the a; and a, parameters with
frequency for different harmonic-to-noise ratios.

Theoretical Geometrical Positions -One Sinusoid in White Gaussian Noise
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Fig.5 Corresponding geometrical positions for the
second case.

In can be seen that the specified M, N and P points
in Fig.5, corresponding respectively to zero, a
quarter and a half of the sampling rate, have the
following particular coordinates in the (a;a,) plane:
M(O,l); N(_l’_ 1) and P, symmetric of N
m m+1 m+l1

in rapport to «@;=0. When the m parameter
approaches unity (i.e. the harmonic component is
much stronger than the white noise component), this
case tends be reduced to case one. Conversely, when
m tends to infinity (i.e. the white noise component
predominates), the geometrical position is
concentrated towards the axes origin.
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3.1.3 Two sinusoids
The second order AR coefficients in this case can be
written as:

(p2 cosy+coszp2 cos2y+cos2y—p’ —1).
(pz +1)2 —(p2 cosy+cosw)2 ,
B (p2 cosy+cosw)2 —(,02 +1xp2 cos2y+cos2vy)(13)
(p2 +1)2 —(p2 cosy+cosvy)2
4 v—ﬁ' % ZHL
4, S F,

1

The corresponding curves are shown in Fig.6 to
Fig.9.
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Fig.6 Family curves for AR coefficients versus f;
when f; is fixed p varies.
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Fig.7 Geometrical positions for the third case (f;-
fixed, f>,p varies)

Also it can be observed that this case reduces to the

first case if one of the harmonics is significantly
grater than the other one.
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The al and a2 Theoretical Coefficients vs.Frequency
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Fig.8 Family curves for AR coefficients versus />
when p is fixed while f; varies.
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Fig.9 Geometrical curves for the third case (p is
fixed, f; /> varies)

3.1.4 Two sinusoids in white noise

In a similar fashion, in this case, the corresponding
relations for the a; and a, parameters are described
by the next equations while their variations are
illustrated in Fig.10 to Fig.13.

(p2 cos y + cosw)

" (p* +147° ) =(p? cos y +cosry)
-(pzcos2y+COSZW—p2—1_772>

. (p2 cosy+cos1/y)2 _ (14

, =

(p2 +1+772)2 —(p2 cosercosw)2
B (p2 +1+772Xp2 cos2y+cos2vy) _
(p2 +1+772)2 —(p2 cosy+cosvy)2 ,

where the variables y, p and v have the same
definitions as in the previous section, and #° is
defined as:
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2
o,
772 — 2 w
4,
This time also, the previous case can be viewed as a
particular case of the current one, by substituting
#°=0 in equations (14).

(15)

The al and a2 Theoretical Coefficients vs.Frequency
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Fig.10 AR coefficients versus f> when f; is fixed
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Fig.11 Geometrical positions for f; fixed
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Theoretical Geometrical Positions -Two Sinusoids in Whie Noise
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Fig.13 Geometrical positions for p fixed

3.1.5 Two sinusoids in colored noise
Finally, the two AR parameters for the fifth case
become:

o _alr=p’-1-n")
1 s
(,02+1+772)2—q2

. _qz—r-(p2+1+772)_
(1) —g (16)
q:pzcosy+cosw+n2e7“;

L
r=p>cos2y+cos2w+nie 5.

In analogy with the previous sub-sections, Fig.14 to
Fig.17 illustrate the a; and a, theoretical variations
corresponding to this case. The obtained curves look
somehow similar with the ones from the previous
cases depending on the amount of the harmonics or
noise allowed to be contained in the signal.

The al and a2 Theoretical Coefficients vs.Frequency
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Fig.14 Case five: AR coefficients variations with 2"
harmonic frequency when f; is fixed.
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Theoretical Geometrical Position-Two Sinusoids in Colored Noise
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Fig.16 AR coefficients families of curves when p is
fixed, while f; is taken as parameter

Theoretical Geometrical Position-Two Sinusoids in Colored Noise
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Fig.17 Geometrical curves (from left to right) when
7 1s taken as a parameter and p is fixed.

The parameter o from (16), that reflects the noise
“coloring” degree, produces the asymmetrical aspect
of the curves in Fig.17 (i.e. as a decreases, the
inclination of the graphs increases to the left).
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3.2 Algorithm behavior in burst-type
environments. Computer simulation
results.

One of the most common problems encountered in
leak signals is the non-stationary burst-type
component that overlaps over the basic signal. This
paragraph studies the proposed algorithm’s behavior
using computer generated burst perturbations of
exponential type with a random Poisson occurrence
[6],]9]. Both amplitude and concentration of the
induced bursts were varied in order to establish the
algorithm’s robustness. Fig.18 presents a typical

non-stationary  signal obtained by computer
simulation, similar to signals encountered in
practice.
The Recieved Signal
B0 T T T T T
A R O e
RN S U O B
,,,,,, ,,,,,,,,,,,,,,,,,,,, ]
= 0
onf rrrrrr rrrrrr S
PYNLE S RUEL 0 8 JO|
£ i
1] 1 2 &) 4 5 B 7 i} a 10

Tirme[s]

Fig.18 A typical test signal with burst component

In order to be able to evaluate the effect of the
burst-type  component on the algorithm’s
performance the burst signal-to-noise ratio factor
(BSNR) is defined as in:

BSNR[dB] =10- lg[})“j (17)
P,

where P; and P, denote the power of the primary
source signal and the burst component, respectively.
Fig.19 displays the positions of the second order AR
coefficients for a computer generated stationary
source signal (blue marks) and for the signal in
Fig.18, (green marks). It can be observed that the
distance measure L between the data gravity centers
(red marks) is practically not affected by the
existence of the burst component, due to the
segmentation procedure performed by the algorithm.
Although the burst component produces a scattering
effect on the AR coefficients’ locations, their
median values remain stable to the environment’s
abrupt variations. On the other hand, the total
power, P of the observed signal increases if burst
events occur. This can affect the decision results in
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detection systems based on monitoring the power
increase above a detection threshold [2],[3].

Influence of Burst Data on the 2-nd Order AR Detection Algorithm
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Fig.19 AR coefficients’ locations in computer burst
simulated environments

Fig. 20 and fig. 21 present comparative
simulation results corresponding to the proposed
detection algorithm and to the basic algorithm of
monitoring the power increase of the received
signal, respectively. In the first case, presented by
fig. 20, the burst concentration was kept constant
and the burst amplitude varied, while in the second
case (fig.21) the burst concentration was varied and
the burst amplitude was kept constant. The random
variables L and P were obtained by choosing the
maximum values among a large number of trials and
are represented versus the burst signal-to-noise ratio
factor. The maximum limits of these variables in the
no-burst case are also shown (blue dotted lines). It
can be observed that, for the considered domains of
burst amplitudes and concentrations, the L variable
does mnot exceed the maximum limit value
corresponding to the no-burst case, while the
random variable P always exceeds its maximum
limit.

L and P Variations vs. Burst Signal-to-Noise Ratio
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Fig.20 Comparative simulation results for variables
L and P. Varying burst amplitude case.
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3.3 Experimental results

An experimental study was conducted on a
laboratory  pipeline installation having the
configuration shown in Fig.22. The total length of
the studied system was 12.82 meters and it was
implemented from metal pipes of 2.54 centimeters
diameter each. The leaks were simulated by faucets
permitting flow rate adjustments. The measuring
points were equally distributed at 0.3 meters
intervals along the pipe. The acquisition system was
composed of a pair of non intrusive vibration
sensors KD Radebeul, two amplifiers M60T with
adjustable gain between 40 and 60 dB, anti-aliasing
low pass filters and a dSPACE DS1102 board
connected to a PC. The sampling frequency was set
to 25 kHz.

The acquired signals were divided into smaller
piecewise stationary segments. For each segment,
the second order AR parameters, a; and a,, were
obtained [8] and plotted in the plane defined by the
a; and a; coordinates. The data gravity center point
was computed as the intersection between the
medians along each coordinate. An additional pilot
signal acquired in known conditions (e.g. no leak
present) was used for comparison. The distance
measure between the gravity centers of the pilot and
the compared signal reflects the difference between
the two signals major spectral features, and therefore
was chosen as a test statistic. Fig. 23 shows two
typical situations corresponding to two different leak
flow rates. The “no leak” pilot signal’s marks are
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Fig.22 The experimental model
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Fig.23 Matching the experimental data with the
theoretical curves

For evaluating the proposed detector’s
performance, the experiment was repeated by a large
number of times. Each time the distance measure L,
between the gravity centers of the pilot signal and
the compared signal was computed according to:

L \/al a,, > oa, a,, 2 (18)
where ay, and a;, (k=1,2) are AR coefficients for the
pilot signal and compared signal, respectively. The

signals were acquired from various points on the
pipeline. Also, for the situations where the leak
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existed, various leak flow rates were allowed in the
experiment.

A Student’s T test [7] was implemented in order
to compare the two means of the random variable L
for the case of “no leak” situation m,, and for “leak”
situation m;. The following results were obtained:

2 2
S[27 — SO (no _1)+S1 (nl _1) — 00235’

ny+n —2 (19)
polmomml o
s, n, +n,

Here s denotes the data variances, ny=121, n;=456
were the number of trials in each case. Also s,
represents the common variance of the two
compared groups (the homoscedasticity assumption)
and T is the computed value of the 7 variable (the 1-
0/2 quantile of Student’s T distribution with
v=ngtn;-2=575 degrees of freedom)[7]. From the ¢
density table we find out that for the probability
error 0=0.05, then =1.97. Hence, because T > ¢, we
can conclude that the two sets of data come from
different distributions and therefore decide that a
leak has occurred.

The resulted experimental probability density
functions and their Gaussian approximations for the
random variables length L and power P are
presented in fig. 24, and fig.25 respectively. Based
on these results, the experimental ROC curves were
computed [4] and are shown in Fig.26. The areas
under the ROC curves describe the detector’s
performance. It can be observed that the area
defined by the proposed algorithm’s a ROC curve
(blue line) is larger, indicating a better performance.
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A diaphragm pump parallel connected at the
pipeline’s input (fig.22) allowed a double
verification of the algorithms’ stability to non-
stationary burst noise. These perturbations were
periodically produced though the pump control
device commanded by an adjustable frequency pulse
generator. Fig. 27 shows two typical signal pairs
recorded at the same locations on the pipe. The
signals on the left were acquired without having
pump connected, while the signals on the right were
recorded with the pump working at 4 Hz. Fig. 28
presents the second order AR coefficients positions
for the signals in fig.24. Again it can be remarked
the scattering effect of the burst perturbations on the
AR parameters’ positions. Finally, the curves in fig.
29 represent the relative deviations of the random
variables L and P versus the burst signal-to-noise
ratio, obtained through this experiment. These
deviations were computed relative to the
experimental mean values my, and mgp
corresponding to the normal (no burst) case when
the pump was not working, according to:

Issue 7, Volume 7, July 2008



WSEAS TRANSACTIONS on CIRCUITS AND SYSTEMS

¢ [%]: (L — My, ) 100/m,

Ep [%]: (P - mOP)' 100/m,,
Again the proposed algorithm indicates a better
performance by producing a smaller deviation from

its normal mean value when non-stationary
conditions are stimulated.
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Fig.27 Two real signal pairs without and with
induced burst perturbations, respectively.
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4 Conclusion

Leak detection algorithms hold an important role in
pipeline monitoring. Signals acquired on pipelines
manifest a strong low-pass harmonic character. This
paper proposes a simple detection technique, based
on the second order AR signals’ model. Theoretical
geometrical positions of the AR coefficients were
developed for some particular cases of interest. The
experimental data prove to be in concordance with
the theoretical results. Due to the fact that the
gravity centers of the acquired signals are involved,
the algorithm is also robust to the non-stationary
data character. The ROC curves and the statistic test
show a good algorithm performance for metal, non-
buried water transportation pipelines.
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