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Abstract: - The coupled magneto-thermal problem is analyzed, with reference to a particular heating applica-
tion, by means of an equivalent thermal network, that is based on a first-approximation interpretation of the 
field equations. The connections between the thermal characteristics and the magnetic ones are taking into ac-
count by considering the skin-effect and the dependence of electric conductibility on the temperature. Also the 
dependence of the produced heat – by Joule effect – on frequency is taken into account. 
A specific and straightforward applicative case is analyzed in order to underline the validity and the advantages 
of the proposed model. A single conductive loop is lighting by an impressed perpendicular magnetic field and 
both the forward and inverse problems are analyzed. 
An integration technique, based on Matlab-Simulink, is shown for the solution of the problem. Moreover, the 
dependence of the achieved results on the geometric characteristics of the analyzed system is studied. 
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1 Introduction 
The coupled thermo-magnetic problem plays a fun-
damental role in several applications of the engi-
neering science. For example, it is very important 
for the operation of electrical rotating machines, 
especially for induction-cage motor [1] and perma-
nent-magnet machines [2] 

Moreover, it is very important for the calculation 
of the equivalent electrical parameters (typically: 
resistances and inductances) of conductors, for ex-
ample in a transmission line propagation problems 
[3]. Furthermore it plays the main role in electro-
magnetic heating applications process [4]: induction 
heating is widely used in industrial applications, e.g. 
heat treatment of metals, forging, surface hardening, 
where the knowledge of the induced power density 
and transient temperature distributions are of fun-
damental importance for the required technological 
result. 

Nowadays several packages based on numerical 
methods are available for the solution of eddy cur-
rent and thermal problems. The principals of them 
are: Finite Difference methods [5], Boundary Ele-
ments methods [6], Finite Elements Analysis [7] and 
derived methods [8], and, finally, the more recent 
cell method [9]. A critical collection of some of 
these methods can be founded in [10]. 

In spite of this, the prediction of the power den-
sity distributions and the temperature profile is rela-
tively complex because the electromagnetic and 
thermal problems are coupled and both problems are 
non linear since the electrical and magnetic proper-
ties of the material are strongly temperature depend-
ent and - in several ferromagnetic materials - the 
permeability is also a function of the local magnetic 
field intensity. 

Furthermore, all the developed numerical tech-
niques have in common the difficult to formulate 
analytically the problem, the big cost in terms of 
CPU time and memory capacity required, and the 
not easy interpretation of the obtained results. 

In the present paper a first-approximation 
method is proposed to solve the electromagnetic-
thermal problems with reference to a particular heat-
ing application, firstly analyzed in scientific paper. 
The proposed technique is based on the numerical 
solution of a thermal equivalent network. 

The obtained results can be easily used to deter-
mine the convenience of improving more detailed 
numerical calculus in order to design the device un-
der study. 
 
 
2 Problem Formulation 
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The whole coupled electromagnetic-thermal prob-
lem can be described, using the magnetic vector po-
tential A  and the scalar electric potential v and con-
sidering, for the sake of simplicity, time-harmonic 
fields with the following well-known set of equa-
tions [11]-[12]: 
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where μ is the magnetic permeability, T is the abso-
lute temperature, cp is the specific heat at constant 
pressure, k is the thermal conductivity, q is the heat 
source and J  is the current density. 
 Observing that: 
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where σ is the electric conductivity, α the tempera-
ture coefficient and the subscript “0” indicates the 
reference temperature (for example, the environ-
ment one), it is possible to conclude that the prob-
lem is nonlinear. 

In fact, the electromagnetic characteristics are 
dependent on temperature T, time t, the position in 
the considered space and, as regards the magnetic 
permeability, also on magnetic field intensity. For 
this reason, even if the electromagnetic equation is 
solved at a fixed temperature, when a magnetic ma-
terial is present in the solution domain the equation 
becomes non linear. 

Also thermal problem is non linear both for the 
material properties dependence on temperature and 
non linear boundary conditions. Moreover, the tem-
perature depends on the impressed heat that depends 
on the electric field and, by means of eddy currents, 
also on the magnetic one. 

The electromagnetic and thermal problems are 
represented by the non linear partial differential 
equation system constituted by (1) and (2). Its ana-
lytical solution is practically impossible, especially 
when the system configuration is geometrically 
complex. 

An approximate solution of the electromagnetic 
and thermal problems have to be developed overall 
if the technical problem is for the first time ana-
lyzed. A first-order solution can be developed by 
means of equivalent thermal network: it will be 
shown in the next section. 
 
 

3   Thermal equivalent network for-
mulation of the analyzed problem 
The thermal problem under study concern the possi-
bility to reach high temperature in a texture made of 
steel. The temperature have to be sufficient to weld 
loops between them without damage the texture it-
self. The texture will be considerate all made by the 
same material and the induced field uniformly dis-
tributed in the space. In this condition, the emf in-
duced by the speed of the texture is equal to zero. 
     In order to verify the achieved temperature, its 
connection with the characteristic of the induced 
field and to show the proposed method, the base 
element of the texture can be analyzed. It is a single 
steel building block with square section.  
 

r
π

=

r

 
 

Fig. 1.  The analyzed steel texture (a) and its basic ele-
ment (b). The equivalence between the square basic ele-
ment and the circular one is also reported. 
 

In order to simplify the approach, it is possible to 
consider, as it is shown in fig. 2, an equivalent cir-
cular loop whit radius r. In the same figure the rela-
tion that allow the calculation of this radius is still 
reported.  

The circular loop is dipped in a time-harmonic 
uniformly distributed magnetic field and it is 
sketched in fig. 2. The unit vector n  is normal to 
the surface S, that has the loop as a border; it is sup-
posed to be parallel to the magnetic field lines of 
force. 
     The impressed magnetic field is time-harmonic 
and can be expressed as follows: 
                     ( )( ) 2 cosb t B tω=                        (3) 
its time derivative is: 

                     ( )( ) 2 sindb t B t
dt

ω ω= −                    (4) 

consequently the Faraday’s law for the loop gives: 
                        ( )( ) 2 sine t SB tω ω=                    (5) 
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Fig. 2.  Details of the equivalent circular loop of fig. 1-b. 
 
This electromotive force causes the flow of the fol-
lowing current into the loop: 

   ( ) ( )( )( ) 2 sin ( ) 2 sine t SBi t t i t t
R R

ωω ω= = =   (6) 

     Starting from the rms value B and the angular 
frequency ω of the impressed magnetic field and 
assuming that the resistance of the loop is constant, 
eq. (6) allows the calculation of this current. 
     The current i(t) imposes an heating process to 
the loop; this process can be studied by means of the 
equivalent thermal network shown in fig. 3. The 
impressed heat source is: 
                               2( ) ( )q t Ri t=                             (7) 
     The lumped thermal parameters (conductance G 
and capacitance C) have the following expression: 
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where m is the mass of the loop and ρ is the radius 
of the transversal section Σ of the wire. 
 

( )q t
G C

( )T t

 
 

Fig. 3.  The equivalent thermal network with constant 
lumped elements used for the analysis of the magneto-
electric process to which the loop in Fig. 2 is subjected. 
 

Parameter Symbol Value Measure unit 

Specific weight γ  7900 3

kg
m

 

Specific heat pc  500 
J

kg K⋅
 

Thermal conductivity k  44.5 
W

m K⋅
 

Electric conductibility 
a 20 °C (293,15 K) 0σ  73×104 S

m
 

Relative magnetic  
permeability Rμ  1,1 [−] 

Temperature coefficient α  0.0045 
1
K

 

  
Table. 1.   Characteristics of EN.4301-AISI 304 steel. 

 
 
4   Thermal and electromagnetic pa-
rameters dependence on frequency 
and temperature 
It is well-known that the value of the resistance of a 
conductor is affected by the skin-effect [11]. If the 
resistance calculated on stationary conditions (for a 
nil value of the frequency f ) is: 

                     2

2 1 2
DC

r rR πρ
σ ρ

= = ⋅
Σ

                      (9) 

then the equivalent resistance calculated for the ge-
neric value of the frequency is: 
                       ( ) ( )DC seR f R K f= ⋅                     (10) 
where Kse(f) is the skin-effect factor: 

                        ( )
( )

2

2seK f
f

ρ

ρ δ
=
⎡ ⎤−⎣ ⎦

               (11) 

and δ(f) is the skin-depth: 

                             ( ) 1f
f

δ
π μσ

=                      (12) 

     Moreover, because the electric conductibility 
depends on the temperature (see the first of (2)), the 
resistance RDC, the skin-dept and the skin-effect fac-
tor also depend on it. Basing on this consideration, 
the (10) becomes: 
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T T
T T f f
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α π μ π μ σ

=

=
⎡ + − ⎤

+ − ⋅ ⎢ ⎥+ − ⎣ ⎦
(13) 

     As an example, it is possible to consider a loop 
constituted of EN.4301-AISI 304 steel, which char-
acteristics are reported in Table 1. In fig. 4 the graph 
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of the dependence of RDC on the temperature T is 
reported. In fig. 5 and fig. 6 are also sketched, re-
spectively, the skin-effect factor Kse(f,t) and the 
equivalent resistance R(f,t) of the loop. 
     Also the thermal lumped parameters in fig. 3 
depend on the temperature. By first approximation, 
it is possible to consider as negligible these depend-
ences. 
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Fig. 4.  Dependence on T of the resistance RDC. 
 

 
 

Fig. 5.  Dependence on f and T of the skin-effect factor. 

 
Fig. 6.  Dependence on f and T of the equivalent resis-
tance of the considered loop. 

 
4  Formulation of the whole problem 
Thanks to the previous considerations, it is clearly 
shown that, as a matter of fact, the nonlinear prob-
lem under study presents a strictly interlink between 
its thermal and electromagnetic aspects. This fact 
can be also observed in the whole thermal-
electromagnetic formulation (1)-(2). 
     Consequently the thermal equivalent network 
depends on the electromagnetic characteristics of 
the impressed field and, also, these characteristics 
depend on the thermal process. 
     The first-order differential equation that solves 
the equivalent thermal network is: 

                       dTq GT C
dt

= +                              (14) 

Considering eq. (7), the (13) becomes: 

             2 ( , )( , ) ( ) ( , ) dT f tR f T i t GT f t C
dt

= +      (15) 

and, substituting eq. (13): 
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Substituting the current with its expression (6), we 
obtain: 
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(17) 
Replacing the expression (13) for the resistance, it 
follows: 
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(18) 
Considering the expressions (8) for the thermal pa-
rameters, the previous becomes: 

WSEAS TRANSACTIONS on CIRCUITS AND SYSTEMS Francesco Della Torre, Sonia Leva, Adriano Paolo Morando

ISSN: 1109-2734 661 Issue 7, Volume 7, July 2008



( )
( )

( ) ( )

2
0 0

0

3
0 2

0

22

2 2 4 2 2 2

1
1

112 sin 2

( , )( , )
8 2

p

f T T
T T f

T T
ft

f

ck dT f tT f t
r B f B f dt

ρ σ π μ α
α π μ

α
ρ π

π μ σ

γρρ
π π

+ + −
⎡ + − ⎤⎣ ⎦

⎡ + − ⎤
− ⋅ ⎢ ⎥

⎣ ⎦

= +

          

(19) 
Rearranging and expressing the (19) in the normal 
form, it is finally obtained: 
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(20) 
The nonlinear first-order differential equation (20) 
represents the proposed model. Its numerical solu-
tion will be treated in the next section. 

       
 

5  Numerical integration of the model 
Due to the strictly linkage between electromagnetic 
and thermal characteristics and to the nonlinearity of 
the obtained equations, the integration of the com-
plete model can be necessarily obtained by means of 
a numerical approach. 
      The proposed model can be used for the forward 
problem (giving B and f, obtaining T(t)) or for the 
inverse model (giving the wished final Tref, deter-
mining the field that imposed it). Both two problems 
can be sketched with a block diagram, as it is shown 
in fig. 7 and fig. 8. 
     The numerical algorithm for the solution is im-
plemented with Matlab-Simulink. In fig. 9 the con-
sidered total Simulink block diagram is shown. The 
block named “Loop” is the core of the algorithm, as 
it represent the eq. (20). 
     In order to allow an easily change of the parame-
ter of the magneto-thermal system, we have pro-
vided a mask for this block, reported in fig. 10. With 
the use of this mask, the user can change the nu-
merical values of the indicated parameters. The 
block “Loop” is composed by others Simulink 
blocks, that are shown in fig. 11.  
     The block named “R_DC”, shown in fig. 12, im-
plement the expression of the resistance of the loop 
calculated for f = 0, in base on eq. (9). 
 

 
 

(a) 
 
 

 
 

(b) 
 

 
Fig. 7.  Block diagram for the forward problem: (a) gen-
eral diagram; (b) complete diagram. 
 

 
 
Fig. 8.  Block diagram for the inverse problem. 
 

In order to obtain the resistance of the loop for 
every values of frequency and temperature, the out-
put of the block “R_DC” is multiplied with the out-
put of the block named “Kse(f,t)”, that implement 
the calculus of the skin effect factor (11), also con-
sidering the skin depth (12). The block “Kse(f,t)” is 
represented in fig. 13 .  
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Fig. 9.  Total  Matlab-Simulink diagram used for the nu-
meric simulations. 
 
 

 
 
Fig. 10.  Mask for the insertion of the physical parameters 
of the Matlab-Simulink model. 
 
     Both the blocks “R_DC” and “Kse(f,t)” need as 
input the different values of σ. These values are ob-
tained with the block named “Sigma”, that has in 
input the current value of temperature. This block is 
sketched in fig. 14 and it is implemented in base on 
the first of  (2). 
     The last block, shown in fig. 15, represents the 
thermal network with lumped elements, just 
sketched in fig. 2. As Simulink need the use of 
Laplace Transformation, eq. (14), that represent the 

thermal network, is transformed in a transfer func-
tion in this domain. Applying Laplace Transforma-
tion, the (14) becomes: 
         ( )( ) ( ) ( ) ( )q s GT s CsT s G sC T s= + = +      (21) 
So the link between the input power – that is due to 
Joule effect – and the output temperature is: 

                            1( ) ( )T s q s
G sC

=
+

                  (22) 

This equation expresses the thermal transfer func-
tion that is the core of the block “thermal network”. 

It is important to note that Laplace Transforma-
tion requires that the analyzed system is linear [14], 
so it is no formally applicable to the considered 
problem. But Simulink allows the use of Laplace 
Transformation also for nonlinear system; so there 
are no problem if, as in the considered study, the 
problem is nonlinear. 
 
 
7  Numeric examples 
Using the proposed procedure and the numerical 
integration described in the previous section, we 
have studied both the forward and the inverse prob-
lem. 
     In fig. 16 the solution of the forward problem is 
graphically shown; the diagram reports the tempera-
ture values obtained varying the rms B and the fre-
quency f of the applied field. From this graph it is 
clear that greater are induction and frequency, great-
er is the achieved temperature. 
    In order to exhibit the use of the proposed model 
for the solution of inverse problem, the numeric 
software is utilized to determine the optimum values 
of B and f in order to achieve the wished tempera-
ture of 1473.15 K. The geometric characteristics of 
the loop are: r=0.8 mm, ρ=0.1 mm. In fig. 17 the 
transient of the temperature is reported for different 
value of B and f. 

As it is possible to observe from these graphs, 
knowing the whished value of temperature Tref the 
possible values of B and f that allows its attainment 
are more than one. The choice between them of the 
best values requires to know in depth the technology 
of construction of the machines that generate the 
impressed magnetic field. 
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Fig. 12.  Simulink block “R_DC”. 
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Fig. 13. Simulink block “Kse(f,t)”. 
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Fig. 14.  Simulink block for the calculation of the eelec-
tric conductibility of the loop. 
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Fig. 15.  Simulink block that represent the equivalent 
tthermal network of fig. 2. 
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magnetic
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Electric
conducibil ity  

Fig. 11.  Electro-thermal Matlab-Simulink total model. 
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Fig. 16.  Example of the solution of the forward problem. 
 
 
8  Variation of the achieved tempera-
ture with dimensions of the loop 
It is also interesting to analyze the influence of the 
geometry of the considered loop on the achieved 
temperature. 
     Considering the case just analyzed (see the first 
diagram in fig. 17), we maintain constant the rms 
value of the magnetic induction B of and the value 
of the frequency f and we can varying the radii r of 
the equivalent circular loop and ρ of the transversal 
section of the steel wire. The obtained result are re-
ported in fig. 18 and fig. 19. These graphs illustrate 
the different achieved temperatures for different 
values of r and ρ. 
     These results show that greater are the radii r and 
ρ, bigger is the achieved temperature. As a result if 
it is possible to design ex-novo the texture, it is 
preferable to choose the largest square dimensions 
allowed by other project bonds. Furthermore, the 
values of B and f that allow the attainment of tem-
perature Tref are diverse considering different size of 
steel texture. The proposed analysis can give some 
indication for each considered case. 
 
 
6   Conclusion 
In this paper a first-order model has been presented 
to study the possibility to reach high temperature in 
a texture made of steel by means of electromagnetic 
heating process. 
     The electromagnetic and thermal problems are 
represented by non linear partial differential equa-
tions: they are affected by intrinsic nonlinearity due 
to the skin effect and to the strongly dependence of 
electrical and magnetic properties on temperature. 
Its analytical solution is practically impossible, for 

these reasons, a first order approximate model and 
its numerical integration are necessary, overall if the 
problem is analyzed for the first time. In the paper 
an example of first-order approximate solution is 
presented, based on the use of MatLab-Simulink. 
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Fig. 17. Transient of the temperatures obtained with dif-
ferent values of  B and f.   
 
 
    By means of the proposed model and of the nu-
merical integration, both the forward and inverse 
problems are considered. With reference to a spe-
cific example it has been shown that the model al-
lows the resolution of the two type of problem, 
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which results would have been interpreted with ad-
junctive considerations based on the knowledge of 
the technology by which the external magnetic field 
can be impressed to the considered system. 
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Fig. 18.  Variation of the steady-state temperature with 
the radius ρ of the transversal section of the steel wire at 
B=0.6 T and f=150kHz. 
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Fig. 19.  Variation of the steady-state temperature with 
the radius r of the equivalent circular loop at B=0.6 T and 
f=150kHz. 
 
    

Further developments will necessary consider not 
only one constitutive element of the texture in a uni-
formly distributed field but the complete texture in 
the real field. Consequently, the characteristic of the 
machines that generate the impressed magnetic field 
will be take into consideration. Finally, the depend-
ence of the magnetic permeability and of the lumped 
parameters in the equivalent thermal network on 
temperature will be also taking into account.  
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