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Abstract: - One presents a dynamic model of the very maneuverable flying objects (A), which expresses the 
dependence between the vector formed by angles of A regarding aerodynamic trihedron and the vector of 
angular velocities of A or the vector of linear acceleration components in rapport with the trihedron related to 
A. Control structures (stabilization of movement) are also presented. These consist of loops after angles, 
angular velocities and linear accelerations and an adaptive control loop with neuronal network for dynamic 
inversion errors compensation of the non-linear function which describes unknown system of the dynamic 
model of A. Adaptive command is projected upon stability theory using Liapunov functions [1], [2], [3]. As 
calculus examples one presented two systems and stabilization models of the very maneuverable rocket’s 
longitudinal move [4]. Time evolution of the attack angle for the studied cases is also presented. 
 
Key-Words: - dynamic model, adaptive command, neuronal network, rocket, maneuverable. 
 
1 Introduction 

The A’s movement control takes into account the 
values of the A’s angles in rapport with the 
aerodynamic trihedron and angular velocities and 
accelerations sensors utilization (placed on trihedron 
axis related to A). Dynamic model is made by two 
sub-systems: one of them is described by a well 
known non-linear function ( )1f  and the other is 
described by a proximate known or unknown non-
linear function ( ).2f  Control law synthesis is based 
on dynamic inversion (the 2f  inversion).  

The control law has components expressed as 
functions of state variables and an adaptive 
component. This is obtained with a neuronal 
network with the role of 2f  inversion error 
compensation. 

The control and stabilization of A’s movement in 
non-linear description are closer to real flight 
conditions than the linear variants. The learning 
capacity of the neuronal networks in control of the 
non-linear systems is taken into account. 
 

2 Spatial movement models of the 
flying objects 
The following equations express dependences 

between linear accelerations zyx aaa ,,  and angular 
velocities zyx ωωω ,,  in rapport with trihedron 
related to flying machine A. These variables are 
available because of the accelerometers and gyro 
meters. Let oxyz  be the trihedron related to A with 

−ox  the longitudinal axis, −oy  the lateral axis and 
oz  rectangular to ox  and oy  and −aaa zyox   
aerodynamic trihedron; V  is the flying velocity, 
−α  attack angle, −β  side-slip angle (fig.1). For 

aaa zyox  and oxyz  superpose the following 
coordinates transformations are made 

  ( ) ( ) .oxyzyzxozyox oyaaaozaaa

α

α

β

β ⎯⎯ →⎯′⎯⎯ →⎯  (1) 

Acceleration a  is expressed with formula 

  ,VVa ×ω+=  (2) 
with 
 ,zyx aaaa ++=  (3) 
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 .⎟
⎠
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⎝
⎛ β+α−ω+ω+ω=ω zyx  (4)  

 

 
Fig.1 The trihedron related to A and the  

aerodynamic trihedron 
 

From equation (2) one obtains 
( ) ( ) .VVVVaaa zyxyyx ×⎟

⎠
⎞⎜

⎝
⎛ β−ω+×α−ω+×ω+=++  (5) 

Through projection on aaa zyox ’s axes one obtains 
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To these one adds the moments’ equilibrium 
equations 
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where zyx MMM ,,  are the aerodynamic moments 
which operate round ozoyox ,,  axes. 
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the coefficients of the angular variables represent 
variation speeds (slopes) of the aerodynamic 
moments regarding to respective angular variables  

(stability derivates). 
Equations (7) and (8) are used especially in the case 
of very maneuverable aircrafts and in the case of 
agile rockets with big attack and side-slip angles. For 
a very good control of the agile air – air rockets’ 
inclination, in [5] and [6] an aerodynamic roll angle 
is used; it verifies equation 
 β

α−α
+

β
αω+αω

=γ tgcossin
cos

sincos
V

aa zxzx  (10) 

and the angular variables are grouped in the vectors 
 [ ] [ ]., zyx

TTx ωωω=ωγβα=  (11) 
The second and the third equation (7) and equation 
(10) may be expressed under the vectorial form 
 ( ) ,faxTx +ω=  (12) 
where 
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Equation (12) is equivalent with the following 
equations’ system, in which a component xu  of the 
pseudo-command is distinguished [7] 
 ( ) ., fxx axTuux +ω==  (14) 
Similarly, equation system (8) may be described by 
equations in which another component ωu  of the 
pseudo-command is distinguished 
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Function f  has two components, as we can see 
from (8) and (9) 
 ( ) ( ) ;,,, δ⋅+ω=δω=ω GxFxfu  (16) 
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In the particular case of longitudinal move 
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( )0=β=ω=ω zx  equations (7) and (8) becomes 

 ,,
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cossin
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M
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aa
=ω

β
α−α

+ω=α  (19) 

where 
 .p

p
yy

y
yyy MMMM δ+ω+α= δωα  (20) 

As a consequence ( ) 1,, =ω=ωα= xTx y  and 
( ) ;cos/cossin βα−α= Vaaa zxf  equation (12) 

becomes 
 ,fy a+ω=α  (21) 
and equations (14), (15) and (16) become 
 ;, fyxx auu +ω==α  (22) 
 ( );,,,,, pyy HVfuu δωα==ω ωω  (23) 
 ( ) ( ) pypy GHVFHVf δ⋅+ωα=δωα ,,,,,,,  (24) 
with 

 .,
yy

p
y

yy

y
y

yy
y J

M
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J
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FF
δωα

=
ω+α

==  (25) 

From (14) one results 
 ( )( ),1

fxc auxT −=ω −  (26) 

where xu  is the pseudo-command, which may be 
chosen 
 ,~,~ xxxxKu xx −==  (27) 
with −x  control command. From (16) one obtains 
 ( ) ( ),,,ˆ 11

ω
−

ω
− ω=−=δ uxfFuG ccc  (28) 

with pseudo-command 
 ,~

ac uuKu −=ω=ω ω  (29) 
where ω−ω=ω c

~  and −au  the adaptive 
command for inversion error’s compensation. 

3 Stabilization structures for  
     flying objects’ movement 

Control block diagram of the closed loop system 
is presented in fig.2. 

Another control structure may be obtained using 
stability theory with Liapunov functions if the 
controlled object (A) may be described by the non – 
linear equations system [6], [8] 

 
( ) ( )
( ),,,

,

2122

211111

uxxfx
xxhxfx

=
+=

 (30)  

used by the system from fig.3. 
The imposed vector 2x  is 
 ( ).,~

112 txqx =  (31) 
This law must assure the stability of the variable 1

~x  
in rapport with variable z  (fig.3); 
 ( ) .,~~

211222 xtxqxxx −=−=  (32) 
The second sub-system (described by the 

second equation (30)), due to the lack of the external 
disturbances, may be described by equation 
 ( ),,,, 2122 uxxfvvx ==  (33) 
where input v  is a pseudo-command. If the function 

2f  is invertible than the dynamic inversion of 2f  
may be approximately done; ( ).,, 21

1
2 vxxfu −=   

If 2f  is known than 12
1

2 =− ff  and if it is 
approximately known than the inversion of function 

2f  is made with error ( )uxx ,, 21ε  and the first 
equation (33) becomes 
 ( ) ,,, 212 puxxvx +ε+=  (34) 

 

 
Fig.2 Block diagram of the stabilization system (variant 1) 

 

 
Fig.3 Block diagram of the stabilization system (variant 2) 

WSEAS TRANSACTIONS on CIRCUITS AND SYSTEMS Lungu Mihai, Lungu Romulus, Jula Nicolae, Cepisca Costin

ISSN: 1109-2734 670 Issue 7, Volume 7, July 2008



where ε  has the form  
( ) ( ) ( ) ( ),,,,~,~,,ˆ,,,, 112121221221 vxxxxuxxfuxxfuxx ε=−=ε  (35) 

with 2f̂  - calculated function. 
The command law may be chosen [6] 
 ,~

2222 aac uvxxKuvxuv −++=−++=  (36) 
where −cu  the command in case −=−

22
1

2 ,1 Kff   
positive defined matrix and −au  adaptive command 
for the inversion error compensation ,ε  obtained 
from the Sigma neural network; 
 ( ),IVWu TT

a σ=  (37) 
with −σ  the activation function of the hidden layer 
(2), −I  the input vector, 
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=
 (38) 

ib  and −ic  bias, −ijw  the weights of connections 
between level 1 and 2, −ijv  the weights of 
connections between level 2 and 3. Learning rule is 
obtained using stability theory of Liapunov [6]. 
Considering Frobenius norm of matrix A  
 { },tr2 AAA T

F
=  (39) 

introducing the compact matrix 
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⎡
=

V
W

Z  (40) 

with ,ZZ
F
≤  choosing the input vector of the 

neuronal network 
 [ ]

F
T
a

TTTTTT ZuxxxxxI 11121
~~1=  (41) 

and standard Liapunov function 

 ( ) ( ),tr
2
1tr

2
1~~

2
1 11

22 VVWWxxV V
T

W
TT

l
−− Γ+Γ+=  (42) 

from stability analysis one obtains the term v  from 
(36) 
 ( )( ) ,~~

221 exxZZKv
Fz ++=  (43)  

where 0>zK  and .~/~
222 xxe =  

 
 

The control system structure (PA-A) is presented in 
fig.3 (equivalent to the one from fig.4, where v  is 

ωu~ ). 
  
 
4 Numeric examples 

In particular, system (30) represents non linear 
model of an aircraft (A), which may be, for 
example, an air – air rocket. Thus, 

 
[ ]
[ ] ;

,
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1

T
zyx

T

x

xx

ωωω=ω=

γβα==
 (44) 

from the equivalence of equations (30) and (12) it 
results 
 ( ) ( ) ( ) ,, 1111 faxfxTxh ==  (45) 
with ( )xT  and fa  of forms (13). 
The second equation (30) is equivalent with 
equations system (14), where δ=ω== uxxx ,, 21  
and 

 
( ) ( )
[ ] ,

,,,,, 212

T
dpe

xfuxxf

δδδ=δ

δω=
 (46) 

which has two components of forms (16) with (17). 
From (16) command vector cδ  ( −δ c  calculated 
with (28)) is expressed ( v  plays the role of ωu ). 
Indeed, equation (33) is equivalent with equations’ 
system (15), where ffx =ω= 22 ,  and .ω= uv  

By comparing equations (37) and (26) one 
results that matrix 2K  plays the role of matrix ωK  
and −2

~x  the role of .~ ω−ω=ω c . Thus, 2x  plays 
the role of .cω  By comparing equations (31) and 
(26) one yields 
 ( ) ( )( ),,~ 1

11 fx auxTtxq −= −  (47) 
with pseudo-command xu  of form (27). 

Hence block diagram from fig.3 is equivalent 
with the one from fig.2. Equation (43) becomes 
 ( )( ) ,~~

2exZZKu
Fz ω++=ω  (48) 

where .~/~
2 ωω=e  

 
Fig.4 Block diagram of the stabilization system (variant 3) 
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Let’s consider now the case of a rocket’s 
longitudinal movement described by equations [5] 
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where 
.1.0,25.360,15.70

,2.322,2.57,3.1,02.1
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Block diagram of the closed loop system (PA - 
A) is presented in fig.5; it has been obtained using 
diagram blocks from fig.3 and fig.4. 

By identification of system (49) with system 
(12) and of system (15) with (30) one obtains 
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The values of the other parameters from fig.5 are: 
.6.0,50 == zKZ  

For the calculus of coefficients xk  and ,ωk  one 
keeps only the linear part of the system from fig.5 
( 0422 === cca ). Closed loop transfer function 
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By setting 707,0=ζ  and ,50 =ω  the two 
coefficients have expressions 
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One chooses a feed-forward neural network 
with 8 input neurons, a neuron on the hidden layer 
and an output neuron. Activation function for the 
hidden layer neuron is a linear one, while activation 
function of the neurons from the input layer has a 
tansig form (tangent hyperbolic) 

 ( ) ( ) .1
2exp1

2sigtan −
−+

=
n

n  (53) 

The neural network’s output ( )au  has the form 
 ( ),tansig IVWu TT

a =  (54) 
where V  is the weights’ vector of the input 
neurons, W  is the weights’ vector of the hidden 
layer neurons, −I  inputs vector 

  
[ ]
[ ] .[1] W,132-1-23-71

,~~1

==

αααωα=
T

F
T
a

TTTTTT

V

ZUI
 (55) 

Neglecting terms au  and ,ωu  the indicial 
response (fig.6) proves stabilization of angle α  to 
its imposed value ( ).grd1=α  
 

 
Fig.6 Time variation of the rocket’s attack angle 

(without neural network) 
 

Using Matlab/Simulink model from fig.7 one 
obtains ( )tα  (fig.8.a) and error ( ) ( ) ( )ttt α−α=α~  
(fig.8.b). 

 
Fig.5 Neuro – adaptive command system for the rocket’s move in vertical plane using model (49) 
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Fig.7 Matlab/Simulink model of the system from fig.5 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                            a.                                                                                     b. 
Fig.8 Dynamics of attack angle α  and error α~  for the system from fig.5 (with neural network) 

 

Other structures for the compensation of the 
unknown functions (from non-linear description of 
the flying objects’ dynamic [9]) approximation 
errors are based on robust adaptive control using 
neural networks. The robustness deals with a 
parameter changing its value in the same time with 
non-linear functions of the control system (flying 
object [10]). Non-linear controller uses dynamic 
inversion and makes dynamic damp. 

The controlled object (A) is described by 
equations system [5] 
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( )[ ] ,s1
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,,,
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211111

uu
tuxfx

xtxhtxfx

Δμ+=
=

+=
 (56) 

where  [ ]Tn xxxRuxRx 212
1

1 ;,, =∈∈ −  is the state, 
−u  command variable (input of A); functions 1f  

and 1h  are known Lipschiz functions and −2f  
partial known function, ( ) −Δ s  transfer function of 
the non-modeled sub-system (considered stable), 

;0≥μ  one considers that sub-system 1x  has stable 
state .01 =x  

Function 2f  may be approximated as follows 

 ( ) ( ) ( ) 2222

~,ˆ,ˆ,, futxgtxftuxf ++=  (57) 
and system (56) becomes 

( ) ( )
( ) ( ) ( ) ( )[ ]

( )[ ] ;s1
,,,,,~,ˆ,ˆ

,,,

222222

211111

uu
tuxftuxffutxgtxfx

xtxhtxfx

Δμ+=
−+++=

+=

(58) 

the second equation (58) has been obtained by 
adding and deducting in the right term ( )tuxf ,,2  and 
taking into account equation (57); if 2f  is a global 
Lipschiz in ,u  then there is a constant 2g  so that [5] 
     ( ) ( ) ( ) ,s,,,, 2222 uguugtuxftuxf Δμ=−≤−  (59) 

and −2

~f  error of function 2f ’s aproximation; it 
may be compensated using a feed-forward linear 
neural network, whose output is the adaptive 
commnad ;au  the neural netwok is a Sigma – Pi one 
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whose output is given by the following equation 
 ( ) ,,,~

2 ε′+== tuxgWfu T
a  (60) 

where vectorul W  is the weights’ vector of the 
network, −g  base functions’ vector and −ε′  neural 
network’s reconstruction error. 
Command law u  may be chosen so that in second 
equation (58) one compensates components 2f̂  and 

.~
2f  Hence, ug 2ˆ  must contain terms ( )2f̂−  and 

( ).au−  Also, command law must contain term 
,~; 2222 xxxx −=  with ( ).,~

112 txqx =  Thus, u  may 
have the following form (this form is the same with 
the one from [5]) 
 [ ] ,~1ˆˆ 222 xvmkvgug +++=  (61) 
with 
 ,ˆ~ˆ 22222 aufxxkvg −−+=  (62) 
where 
 ( ) ,,~~

211222 xtxqxxx −=−=  (63) 

1q  beeing the feedback function of the system and 
;~

111 xxx −=  au  has form (60), where one neglected 
,ε′  with W  solution of differential equation 

 ( ),,,R~
2 tuxgxW −=  (64) 

where TRR =  is a positive defined matrix; m  is 
solution of equation [5] 
 .umm =γ+  (65) 
The term from (61), which contains the bracket, 
expresses the robustness. 

Let’s consider, for example, the case of 
rocket’s longitudinal move. For this one projects an 
automat pilot using law (61). Longitudinal 
movement’s model is described by equations (49) 
namely 
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Equations (66) have form (56) where: ,1 α=x  
−ω=ω= yx2  pitch angular velocity 
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where τ  is the performing element’s time constant. 
With notation ,~

111 xxx −=  first equation (66) 
becomes  
 ( ) .~

211
2
1211 xxxxaax −++=  (68) 

For ω=2x  from this, one obtains equation 
 ( ) 11

2
12112

~ xxxaaxx +++−=  (69) 
and, with this, one expresses 2x  so that term 

222
~ xxx −=  contains terms between brackets from 
previous equation; 
 ( ) ( ).,~~

1111
2
121112 txqxxxaaxkx =+++=  (70) 

Hence, 
 ,~~~

1112 xkxx +=  (71) 
which expresses the fact that this component of 
command is a proportional derivative type; 0~

2 →x  
( )22 xx →  in the same time with ( ) .0~

111 xxx →→  
Thus, closed loop system is described by 

equations (66) or (67) – model of the rocket’s 
longitudinal move, equations (60), (61), (62), (64), 
(65) and equation (71); functions 2f̂  and 2ĝ  from 
(61) and (62) are obtained from equation (67) using 
(57); 

 
.ˆˆ

,ˆˆ

32

112

cg
xcf

=
=  (72) 

These expressions and equation for 2x  allows 
calculus of (62); 2x  is obtained from derivation of 

 

 
Fig.9 Neuro – adaptive command system for the rocket’s move in vertical plane with non linear model (66) 
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(70); one yields 
 .2~

1
2
12

2
1211112 xxaxaaxxkx ++++=  (73) 

The control system, obtained using the previous 
equations, is presented in fig.9. 

For the study of the system one chooses the 
following parameters’ values 

 

.005.0,20,5
,1,s1.0,120R

,100ˆˆ,1.0ˆgrd,15

2
1

1

1

3211

===

=γ=τ=

−====α=

−

−

kksk
sI

cgcx
 

Neural network is a feed-forward one, with 3 input 
neurons, one hidden layer’s neuron and an output 
neuron. The three inputs of the network are 

.,, 23 uααα  Activation functions are the linear one 
for the hidden layer neuron and tangent – hyperbolic 
one for the output’s neurons. 

Neural network’s output is 
 ( ),tansig IVWu TT

a =  (74) 
where V  is the weight vector of the input neurons, 

−W  the weight vector of the hidden layer neurons 
and −I  the inputs vector 

 
[ ]
[ ]

.[1]W
,211

,23

=
−=

ααα=
T

T

V
uI

 (75) 

System’s analysis may be made without 
components  2x  and au  (without neural network) or 
using these components. Without them the 
stabilization system is oscillatory, non damped and 
α  doesn’t tend to α  (fig.10). Insert of the two 
variable leads to a non linear stable system 
( α→α ). 

 
Fig.10 Time variation of the rocket’s attack angle 

(without neural network) 
 

Using Matlab/Simulink model from fig.11 one 
obtains time variations of the attack angle (fig.12.a) 
and of the error α−α=α~  (fig. 12.b) ( ( )grd1=α ). 

In the structure of the observers one 
introduced neural networks because of their 
capacities of nonlinearities’ approximation and 
because of their learning’s ability. Thus, the use of 
neural network is extended to adaptive observers for 
non – linear systems and to control architectures 
observer – controller. 

Neural network for adaptive command of the 
systems with dynamic inversion processes state 
variables given by observers; it is used for 
compensation of the non linear inversion error or for 
state errors’ compensation [11], [12], [13], [14], 
[15], [16]. 

 

 
Fig.11 Matlab/Simulink of the system from fig.9 
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a. b. 

Fig.12 Dynamics of attack angle α  and error α~  for the system from fig.9 (with neural network) 
 
 
 
5  Conclusion 

One presents some equivalent forms of models 
for A’s movement as functions of A’s angles related 
to aerodynamic trihedron, of angular velocities and 
linear accelerations. 

Stabilization structures have some control loops 
after angles, angular velocities and linear 
accelerations and a control adaptive loop using a 
neuronal network for dynamic inversion error 
compensation of non-linear unknown function from 
model A.  

The adaptive command synthesis is based upon 
Liapunov function. Also, one presents the study’s 
results of very maneuverable rocket’s longitudinal 
move; the rocket’s move is described by non-linear 
models; for this theoretical study neuro-adaptive 
command laws have been used. 
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